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Abstract—Since most malware is derived from prior code,
understanding malware derivation and evolution is essential
for many types of malware analysis. However prior models of
malware relationships are insufficiently precise or fail to capture
important relationships. A framework is proposed that treats
both production and evolution uniformly as compositions of code
transformations, and distinguishes disjoint but interleaved evo-
lution of production code and malware code. Evolution relations
are defined in terms of path patterns on derivation graphs; this
generalizes and formalizes the relationship between phylogenies
and provenance graphs. The comprehensiveness of the modeling
framework is demonstrated using examples from the literature;
implications for future work in relationship reconstruction are
drawn.
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I. INTRODUCTION

There is a growing interest in recovering relationships

between malware, often for the purposes of attribution. The

attribution takes the form of developing a profile of the

potential perpetrators, such as, their intent, capacity, training,

geographical locations, targets, etc. For instance, in a recent

study Symantec [1], after sifting through the data of malware

over four years determined the same group was likely behind

a host of attacks against defense, automotive, financial, and

such companies. This group, that also targeted human rights

organizations, was very sophisticated and was likely funded

by a nation-state. The report goes on to map out the likely

modus operandi of this purported group. In another study,

Kaspersky [2] found that the developers of Stuxnet and Duqu

were related in that they used the same attack platform called

Tilded. This study also found that even though Flame uses a

different architecture, “the team shared source code of at least

one module in the early stages of development” proving that

the teams had some contact.

It is not surprising that newly discovered malicious files

turn out to be, almost invariably, some variation of previously

known malware. In part, this is because true invention of

entirely novel things is difficult, but is also due to the fact

that attackers reuse and modify prior code in order to minimize
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their effort and production cost, and to also maximize speed of

recovery from detection [3, 4]. Malware authors modify their

code in some ways that are familiar to any software engineer:

they can generate new releases such as by adding “features”—

like password stealing—to an existing back door program;

they can also create multiple configurations to enable running

on different platforms. Other methods of change include re-

compiling [5], packing [6], permuting, obfuscating [7], or

otherwise tweaking their programs [4].

The Symantec and Kaspersky studies, cited above, relied

carefully on taking advantage of the reuse of code and

expertise to thread together attacks that otherwise looked

disparate. For instance, Kaspersky [8], states the following:

“The connection between Duqu and Stuxnet was revealed

during the analysis of one of the incidents with regard to

Duqu. During the investigation of the infected system thought

to have been attacked in August 2011, a driver was found that

was similar to the one used by one of the versions of Stuxnet.

Though there were clear likenesses between the two drivers,

there were also some differences in the details, such as the

date of signing of the digital certificate. Other files which it

was possible to attribute to the activity of Stuxnet were not

found, but there were traces of activity of Duqu.”

Even though the aforementioned studies relied on carefully

studying similarities and differences between malware there

has been little work in systematically and comprehensively

modeling and capturing malware evolutionary relationships.

The relationship models currently employed are ad hoc,

designed by malware researchers on a case-by-case basis.

Absence of a systematic and comprehensive model limits the

sharing of experiences and creation of tools that use these

models to support analysis, thereby limiting the capabilities

for detecting, attributing, classifying, and naming malware.

Unfortunately the relationships between malicious files can

be complicated, and have not been understood systematically

and comprehensively. Two important current problems in

capturing evolution relationship in malware are the lack of

conceptual clarity and the lack of an appropriate and precise

formalism to model the relationships.

Regarding conceptual clarity, sometimes ideas and termi-

nology from systematics are adapted to speak in terms of

“evolution” [10] of malware. Then malware “species” relations

could be modeled in terms of a phylogeny [11] indicating
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species inheritance relations. But does the idea of “species”

map appropriately to malware? Are there reasonable analogues

to genotypes and phenotypes [12]? Perhaps a species-level

view does not fit what we know of malware production? We

know that malware authors generally change their code in

thoughtful, designed steps rather than through the repeated

process of mutation and selection known to biology. So

perhaps it is better to think of malware being related in a family

tree (i.e., a parent–offspring graph), a provenance graph [13]

or software version model [14] rather than a phylogeny? But if

malware relationships are treated as relating only individuals,

how do we identify points of evolution, and do we give

up identifying groupings of individuals akin to “families” or

“species”?

Regarding appropriate formalisms for modeling malware

relationships, existing approaches fail to capture the known

rich collection of relationships. Phylogenetic modeling ap-

proaches do not make explicit the individual relationships

between executables grouped into species. For example, it

does not seem reasonable to think that adding a junk byte

to the end of an executable file [4] creates a new “species” of

malware. Thus, a classic phylogenetic tree cannot represent

this relation. Family trees, provenance graphs, and version

models of programs typically permit fine-grained specification

of relationships between program items, but lose the genetic

view that permits separation of evolution (e.g., creating new

programs) from mere derivation (e.g. compiling). Critically,

models of either kind fail to formalize a critical fact of

malware production: that some of the source involved is used

to generate transformers, such as, compilers and obfuscators,

which are then used to generate malware code or may be other

transformers.

What is needed is a refined theory of malware evolution to-

gether with a principled, systematic framework for formalizing

malware derivation relationships, and methods for expressing

common relationships. Perhaps ideally the framework answers

questions about what should be considered genetic material,

and precisely defines the differences between familial relation-

ships and species relationships. This paper proposes a new

framework for modeling relationship that is designed to meet

these requirements. Contributions arise primarily from three

key propositions and insights underlying the framework:

• Transformation-based model and formalism. The

framework treats all forms of malware relationship and

derivation uniformly as compositions of code transfor-

mations. The transformations are decomposed into three

classes (preserving, mutating, and combining). The mod-

els thus makes no bright-line distinction between auto-

mated, human-assisted, or wholly human code transfor-

mation. We call this the transformation-based model of

malware evolution. This formalism permits a comprehen-

sive system of specifying malware derivation relation-

ships.

• Disjoint genomes. The framework identifies source code

as genetic material, and proposes to identify two disjoint

genomes, namely, the production and malcode genomes,

and argues that these evolve independently. We call this

the disjoint genome assertion. The framework identifies

distinct lineages by distinguishing code that participates

in the production of binaries (production code) from the

code that is transformed into these binaries (malcode).

• Evolution relation abstraction. We propose that useful

familial and classically-evolutionary relationships can be

expressed as abstract patterns of composition on the fine-

grained derivation graphs. We propose the use of path

expression on derivation graphs to formalize common re-

lationships found in malware, and provide specifications

of common malware relationships of descent, sibling, and

two types of polymorphic variant.

The framework is motivated through study of prior mod-

eling approaches and analysis of published known malware

relationships. Section II introduces the modeling problems

through analysis of prior work, and a focused survey of known

important malware relationships. Section III outlines a set

of requirements for a malware relationship framework. The

malware derivation model is proposed in Section IV and is

evaluated informally in Section V by illustrating how the

framework successfully models the motivating examples of

Section II.

II. MALWARE RELATIONSHIP MODELS

A model of malware relationship describes or explains how

malicious files relate to one another through class or through

derivation (copy, packed version, sibling, species, family, etc.).

This section summarizes prior efforts in modeling malware

relationships and their limitations.

A. Formal Models of Viral Sets

Some malware relationship models use mathematical formu-

lations to define classes of malware. Cohen formalized related

malware as “viral sets” using “Turing-like” machines [15]. Zuo

et. al [16] and Bonfante et. al [17] used recursive function

theory to define related malware through polymorphic genera-

tors and mutation. Filiol [18] defined related polymorphic and

metamorphic in terms of the language generated by grammars.

These models primarily identify some classes of related

malware, and do not explicitly identify evolutionary relation-

ships apart from treating versions derived by the malware itself

(as in polymorphic or metamorphic viral sets). For example,

these models explicitly exclude the case where authors man-

ually edit code to add features.

B. Provenance Models

A provenance model is a representation of how an ar-

tifact was constructed from materials through some pro-

cess of transformation. Many different provenance models

have been proposed for domains such as libraries and cura-

tors [22], distributed systems [23], security [13], workflows,

and databases [24]. These are almost universally graphi-

cal models of data items and transformation processes that

generate new products. Of particular interest are models of

“toolchain” provenance for programs. Rosenblum et. al [3, 5]
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TABLE I
COMPARISON OF KEY DEFINITIONS OF PRIOR EVOLUTION MODELS

INHERITANCE

REFERENCE UNIT STRUCTURE GENOME PHYLOGENY INSTANCE

Goldberg et. al [11] Byte strings Multiple inheritance DAG Arborescence
Hayes et. al [19] Functionality Single inheritance Lattice N-ary tree
Dumitras et. al [20] Function Single inheritance Unstated Unstated
Erdelyi et. al [21] CFG Single inheritance Unstated Unstated

define a “hierarchical” model of provenance that permits them

to establish relationships between executables and the compil-

ers that generated them. Their model permits identification

of the responsible compilers and their compiler settings, and

permits mapping of specific segments of an executable to the

compilers that produced them. Dumitras et. al [20] mention

that compiler choice is a parameter of provenance they wish

to consider, but do not propose an explicit relationship model.

Note that software version models [14] can be considered

as a type of provenance model, and so will share similar

capabilities and limitations.

As with the formal models of viral sets, evolutionary

relationships are not addressed by the provenance models, even

those applied to security [13]. Neither Rosenblum et. al nor

Dumitras et. al relate the malware instances to their ancestors

or relatives. Another significant omission of the provenance

models is that they do not model the case where an artifact

is turned into a transformer. For example, the code of a

program-to-program obfuscator is an artifact, and a compiler

can transform that code to an executable that can be run

to transform other artifacts (or perhaps even the obfuscator

executable itself). The obfuscator code can evolve, meaning

both provenance and evolution of obfuscating executables need

to be tracked.

C. Malware Evolution Models

The idea that software evolves is not new. Lehman and

others studied the evolution dynamics of software systems

since the mid-1970s (e.g., Belady et. al [25]). Fred Cohen’s

dissertation [26] in 1985 likened computer viruses to forms

of artificial life that are able to generate new descendants.

Since then, many concepts of biological evolution have been

commonly applied to malware.

In some cases, the language of evolution is used loosely

to refer to general changes over time rather than the rich

biological model of actual inheritance of code with variation.

In other cases, the concepts from biology are more directly

applied. For instance, genes are sometimes identified as source

code [27], the defense-attack “arms race” has been cast as a

form of co-evolution [28], and malware variations have been

explained as polymorphisms or metamorphisms [10]. There

have also been many different proposals from the anti-virus

industry for naming of “species” [29], and separation of mal-

ware into different “types” (“bots”, “viruses”, “downloaders”,

etc.). These classes are derived by subject matter experts as

being useful divisions, but they do not formalize the range of

evolution relationships found. Other classification approaches

utilize forms of machine learning and automated classification

to build categories (see e.g., Shabtai et. al [30]), but in these

the evolution between elements within and between categories

is not explored.

More detailed and specific models of malware evolution can

be found either explicitly in papers proposing methods for

phylogeny reconstruction, or implicitly in papers recounting

and analyzing specific histories of evolution.

Most examples of automated phylogeny reconstruction stud-

ies, such as those of Dumitras et. al [20], and Hayes et. al [19]

are explicitly single inheritance, that is, they assume that

source from different malware lineages could not have com-

bined to form a new lineage. Of the reviewed models, most

either assume the units of inheritance are the binary codes (the

executables), or leave the true units of inheritance unstated.

Some, such as Dumitras et. al [20] propose cladistic study

based on expressed features, i.e., the functions that are in

common for a group of related malware instances. Table I

summarizes reviewed work.

Published accounts of specific instances of malware evo-

lution (i.e., manual phylogenetic analysis) rarely go into sig-

nificant detail about the evolution model (definition of genes,

etc.), but rather implicitly assume a notion of species or class.

Mathur et. al [31] and Schipka [4] are notable exceptions

that recount characteristics and sources of regular patterns of

change in observed variations. Table II provides a summary of

the subjects and types of evolution models assumed in notable

evolution accounts.

TABLE II
NOTABLE EVOLUTION HISTORY REPORTS

REFERENCE SUBJECTS Structure Inheritance

Gordon [32] Agobot, Sdbot tree, list source
Gordon [33] Beagle source
Canavan [34] Agobot, Sdbot source
Mathur et. al [31] Storm/Tibs tree source, keys
Schipka [4] Warezov tree source, binary

III. REQUIREMENTS FOR MALWARE RELATIONSHIP

FRAMEWORKS

This section analyzes the review from Section II and gener-

ates a set of goals and requirements for malware relationship

frameworks.
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A. Features from Biological Systematics

We may expect that a useful model of evolution contains

many of the same features as models in biology: the units of

inheritance are described, and the mechanisms and methods

for inheritance and gene change are identified. We could also

expect clear definitions of genome, and state how inheritance

and phylogenetic relationships are established. In addition,

the analogues for gene expression and the translation from

genotype to phenotype (roughly speaking, the things they

generate) should be included in the model (cf. Feitelson

et. al [12]). In short, a model of malware evolution will explain

how the different malware instances we find come about in

terms of evolution and derivation.

B. Scenarios of Derivation

All modeling efforts strive for an appropriate balance be-

tween completeness and expressiveness, simplicity, precision,

and formality. In relating to prior work it is helpful to identify

cases where models fail to accurately characterize the rela-

tionships and evolution that occurs. To that end, consider the

following scenarios, all either recounting published accounts

of observed malware evolution, or directly inspired by them.

These scenarios provide insights into the requirements of

a modeling framework, and will be consulted again during

evaluation of the proposed framework.

1) Multiple, separate descendant lineages: Author “[sd]”

releases a modular bot constructor called Sdbot that generates

bot source code. The code is adapted, customized, and ex-

tended by bot authors who create derivatives [34]. Each of the

various lines of derivatives share common code but also have

their own distinctive features added by their authors.

2) Interleaved code sharing: The Agobot bot constructor is

released in the form of a modular source base. Innovations are

added to the Agobot code over time, and these are mixed (i.e.,

copied) with Sdbot code base such that variants could be found

with large segments of code from both Agobot and Sdbot [34].

This mixing of code between lineages is reminiscent of

“horizontal gene transfer” (HGT) in biology that makes it

difficult to distinguish clear species in bacteria [35]. Indeed,

HGT in bacteria is suggested as a mechanism for rapid spread

of resistance to new drugs, which would be a great analogy to

the spread of resistance to new defenses by malware through

exploit sharing.

3) Dependent lineage update: Four versions of Sdbot are

released; multiple bot developers create distinct variants from

the code [34, 36]. In such cases, the transfer of code from one

lineage to another is not a one-time event; rather “mutations”

of source genes in the “original” lineage (Sdbot code itself)

are propagated to dependent lineages.

4) Differences in generation mechanism: Different com-

pilers and compiler settings are used to compile malware

code [36]. The resulting executables are different from an

identical source.

5) Variation after compilation: Thirteen bot downloaders

are created by automated mutation of a single source code base

and then compiling, and the resulting binary further mutated

to create new variations [4]. The mutations are by relatively

simple binary-to-binary code morphing that does not change

the functionality of the code.

6) Shared generated code and characteristics: A particular

black-market packer [37] is used by two malware authors that

work otherwise completely independently. Because the packer

injects randomization and specific obfuscations, each author

creates multiple variations of a single executable, and these

variations share similar anti-disassembly and anti-debugging

functionality.

7) Shared functionality update.: Remote host exploit code

in a worm is substituted with new “proof-of-concept” code

published by a security researcher in a vulnerability disclosure.

8) Separate evolution of toolchain: The Tibs packer is used

in the Storm malware to rapidly generate many variations

from a single executable [31]. Over a period of months

the author makes manual changes and implements a system

that automatically generates additional changes to the packer

outputs. During the same time, the “payload” executable

undergoes evolution, effectively separating stealth evolution

from malware functionality evolution.

These eight scenarios, in combination, inscribe an extensive

space of malware evolution relationships. Fore example, the

relationships between Duqu and Flame variants [2] may be

related through types 1, 2, and 5.

Prior efforts in modeling such scenarios fail to capture

the richness of the relationships between malware code. In

some cases, malware families are directly related by source

sharing, but may use different toolchains to generate the

executables. Even the formal definitions that permit modeling

of metamorphism does not describe the source-origin relations

of the viral sets of polymorphically equivalent malware. These

cases present problems for models that fail to capture multiple

inheritance and sharing of code or libraries, or to differentiate

between code the malware authors control versus code to

generate the tools they use to generate binaries.

IV. TRANSFORMATION-BASED EVOLUTION MODEL

A model of the derivation of malware code from collections

of other code is presented. A key proposition in the model is

that all derivation relationships can be uniformly modeled as

a composition of various code-to-code transformations. The

model distinguishes between production transformations and

evolution transformations. Production transformations gener-

ate derived products from collections of sources. The end-

result of production transformations is executable code. Evo-

lution transformations generate new source code elements.

In this model, therefore, genetic material is identified by

inheritance after evolution.

A second key proposition is that there are two essentially

disjoint lineages to distinguish as separate genomes: the pro-

duction and malcode genomes. This proposition follows from

the first by noting that the source code for the production

transformations themselves may evolve, and that this evolution

is independent from the evolution of the malware code being

transformed in production. The independence is traditionally
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maintained, as we argue in the following, because code

maintainers normally fastidiously avoid hand editing artifacts

derived through production transformations.

The model is formalized using sets and functions. Deriva-

tion graphs are introduced to model the compositions, and

patterns of evolution are defined based on notable patterns of

compositions.

A. Model Definition

1) Data sets: The following are basic definitions of the sets

of values that the transformation functions operate on.

B. Let B be the set of binaries. This is the set of all

executable codes for real machines. This is meant to

include linked executables as well as compiled object

files. Binaries may be loaded onto a virtual machine

(such as an emulator), but there exists some hardware

on which it runs natively.

V. Let V be the set of virtual binaries. This is the set

of all executable codes for virtual machine hardware.

This code must be emulated, compiled, or dynami-

cally translated to native code.

H. Let H be the set of higher-level code. This is the

set of all code not including V or B. This is meant

to include assembler as well as traditional high level

languages. The model does not distinguish between

languages or stratify them.

C. Define C to be the set of code as C = B ∪ V ∪ H .

2) Transformations: Classes (i.e., sets) of functions from

the universe of all functions are defined using function type

signatures on the base set classes. Any transformation function

is also labeled as preserving, mutating, or combining. Pre-

serving transformations are semantics- or behavior-preserving

transformations [7]. Mutating transformations are those that

do not preserve behavior or semantics. Both mutating and

preserving transformations are unary functions from code

to code (C → C). Combining transformations are binary

functions that merge two sets of codes in some manner. In

the following paragraphs, preserving, mutating, and combining

transformation functions are labeled with a superscript P , M ,

or C, respectively. The labeling is not intended to formally

add power to the transformation function definition, but rather

is used to help identify evolution changes.

1. H → H

• TranslatorsP . This class transforms code from one high

level language into another.

• GeneratorsP . These take code in one programming lan-

guage and generate code in another. The Agobot con-

struction kit is a type of generator.

• EditorsM . These can be ordinary code maintainers and

developers. We can treat all of their edits as code-to-code

transformations. Here we are not thinking of their editing

programs as the editors, but the programmers themselves.

While some sequences of code changes are behavior or

semantics preserving, we consider here ones that change

behavior or semantics.

• MutatorsM . Mutators can make random, pseudo-random,

or planned changes to code in an automated manner.

This class of transformation does not, in general, preserve

semantics or behavior.

2. H → B

Notable examples are classic assemblers and compilers. In this

model, a compiler implements a specific transformation func-

tion. So a compiler program, such as gcc, run with different

options is treated as a different function. These transformations

generally aim to be semantics-preserving transformers.

3. H → V

These are the virtual machine analogues to H → B.

4. V → V

Examples include Java or .NET bytecode optimizers, which

are ordinarily semantics-preserving.

5. V → B

This class of transformer include compilers such as Java to

binary bytecode compilers, as well as “binary translation”

frameworks such as “just in time” compilation of Java virtual

machines.

6. B → V

This class of transformations turn binaries into virtual binaries.

This type of transformation is sometimes done to support

legacy code,

7. B → B

Binary-to-binary program transformers are commonly used in

malware in the form of PackersP and EncryptersP . Both of

these generate new executables from provided executables.

Similar to H → H translators, there are binary-only versions

of Editors and Mutators for binary code.

8. H × H → H

• PatchersC . These modify code in ways that can add,

modify, or delete parts of code based on a specification

of the update to provide.

• Copy-pastersC . Ordinary software engineers frequently

copy and paste code. Such plagiarism is common in

the malware community also, and was observed in the

Agobot-Sdbot interactions [34].

9. B × B → B

• LinkersC . A linker is responsible for combining binary

components into a new binary executable. This is the

primary method for combining code with third party

libraries at compile time.

• LoadersC . Like a linker, a loader also combines binary

components into a new binary executable, but at run-time

and to create an in-memory program image. This is a

primary method for combining third-party dynamically-

loaded libraries. Note that certain malware can be ren-

dered incapable of infection by providing patched (up-
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dated with vulnerability removed) dynamically-loaded

libraries in place of vulnerable ones.

10. I(C) → (C → C)

I is an interpretation function. It “executes” the code for a

transformation function, and is modeled as a function from

code to transformation functions. For example, the source code

h ∈ H for a C++ compiler is interpreted by I to generate

a function that maps C++ code to binaries. The interpreter

function is essential for formalizing evolution of code that

produces other code. For simplicity we do not consider the

details of how I works, we only make use of its function.

Obfuscators, source-to-source transformers that make the

code less scrutable [7, 38, 39] while preserving the origi-

nal semantics, can be modeled in this framework as any

code-to-code transformation. Obfuscating transforms need not

be source-to-source. For example, certain packers obfuscate

by transforming native binaries into virtual binaries for a

randomly-generated virtual machine [40]. Such transformers

too can be naturally modeled in our framework.

In the following, we use our model to more formally define

some terms that we have used intuitively up to this point.

• Derivation. A derivation is a composition of transforma-

tion functions that map one code to another. We denote

a derivation from one code to another as C
�
−→ C; that

is, it denotes a composite function made by composing

0 or more transition functions. We also generalize the

combination transformation so that bags of code elements

can be transformed to derive another code; this is denoted

as Cn → C. In this framework, derivation need not lead

to a binary.

• Production. A production is a derivation utilizing no

mutating transformations and yielding a B or V .

• Evolution. An evolution is a class of derivation utilizing

only mutating transformations and yielding code that

is used to produce new variants of malware. Note that

evolution derivations do not overlap with production

derivations.

• Source code. Code elements that are never results of

production transformations, and are subject evolution

transformations. That is, these are code elements that are

units of inheritance—they are the genes of malware.

• Production code. Source code that is used to create

code transformation functions. That is, the source code

is subject to I , and the result is subsequently used in a

production derivation.

• Malcode. Source code that is used in productions.

B. Example Model

The framework developed in the previous section provides

the basic mechanisms for identifying a useful class of relation-

ships between code relating to malware. Each relationship is

identified by a composition of transformations. For example,

let:

• bot1, bot2 ∈ H be two completely unrelated complete

malcode source files,

• gcc ∈ H be a source code of a C++ compiler such that

gcc′ = I(gcc) and gcc′ : H → B,

• tibs ∈ H be the C++ source for the Tibs packer such

that tibs′ = I(tibs) and tibs′ : B → B,

• changealg : H → H be an edit for tibs that modifies its

polymorphic unpack algorithm,

• bugfix : H → H be an edit for gcc,

• spamit : H → H be an edit that adds a new spamming

capability to bot2.

Then the following are all compositions denoting productions

of executables, that is, all generate executables in B:

bot′
1

= tibs′(gcc′(bot1))

bot′
2

= tibs′(gcc′(bot2))

bot′′
2

= gcc′(bot2)

bot′′′
2

= tibs′(gcc′(spamit(bot2)))

bot′′
1

= I(changealg(tibs))(gcc′(bot1))

bot′′′
1

= tibs′[I(bugfix(gcc))(bot1)]

then

(a) bot′
1
, bot′

2
, and bot′′′

2
share a common production code

base (tibs ∪ gcc). More specifically, they share the same

production function tibs′ ◦ gcc′.

(b) bot′
2

and bot′′
2

share the same malcode base, but are

generated by different productions.

(c) bot′
2

and bot′′′
2

are malcode related by a mutation transfor-

mation (source code evolution). bot′′′
2

is related to bot′
2

by

mutation of malcode source bot2 (products do not evolve).

(d) bot′′
1

and bot′′′
1

are both related to bot′
1

by evolution

in production source (tibs and gcc for bot′′
1

and bot′′′
1

,

respectively).

These example relations show how production and evolution

are unified in this transformation-based model, and illustrate

different forms of malware relationship. To this point the

various relationships described are not given names; this is

done by using patterns defined on derivation graphs.

C. Derivation Graphs and Path Expressions

The notation for transformation composition is detailed and

can be relatively confusing to read. Two alternative ways of

presenting derivation information are informally defined.

Definition 1: A concrete derivation graph renders elements

in C as nodes, applications of elements from C → C as

labeled arcs, and applications of elements from C × C → C

as nodes with two incident edges from elements of C, and one

outgoing edge to an element of C.

Derivation graphs can be used to visualize portions of a

derivation. Figures 1(a)–(c) visualize the four noted derivations

from Section IV-B.

Concrete derivation graphs can model derivation steps at

fine levels of granularity. However, frequently one wishes to

model and consider only certain aspects of a relationship,

only certain key steps within some derivation graph, or only
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(a) common production code base

(b) common malcode base, different productions

(c) malcode evolution, common production

(d) production evolution, common malcode

Fig. 1. Concrete derivation graphs corresponding to example from Sec-
tion IV-B

certain classes of derivation. This can be accomplished with

an abstraction.

Definition 2: An abstract derivation graph is a graph where

nodes and edges are either ones from concrete graphs or are

abstracted to generic classes or compositions. Specifically,

nodes are labels representing specific code, one of the classes

of code (H , B, V , or C) to denote arbitrary elements from

those classes, a label representing a particular combining trans-

form, or the letter C to denote arbitrary transform. Edges are

labels representing specific transformations, regular expres-

sions on the alphabet {P,M,X} to represent compositions

of transformation functions from preserving, mutating, and

either preserving or combining classes of transformations,

respectively.

This definition introduces generalizations for compositions

of transformation functions using abstract classes and a simple

(a) descendant / ancestor (b) polymorph

(c) e-polymorph (d) sibling

Fig. 2. Some patterns of evolution relationships

form of path expression. They might reasonably be thought

of as being opposite the graph refinements of hierarchical

provenance models (see e.g., Moreau et. al [22]). The notation

C
P
−→ C and C

M
−→ C indicate a single production and

mutation composition, respectively, from C to C. Regular

expressions are used to generalize the composition: B
P |M
−−−→ B

denotes either a production or mutation transformation on

binaries, and H
M�
−−→ H denotes a composition of zero or

more mutations on high level code.

Abstract derivation graphs make it possible to specify partic-

ular relations between incidents of code. This makes it possible

to precisely specify generalized evolutionary and production

relationships. Figure 2 provides examples of common deriva-

tions. Figure 2(a) shows how a binary b can be an ancestor of

b′. If the transition between s and s′ were written s
M
−→ s′ the

relation would be “parent”, and if it were written s
MMM
−−−−→ s′

or s
M{3}
−−−−→ s′ it would be “great-grandparent”. Figures 2(b)

and 2(c) show how the framework concisely identifies two

types of polymorphic variation, the second showing variation

by evolution of production source code. These patterns can be

composed to generate other classic familial relationships, such

as “cousin”.

V. EVALUATION AND DISCUSSION

The modeling framework proposed in Section IV attempts

to strike a balance in which important classes of malware

relationships can be modeled without requiring onerous mod-

eling formality or completeness. We informally evaluate the

framework by considering how they can model the scenarios

from Section III, and in terms of what implied statements the

framework makes about the nature of malware evolution.

An anecdotal evidence of the value of this model comes

from the conclusions of Gostev and Soukenkov’s report on

analysis of Stuxnet and Duqu [9], which states, “From the

data we have at our disposal, we can say with a fair degree

of certainty that the “Tilded” platform was created around

the end of 2007 or early 2008 before undergoing its most

significant changes in summer/autumn 2010. Those changes

were sparked by advances in code and the need to avoid
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detection by antivirus solutions. There were a number of

projects involving programs based on the “Tilded” plat-

form throughout the period 2007-2011. Stuxnet and Duqu

are two of them–there could have been others, which for

now remain unknown. The platform continues to develop,

which can only mean one thing–we’re likely to see more

modifications in the future.”

The “Tilded” platform alluded to in the above report consti-

tutes a production transformer. This report hypothesizes about

the existence of such a platform based on similarities of obfus-

cation methods employed in Stuxnet and Duqu, two otherwise

independent worms. The researchers infer that the production

environment has undergone several revisions, and is likely to

continue further revisions. Our framework provides a structure

of modeling such relationships, both, of the evolution of the

production transformations as well as the payload. Extracting

information from malware to populate a derivation graph to

draw inferences, such as those made in the above report, is a

worthy research problem.

A. Comprehensiveness

The framework permits modeling at concrete, fine granu-

larity of familial relationships (individual compositions and

mutations) as well as abstract, large granularity such as phy-

logenetic relationships such as “common ancestor”. We can

consider how it addresses each of the limitations noted from

prior modeling efforts:

• Multiple, separate descendant lineages. These can be

modeled with a shared parental source code and separate

mutation transformations for each of the leaves of the

tree.

• Interleaved code sharing. The derivation graphs directly

represent non-tree structures using combination transfor-

mations that can model copying of code to and from

separately evolving lineages (a horizontal gene transfer

analogue).

• Dependent lineage update and shared functionality up-

date. These can be represented by a “trunk” of mutations

of a source lineage that branch out to be combined at

different points of parallel “trunks” of lineages that utilize

these updates.

• Differences in generation mechanisms and variation after

compilation. Both of these are instances of different

production paths from a malcode source.

• Shared generated code and characteristics. This is mod-

eled using a production code source that is shared through

I (interpretation) applications for different malware lin-

eages.

• Separate evolution of toolchain. The separation of pro-

duction and malcode sources and their evolution histories

make it possible to trace each independently.

The derivation graphs in Figures 1 and 2 illustrate these.

B. Limitations

For simplicity, the model’s definition of source code specif-

ically excludes machine generated code. In some cases this

will be overly restrictive since it is quite possible that malware

authors begin with a generated template or initial code base

and then hand edit it from that initial phase. However in prac-

tice developers are generally loath to hand modify machine-

derived code, such as parser-generator outputs, obfuscated

code, or binary outputs. Binaries modified using automated

transformation tools, can however be represented in the model,

as also transformations on source code using tools, such

as, automated indenters, formatters, and semantics-preserving

refactoring tools.

The separation of malcode from production code is useful

but artificial. Assuming it technically precludes modeling the

case where benign code is being compiled with a compro-

mised compiler that emits malicious code [41]. However the

transition-based composition framework still permits it to be

modeled, but the definition of “malcode” needs to be modified

appropriately.

Besides relating malware samples using shared code, obfus-

cations, cryptographic algorithms, and packers, as done in the

Symantec [1] and Kaspersky [2] studies, malware samples may

also be related by their behavior. For instance, two samples

connecting to the same IP address or a website may be

considered related. Or malware samples may be related by

relation between the sites, for instance, to determine that an

attack is a “watering hole attack” [1]. Such relations to objects

outside the code and production environment are not directly

represented in the model.

VI. CONCLUSIONS

Government and industry is increasingly interested in at-

tributing malware to its potential developers. This is done,

in part, by relating disparate pieces of malware to develop

a profile of the attacker. Prior efforts at characterizing re-

lationships between instances of malicious code have not

yielded a cumulative and comprehensive overview of the

variety of relationships found in the real world malware, and

is not suitable for use for attribution. The proposed framework

captures and summarizes a wide variety of these relationships,

and introduces an approach for modeling these at different

levels of specificity. If desired, the fine-grained provenance

and derivation history can be modeled to characterize the

relationships between individuals in an analogy to a “family

graph”. But also, one may sketch out patterns of derivation—

siblings, grandparents, and so on—by abstracting family graph

nodes and edges to derivation chains and source code classes.

With this new tool for modeling we expect the framework to

contribute positively to reporting and comparison of malware

evolution, and to enable more precise descriptions.

In addition to systematizing past knowledge and unifying

it in a single framework, analysis of the framework identifies

many possible avenues for future research. Relationships be-

tween malware binaries are complex: production is often far

more complicated than simply determining compilers used;

with a thriving black market and code sharing common,

executables are frequently derived from a stew of source ingre-

dients. This analysis suggests that existing work has in some
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cases only scratched the surface of the problem of recovering

provenance and derivation relationships (i.e., phylogenies),

classifying malware into related groups (i.e., “families”), and

reconstructing lineages between different sources.
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