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Abstract. Call-string technique, a classic technique for interprocedural analy-

sis, cannot be applied to binaries that do not follow stack conventions used by

high-level language compilers. Examples are programs that make obfuscated

procedure calls using push and return instructions, which is a technique largely

used to hide malicious code. In this paper it is shown that a technique equiva-

lent to call-string, the abstract stack graph (ASG), may be used to identify such

obfuscations. An ASG contains nodes representing statements that push some

element on the stack. An edge in the graph represents the next instruction that

pushes a value on the abstract stack along some control flow path. For a pro-

gram that manipulates stack using only call and return instructions, its ASG is

equivalent to its call-graph. Since the ASG represents stack operations by any

instruction it becomes a suitable substitute for the call-graph for interprocedu-

ral analysis of obfuscated binaries.

Resumo. A técnica ‘call-string’, técnica clássica para análise interprocedural,

não pode ser aplicada a binários que não seguem padrões de uso da pilha uti-

lizados por compiladores de linguagens de alto nível. Exemplos são programas

que ofuscam chamadas de procedimento usando uma combinação de instruções

‘push’ e ‘ret’, que é uma técnica extremamente utilizada para esconder código

malicioso. Neste artigo, uma técnica equivalente à ‘call-string’ é demonstrada,

em que um grafo abstrato da pilha pode ser utilizado para identificar estas ofus-

cações. Um grafo abstrato da pilha contem nós representando instruções que

realizam inserção na pilha. Uma aresta neste grafo representa a próxima in-

strução que realiza a inserção na pilha abstrata ao longo de um caminho do

fluxo de controle. Para um programa que manipula a pilha utilizando somente

instruções ‘call’ e ‘ret’, seu grafo abstrato da pilha é equivalente ao seu grafo

de chamadas. Desde que o grafo abstrato da pilha representa operações na

pilha por qualquer instrução, o mesmo torna-se um substituto apropriado para

o grafo de chamadas para análise interprocedural de binários ofuscados.

1. Introduction

Recently, research activity has increased in the area of binary analy-

sis [Larus and Schnarr 1995, Cifuentes and Fraboulet 1997, Cifuentes et al. 1998,
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Amme et al. 2000, Goodwin 1997, Schwarz et al. 2001, Debray et al. 1998,

Srivastava and Wall 1993, Venkitaraman and Gupta 2004, Bergeron et al. 2001,

Balakrishnan 2007, Guo et al. 2005, Reps et al. 2006, Reps and Balakrishnan 2008,

Christodorescu and Jha 2003, Lakhotia et al. 2005, Venable et al. 2005,

Kinder et al. 2009]. For Commercial Off-The Shelf (COTS) programs or other third-party

programs in which the source code is not available to the analyst, analysis for malicious

(hidden) behavior can be performed reliably only on binaries. Even when the source

code is available, analyzing the binary is the only true way to detect hidden capabilities,

as demonstrated by Thompson in his Turing Award Lecture [Thompson 1984].

Current methods for analyzing binaries are modeled on methods for analysis of

source code, where a program is decomposed into a collection of procedures, and the

analyses are classified into two types: intraprocedural and interprocedural. In intrapro-

cedural analysis, the entire program is treated as one function, leading to very significant

over-approximation. In interprocedural analysis, procedures are taken into account and

complications can arise when ensuring that calls and returns match one another, where

information may flow along a call node to a procedure and then be propagated by a return

node to another call node calling the same procedure.

Classical interprocedural analysis may be performed by procedure-inlining fol-

lowed by an intraprocedural analysis, or using the functional approach through pro-

cedure summaries, or by providing the calling-context using the call string ap-

proach [Sharir and Pnueli 1981].

Since a binary, albeit disassembled, is not syntactically rich, the identification of

procedure boundaries, parameters, procedure calls, and returns is done by making as-

sumptions. Such assumptions consist of the sequence of instructions used at a procedure

entry (prologue), at a procedure exit (epilogue), the parameter passing convention, and

the conventions to make a procedure call. When a binary violates the convention, the

analysis fails.

This paper presents a method for performing interprocedural analysis when a bi-

nary does not follow the standard compilation model of manipulating the stack. For

example, a binary may not use the call instruction, instead it may simulate a call

by a combination of two push and one ret instruction. Such non-standard meth-

ods of making a call are explicitly used by malicious programs to defeat automated

analysis [Boccardo et al. 2007, Christodorescu and Jha 2003, Lakhotia and Singh 2003,

Szor and Ferrie 2001]. Such obfuscations may also be used for the purpose of hiding in-

tellectual property [Linn and Debray 2003, Collberg et al. 1997, Wroblewski 2002]. The

method presented here is applicable even when a binary is not deliberately obfuscated.

This is because the standard compilation models are really not industry standard. The

standards are compiler specific, and may even vary with optimization levels of the com-

piler.

More specifically this paper demonstrates that the Abstract Stack Graph

(ASG), introduced earlier by [Lakhotia et al. 2005], can be used to adapt Sharir and

Pnueli’s [Sharir and Pnueli 1981] call-string approach to perform context-sensitive inter-

procedural analysis of programs with non-standard manipulation of stack, including ob-

fuscation of calls. It is obvious from the construction of the ASG ([Lakhotia et al. 2005])
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that the call-graph (CG) and the ASG are isomorphic for the same program when the pro-

gram uses standard compilation model. We use this to show that even when procedure

calls are obfuscated, the necessary structure of the CG is preserved in the ASG. Thus, a

call-string of Sharir and Pnueli, which is a finite length path in a call-graph, maps to what

we term as a stack-string, a finite length path in an ASG.

The benefit of using ASG over CG is immediate. Interprocedural analysis meth-

ods developed using call-string approach, which are restricted to a standard compilation

model, may be made more general simply by switching to using stack-strings. For in-

stance, Balakrishnan and Reps’s WYSINWYX system develops higher level abstractions

of binaries, such as determining the memory layout of variables [Balakrishnan 2007,

Balakrishnan and Reps 2004]. This system utilizes Sharir and Pnueli’s call-string ap-

proach for context-sensitive interprocedural analysis. The applicability of this system

can be expanded to a larger class of programs by using stack-string, instead of call-string.

The costs and issues of constructing ASG are similar to those of constructing

CG. [Lakhotia et al. 2005] have presented an algorithm that constructs a precise ASG

for programs that manipulate the stack pointer by adding/subtracting a constant and in

which the address of control transfer can be computed to be a constant. This class of pro-

grams is similar to the class of programs containing only direct calls (no indirect calls).

[Venable et al. 2005] has extended Lakhotia et al.’s algorithm to remove this restriction on

the class of language. Their algorithm does not decompose a program into procedures, as

this decomposition is not assumed to be known. This yields a program that is resource in-

tensive and context-insensitive. Our goal is the improvement of Venable et al.’s algorithm

by using an ASG constructed by the algorithm to guide the construction of the ASG. This

issue is analogous to constructing CGs for programs with indirect calls [Lakhotia 1993],

in which a CG is used to guide the construction of CG. Research results from solving

the issue for constructing CGs [Zhang and Ryder 2007, Milanova et al. 2004] may thus

be borrowed for constructing ASGs for analogous constraints.

The remaining sections of this paper are arranged as follows. Section 2 presents

related work in the area of interprocedural analysis and binary analysis. Section 3 presents

an overview of the call-string approach and also highlights its drawbacks. Section 4 de-

scribes how to adapt call-string using ASG to overcome the drawbacks come from call-

string approach, when interprocedural analysis is made on non conventional binaries.

Section 5 contains our concluding remarks.

2. Related Works

Precise and efficient context-sensitive interprocedural data-flow analysis of high-level

languages has been an active area of research. Most of these efforts, represented by

[Sagiv et al. 1996, Cousot and Cousot 2002, Muller-Olm and Seidl 2004], are focused on

special classes of problems for high-level languages. The general strategy falls within

the two approaches proposed by Sharir and Pneuli [Sharir and Pnueli 1981], namely the

call-string approach or the procedure summaries approach.

Interprocedural analysis of binaries has also received attention for post-compile

time optimization [Srivastava and Wall 1993] and for analyzing binaries with the intent to

detect vulnerabilities not visible in the source code, such as those due to memory map-

ping of variables [Balakrishnan 2007]. Goodwin uses procedure summary approach to
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interprocedural analysis to aid link-time optimization [Goodwin 1997]. In contrast, Bal-

akrishnan [Balakrishnan 2007] uses the call-string approach. As mentioned earlier, these

methods assume a certain compiler model to identify code segments related to performing

procedure calls.

On a tangential direction there has been significant work in obfusca-

tion of programs with the intent to thwart static analysis [Linn and Debray 2003,

Collberg and Thomborson 2002]. Such obfuscations may be used by benign as well as

malicious programs for the same purpose, to make it difficult for an analyst to detect its

function or its underlying algorithm. The obfuscation techniques attack various phases in

the analysis of binary [Lakhotia and Singh 2003].

A metamorphic virus, a virus that transforms its own code as it propagates, may

use procedure call obfuscations to enable its transformation operation. The Win32.Evol

virus, for example, uses call-obfuscation just for this purpose. A side-effect of this is

that the virus defeats any interprocedural analysis that depends on a traditional compiler

model [Lakhotia and Singh 2003]. Increase in obfuscation efforts have also triggered

attempts to analyze obfuscated code. There have been efforts to use semantics based

methods for detecting malware [Dalla Preda et al. 2007, Christodorescu and Jha 2003,

Bergeron et al. 2001]. Term-rewriting has been proposed to normalize variants of a meta-

morphic malware [Walenstein et al. 2006]. None of these works address analysis of ob-

fuscated programs that do not conform to the standard compilation model.

3. Interprocedural Analysis

Analyzing a procedure is classically represented as a control flow graph containing nodes

and edges. Nodes represent computational elements while edges represent transfer of

control. Program analysis algorithms propagate information along edges of this graph.

For interprocedural analysis, each procedure call is treated as a node with edges to all the

procedures that can be called from the call site. Similarly, a return statement is represented

as a node with edges to all the nodes where control may be transferred after a procedure

terminates. We use the phrase ‘call edges’ and ‘return edges’ for edges that represent

transfer of control due to call and return statements, respectively.

Propagating information to all the successors of a node in the graph leads to

context-insensitive analysis. Information may flow along a call edge to a procedure and

then be propagated by a return edge to another call site calling that same procedure. Thus,

incorrect combinations of call and return edges creates spurious pathways in the informa-

tion flow.

3.1. Call-string approach

Sharir and Pnueli’s call-string approach for context-sensitive interprocedural analysis in-

volves tagging information with an encoded history of calls along which it is propagated.

When information flows along a call-edge, the corresponding call site is added to the

history. The history is propagated as the tagged information is used to compute other

information. Finally, at the return edge, information is propagated back to only the call

sites in the history, and in turn the last call site is removed from the history.

The context-sensitive flow of information by maintaining call strings comes at a

price. There may be an exponential, if not infinite, number of interprocedurally valid
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paths, paths in which the call and return edges are correctly paired. Thus, the amount of

information to be maintained explodes.

The information space is made manageable by capping the history being main-

tained to up to some k most recent call sites. This ensures context-sensitive flow of in-

formation between the most recent k sites, but context-insensitive flow between call and

return sites that are more than k call sites apart.

A call-graph is a labeled graph in which each node represents a procedure, each

edge represents a call, and the label on the edge represents a call site. A call string is a

sequence of call-sites (L1L2...Ln) such that call site L1 belongs to the entry procedure,

and there exists a path in the call-graph consisting of edgesL1, L2, ..., Ln. A call string can

be saturated when the encoded history of the procedure calls exceeds the limit k imposed

during analysis. Its representation is given as (∗L1L2...Lk), where the parameter k is the
bound of the call string size and represents the set {csk | csk ∈ CSk, cs = πL1L2...Lk

and |π| ≥ 1}.

The call-string approach can be used to perform context-sensitive interprocedural

analysis for binaries, so long as the Interprocedural Control Flow Graph (ICFG) can re-

liably be constructed. When this graph cannot be constructed, such as for obfuscated or

optimized code, the approach breaks down.

Figure 1(a) contains a sample code that presents the motivation. It is a simplified

program showing only the call and return structure. Figure 1(b) shows the ICFG of this

program. The edges of the graph represent call and return edges. Context-sensitive in-

terprocedural analysis algorithms require pairing the edges such that information flowing

from one call node is not propagated to another call node [Sharir and Pnueli 1981]. Fig-

ure 1(c) shows an obfuscated version of the sample program. It is generated by replacing

every call instruction by a sequence of two push instructions and a ret instruction, where

the first push pushes the address of the instruction after the call instruction (the return

address of the procedure call), the second push pushes the target address of the call, and

the ret instruction causes the execution to jump to the target address of the call. Since

the program has no call instruction, partitioning it using classical algorithms will yield

only one procedure (consisting of the entire code). Furthermore, the ret instructions will

be treated as if they were returning to the caller, thus generating an incorrect ICFG. As a

consequence, any resulting analysis based on this ICFG will also be incorrect.

The obfuscation shown in Figure 1(c) is naïve and presented to demonstrate the

concept. More obfuscations, although still trivial, may be performed by shuffling the two

push instructions among other code. More complex obfuscations may be achieved by

not using push and ret instructions; but instead using move, increment, and decrement

operations directly on the stack pointer to perform equivalent functions.

[Lakhotia et al. 2005] identify the following four types of obfuscation related to

call and return statements.

1. A call simulated by other means. The semantics of a ‘call addr’ instruction is

as follows: the address of the instruction after the call instruction is pushed on

the stack and the control is transferred to the address addr, the target of the call.

Win32.Evol achieves the same semantics by a combination of two push instruc-

tions and a ret instruction. There are other ways to achieve the equivalent behavior.
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(a) Sample code. (b) ICFG. (c) Obfuscated version.

Figure 1. Example motivating context-sensitive analysis of obfuscated code.

2. A call instruction may not make a call. The call instruction performs two actions -

pushing a return address on the stack and transfer of control. A program may use

the instruction primarily for control transfer, and discard the return address later,

as done by Win32.Evol. The program may also use the instruction as a means to

retrieve the address from memory of a certain point in code, as it is done by some

worms.

3. A return may be simulated by other means. A ret instruction is complementary to

a call. It pops the return address (typically pushed by a call instruction) from the

stack and transfers control to that address. The same semantics may be achieved

by using other statements. For instance, the return address may be popped into a

register and a jmp instruction may be used to transfer control to the address in that

register.

4. A return instruction may not return back to a call site. A program may utilize the

ret instructions to transfer control to another instruction, completely unrelated to

any call instruction. For instance, the ret instruction can be used to simulate a call

instruction, as outlined earlier.

4. Using ASG in place of CG

We now show the relationship between ASG and call-graph (CG), and how an ASG may

be used in place of CG for interprocedural context-sensitive analysis.

The concept of ASG from [Lakhotia et al. 2005] is developed by first introducing

the notion of abstract stack. An abstract stack is an abstraction of the real (concrete)

program’s stack. While the concrete stack keeps actual data values that are pushed and
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popped in a LIFO (Last In First Out) sequence, the abstract stack stores the addresses of

the instructions that push and pop values in a LIFO sequence.

An ASG is a concise representation of all, potentially infinite, abstract stacks at all

points in the program. A path (sequence of nodes beginning from the abstract stack’s top

toward its bottom) in the graph represents a specific abstract stack. An ASG is represented

by a labeled graph in which each node represents an instruction that manipulates the stack

pointer to effectively push some data on the stack, and the edges represent potential traces

that push values onto the stack.

Lemma 4.1 Paths in ASG preserve call-strings of CG for programs that do not manipu-

late instructions in the stack, except when using the ‘call’ and ‘ret’ instructions.

Proof The nodes of the ASG for such a program will consist of only the call sites. An

edge in the ASG from a call-site Lj to a call-site Li exists iff there is an execution path

from Li to Lj , with no other call instruction along the path. Assume that Li is a statement

in procedure Pi, and Lj is in procedure Pj . Assume also that Lj calls procedure Pk. Thus,

in the CG exists an edge from Pi to Pj, with the annotation Li, and an edge from Pj to Pk

with the annotation Lj . This implies that an edge Li to Lj in ASG corresponds to an edge

Pi to Pj with annotation Li, and vice-versa. A call-string will thus correspond to a path

in the ASG.

Therefore, a call-string of Sharir and Pnueli, which is a finite length path in a

call-graph, can be mapped to what we term as a stack-string, a finite length path in an

ASG. Formally, a stack-string can be defined as a path in the ASG of program locations

(L1L2...Ln) such that program location L1 is the first element pushed on the stack, and

there exists a path in the ASG consisting of program locations L1L2...Ln such that Ln is

the top of the stack. Analogous to Sharir and Pnueli’s saturated call-string we define a

saturated stack-string as a string whose encoded history of the program locations exceeds

some limit k. It is represented as (∗L1L2...Lk), where the parameter k is the bound of the
stack-string size and represents the set {ssk | ssk ∈ SSk, ss = πL1L2...Lk and |π| ≥ 1}.

Figure 2 shows the ASG and CG for the code of Figure 1(a). The correspondence

between ASG and CG is obvious. The nodes in the ASG represent the edges (call-sites)

in the call graph. An edge in the ASG represents the next instruction that pushes a value

on the abstract stack along some control flow path. The corresponding called functions

are represented side by side of the call-site.

Now consider programs that use other instructions to manipulate stack, but do not

attempt to obfuscate call and ret.

Corollary 4.2 For any program that does not obfuscate ‘call’ and ‘ret’ instructions, an

ASG path containing at least one ‘call’ instruction maps to a unique path in the CG. Also,

a call-string in CG of this program corresponds to one or more ASG paths (that can be

mapped to the CG).

Proof Follows from the previous lemma. If on an ASG path, instructions other than the

call instructions are removed it will correspond to a call string. The second part follows

by contradiction.

The above discussion implies the ASG can be used as a substitute for programs

that do not obfuscate call and ret instructions. When performing interprocedural analysis,
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(a) Abstract stack graph. (b) Call-graph.

Figure 2. Abstract stack graph and call-graph for code of Figure 1(a).

values may be tagged with k-length paths in the ASG, instead of the CG. Of course, the

tags would have to take into account the non-call instructions to preserve equivalence in

using call-strings over CG.

The real value, though, comes in the application of ASG for analysis of obfuscated

programs. Since CGs cannot be constructed for obfuscated programs (without deeper

analysis), it is rather difficult to theoretically offer an argument that ASGs are a suitable

replacement for CGs of obfuscated programs. Hence, we will make the case of use of

ASG by example.

Figure 3 shows the ASG for the obfuscated code of Figure 1(c). It is evident that

all paths in the ASG of the non-obfuscated version (Figure 2(a)) can be mapped to paths

in ASG of the obfuscated version. The obfuscated version has extra nodes (represented

by the suffix a), representing push instructions used to push the address of the procedure

being called onto stack.

The similarity of the graphs of Figures 3 and 2(a) suggests that paths in the

ASG may be treated as a replacement for call-string, even for obfuscated programs.

Instead of computing, propagating, and updating call-string over CG, an interproce-

dural analysis algorithm may construct, propagate, and update call-strings over ASG.

When an ASG can be computed before the analysis, all possible calling contexts for

a statement can be determined from the top of stacks reaching that point and the

ASG [Lakhotia et al. 2005, Venable et al. 2005]. When the computation of ASG may

require performing other analysis, as is likely in obfuscated programs, the two analysis

may be performed in lock-step.

There is just one more optimization step that may be valuable when using an

ASG as a replacement for CG. Even for non-obfuscated code an ASG may have more

nodes than just call sites. Thus, a k length path in the ASG may have fewer call sites

than its corresponding k length call-string. Since the computational resources needed

may increase non-linearly with k, simply increasing k may not be an option. Instead one
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Figure 3. Abstract stack graph for the obfuscated code of Figure 1(c)

may reduce the number of nodes in the ASG by creating ‘blocks’ of nodes, as is done in

control flow graphs (CFG). A block is a sequence of nodes in an ASG with a single entry

and a single exit. Using ASG made up of blocks of instructions, instead of individual

instructions, will enable propagation of the calling contexts for larger k.

A prototype has been constructed that uses the previous ideas to per-

form context-sensitive analysis on obfuscated programs. This prototype has been

implemented over Venable’s context-insensitive algorithm for detecting obfuscated

calls [Venable et al. 2005]. The prototype is written in Java utilizing the Eclipse frame-

work. Eclipse is an extensible development environment with a rich set of tools to aid in

development. Programs developed on Eclipse are written as plugins to the Eclipse plat-

form and can take advantage of the robust Eclipse framework to decrease development

time.

In the following examples, we explain the context-sensitive analysis process of

obfuscated code using stack-strings. We will only consider instructions that involve stack

operations. Figure 4 contains a sample assembly obfuscated program with two contexts.

The program consists of two functions: Main and Max. The function Max takes as input

two numbers and returns as output the larger of the two numbers. The function Main

pushes the two arguments onto the stack, but instead of callingMax directly, it pushes the

return address onto the stack and jumps to Max. The function Max is called twice by the

functionMain. This obfuscation technique can effectively hide the boundary between the

two procedures and results in a less accurate ICFG. Analysis methods relying on the flow

graph may, in effect, produce less accurate results as well.

After careful inspection, one may observe that in order to perform context-

sensitive analysis we have to match the return node at L16 to the nodes L5 or L9 (return

sites). Using stack-string we can correctly perform these matches. The context-sensitive

analysis process of obfuscated code using stack-strings follows.
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Figure 4. Obfuscated call using push/jmp instructions.

Upon entry, the stack-string is⊥, i.e., signaling that the context is currently empty.
Instruction L1 pushes a value onto the stack, consequently changing the stack-string to

⊥ − L1. Instructions L2 and L3 perform in a manner similar to L1. At the point L3

the stack-string context is ⊥ − L1 − L2 − L3. Instruction L4 transfers the control to the

destination of the jump and the stack-string context is left unchanged.

The next instruction evaluated is the target of the jump, or L11 in this case. In-

structions L11 to L15 have no effect on the stack-string context. The ret 8 instruction at

L16 implicitly pops the return address off the top of the stack (L5) based on the current

stack-string context ⊥ − L1 − L2 − L3, and continues execution at that address. It also

changes the stack-string context ⊥ − L1 − L2 − L3 to ⊥. Evaluation continues at L5,

which pushes a value onto the stack, consequently changing the stack-string to ⊥ − L5.

Instructions L6 and L7 perform in a manner similar to L5. At this point the current stack-

string context is ⊥ − L5 − L6 − L7. Similarly to the instruction of L4, L8 transfers the

control to the function Max and the context is left unchanged. At this point, the analysis

contains two stack-contexts: ⊥ − L5 − L6 − L7 and ⊥ − L1 − L2 − L3. This provides

context-sensitivity in the analysis, in which pieces of code are analyzed separately for

different data flow values at different stack-string contexts, consequently, leading to more

precise results. At instruction L16, the ret 8 implicitly pops the return address off the top

of the stack (L9) on the stack-string context⊥−L5−L6−L7 and continues execution at

that address. It also changes the stack-string context⊥− L5 − L6 − L7 to ⊥. Evaluation
continues at L9, which proceeds to the end of the program.

Figure 5 shows the same code, but using the push/ret obfuscation. Instructions L3

(L8) and L4 (L9) push the return address and the target address onto the stack. L5 (L10)

consists of a ret instruction that causes execution to jump to the function Max. Analysis

methods that rely on the correctness of a ICFG will surely fail when analyzing such code.

During the interpretation, at instruction L5, the stack-string context is ⊥ − L1 −
L2 − L3 − L4. The ret instruction implicitly pops the return address off the top of the

stack (L13) on the current stack-string context ⊥ − L1 − L2 − L3 − L4, alters the stack-

string context to ⊥ − L1 − L2 − L3 and continues execution at that address. As in the

previous example, we have two contexts for this program. At instruction L13, the analysis

contains two stack-contexts: ⊥− L1 − L2 − L3 coming from the return instruction at L5
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Figure 5. Obfuscated call using push/ret instructions.

and ⊥ − L6 − L7 − L8 from the return instruction at L10. Once again, this allows pieces

of code be analyzed separately from different contexts, providing context-sensitivity and

thus more accurate results. The ret 8 instruction at L18 returns to instruction L6 (address

of the top of the stack in the stack-context is ⊥ − L1 − L2 − L3), and to L11 (address of

the top of the stack in the stack-context is ⊥− L6 − L7 − L8).

In Figure 6, the function Max is invoked in the standard way, however it does not

return in the typical manner. Instead of calling ret, the function pops the return address

from the stack and jumps to that address (lines L14 − L16).

At instruction L14, the stack-string contexts are ⊥− L1 − L2 − L3 and ⊥− L4 −
L5 − L6. The pop instruction at L14 pops the value from the top of the stack accordingly

with the correct context, i.e., L4 for the context⊥− L1 − L2 − L3 and L7 for the context

⊥ − L4 − L5 − L6. At instruction L15, the stack-string contexts are ⊥ − L1 − L2 and

⊥ − L4 − L5 due to the pop instruction. The add instruction at L15 adds eight to esp,

changing the stack-string contexts to ⊥. L16 is an indirect jump to the address in ebx, and

thus analysis continues at L4 or L7 depending of the current context.

Figure 6. Obfuscated return using pop/jmp instructions.
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5. Concluding remarks

Context-sensitive interprocedural analysis when guided by a call graph is limited only to

those binaries in which the call-graph can be constructed and in which stack manipulation

is performed using standard compilation model(s). This precludes applying these analysis

on obfuscated, optimized, or hand-written code. As a result, malware forensic tools based

on such analysis can easily be thwarted.

We demonstrate how an abstract stack graph may be used as a replacement for

the call-graph to perform interprocedural analysis. Since an ASG can be constructed

for programs that obfuscate calls or use stack manipulation operations in non-standard

ways, this adaptation makes it feasible to extend interprocedural analysis to a larger class

of binaries. The adaptation is simple enough to directly impact interprocedural analysis

algorithms based on call graph [Balakrishnan 2007, Guo et al. 2005].

In order to make ASG fully functional some work still have to be done, such as

to extend them to identify situations where the stack pointer may be manipulated indi-

rectly by passing data through memory. Besides that, it is easy to conclude that ASG is a

powerfull technique to perform interprocedural analysis.
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