

Abstract Stack Graph as a Representation to Detect Obfuscated Calls in Binaries

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Eric Uday Kumar

Fall 2004

© Eric Uday Kumar

2004

All Rights Reserved

Abstract Stack Graph as a Representation to Detect Obfuscated Calls in Binaries

Eric Uday Kumar

APPROVED:

__________________________ __________________________
Arun Lakhotia, Chair William R. Edwards
Associate Professor of Computer Science Associate Professor of Computer Science

__________________________ __________________________
Anthony Maida C. E. Palmer
Associate Professor of Computer Science Dean of the Graduate School

To Mom, Dad and dear brothers
Pradeep, Uttam

Acknowledgements

I thank my advisor, Dr. Arun Lakhotia for his valuable guidance, extraordinary support,

inspiration, and encouragement. This thesis would never have been conceptualized

without the ideas and motivation that he provided me. I greatly appreciate his patience

and the trust he showed in me throughout my thesis. He was always there to support me

both morally and technically whenever I was in a fix. My gratitude for him cannot be

expressed in a paragraph.

 I thank my parents and my brothers for their never-ending encouragement, trust,

and support during my lows and my highs in the research period. I am grateful to Dr.

Andrew Walenstein for reviewing my thesis document in a short time and giving me

helpful insights. Thanks to Aditya Kapoor, Prashant Pathak, Enaam, Mohamed and

Michael Venable who gave me helpful feedback during all times in my thesis and shared

intriguing discussions about the challenges I faced. Thanks to Firas Bouz without whose

timely help and guidance the implementation would not have materialized.

 Lastly, I would also like to thank my friends Thomas Voitier, Jason Bourgeois,

Charles Gravely, Jon Ziegler, Zeke Davy, Steven Sabatier and many others for speaking

into my life the truth about God, encouraging me during these past two years to walk the

path of truth, in spite of all odds. Their words of wisdom to trust God and seek Him to the

fullest have shaped me into the person that I am now.

TABLE OF CONTENTS

 ACKNOWLEDGEMENTS ... v

 LIST OF FIGURES... viii

1 INTRODUCTION .. 1
1.1 MOTIVATION.. 1
1.2 RESEARCH OBJECTIVES ... 3
1.3 RESEARCH CONTRIBUTIONS... 3
1.4 IMPACT OF THE RESEARCH... 3
1.5 ORGANIZATION OF THESIS ... 4

2 BACKGROUND ... 5
2.1 STATIC ANALYSIS OF BINARY CODE.. 5
2.2 CODE OBFUSCATION TO THWART DISASSEMBLY... 6
2.3 OBFUSCATION GAME ... 9

2.3.1 Simple Code – Level Techniques .. 10
2.3.2 Call Obfuscation ... 11

2.4 DEOBFUSCATION GAME... 12
2.4.1 Detecting Obfuscations... 13
2.4.2 Using System Call Information for Detection... 15
2.4.3 Obfuscating System Calls to Evade Detection.. 17
2.4.4 Call Obfuscation in Win32.Evol ... 17

3 ABSTRACT STACK GRAPH .. 20
3.1 THE ABSTRACT STACK .. 20
3.2 THE ABSTRACT STACK GRAPH .. 23

4 THE ASG DOMAIN... 24
4.1 DEFINING THE ASG DOMAIN... 24
4.2 CONSTRUCTING AN ABSTRACT STACK GRAPH .. 26

4.2.1 Evaluation Function.. 26
4.2.2 Abstract Operations .. 28
4.2.3 Algorithm .. 29

5 DETECTING OBFUSCATIONS.. 32
5.1 DETECTING OBFUSCATED CALLS... 32

5.1.1 Obfuscation using push/jmp.. 33
5.1.2 Obfuscation using push/ret or push/pop... 34

5.2 DETECTING OBFUSCATED PARAMETERS.. 36
5.2.1 Obfuscation using Out of Turn push... 37
5.2.2 Obfuscation using Redundant push/pop ... 39
5.2.3 Obfuscation due to Redundant Control .. 39

5.3 DETECTING OBFUSCATED RET.. 41
5.3.1 Using pop to return... 41

 vii

5.3.2 Returning elsewhere.. 42
5.3.3 Abusing Call.. 45

6 IMPLEMENTATION AND RESULTS ... 46
6.1 DOCS IMPLEMENTATION DETAILS ... 46
6.2 CAPABILITIES OF DOCS... 47
6.3 DEMONSTRATION WITH TEST PROGRAMS ... 47

6.3.1 Detecting valid call-ret sites ... 47
6.3.2 Detecting non-contiguous call-ret sites .. 50
6.3.3 Detecting obfuscated calls .. 51
6.3.4 Detecting obfuscated returns .. 53

6.4 DEMONSTRATION WITH W32.EVOL VIRUS .. 54
6.5 LIMITATIONS.. 57

7 CONCLUSION AND FUTURE WORK .. 58

8 APPENDIX A: OBFUSCATION IN WIN32.EVOL... 60

9 APPENDIX B .. 64

BIBLIOGRAPHY... 79

ABSTRACT... 82

BIOGRAPHICAL SKETCH ... 83

LIST OF FIGURES

FIG. 2-1. STAGES IN STATIC ANALYSIS OF BINARY. .. 6

FIG. 2-2. OBFUSCATION BY JUNK BYTE INSERTION (BEAGLE.H).. 8

FIG. 3-1. CONCRETE AND ABSTRACT STACKS. ... 20

FIG. 3-2. SAMPLE PROGRAM. ... 21

FIG. 3-3. CONTROL FLOW GRAPH FOR SAMPLE PROGRAM. ... 21

FIG. 3-4. POSSIBLE ABSTRACT STACKS AT SOME PROGRAM POINTS. 21

FIG. 3-5. ABSTRACT STACK GRAPH FOR SAMPLE PROGRAM. .. 21

FIG. 4-1. EVALUATION FUNCTION.. 27

FIG. 4-2. ABSTRACT OPERATIONS. ... 28

FIG. 5-1. NORMAL CALL. ... 21

FIG. 5-2. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION OF CALL DUE TO PUSH/JMP. 21

FIG. 5-3. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION OF CALL DUE TO PUSH/RET OR

PUSH/POP. .. 21

FIG. 5-4. NORMAL PARAMETER PASSING TO A CALL. ... 21

FIG. 5-5. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION OF PARAMETERS DUE TO OUT

OF TURN PUSH. ... 21

FIG. 5-6. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION OF PARAMETERS DUE TO

REDUNDANT PUSH/POP. .. 21

FIG. 5-7. ABSTRACT STACK GRAPH FAILS TO DETECT OBFUSCATION DUE TO REDUNDANT

CONTROL.. 40

FIG. 5-8. NORMAL CALL/RET. .. 41

FIG. 5-9. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION OF RET USING POP. 42

FIG. 5-10. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION DUE TO RETURNING

ELSEWHERE.. 43

FIG. 5-11. ABSTRACT STACK GRAPH TO DETECT OBFUSCATION DUE TO ABUSING CALL..... 45

 ix

FIG. 6-1. DETECTING VALID CALL-RET SITES. .. 48

FIG. 6-2. ABSTRACT STACK GRAPH FOR TEST.ASM... 49

FIG. 6-3. DETECTING NON-CONTIGUOUS CALL-RET SITES. ... 50

FIG. 6-4. DETECTING POSSIBLE OBFUSCATIONS OF THE CALL INSTRUCTION. 51

FIG. 6-5. ABSTRACT STACK GRAPH FOR TEST1.ASM... 52

FIG. 6-6. DETECTING POSSIBLE OBFUSCATIONS OF THE RET INSTRUCTION......................... 53

FIG. 6-7. DETECTING POSSIBLE OBFUSCATIONS OF THE CALL INSTRUCTION IN W32.EVOL. 54

FIG. 6-8. OBFUSCATION OF CALL TO KERNEL FUNCTION GETTICKCOUNT(). 55

FIG. 6-9. DETECTING POSSIBLE OBFUSCATIONS OF THE RET INSTRUCTION IN W32.EVOL. .. 56

1 Introduction

1.1 Motivation

The highly interconnected world of computers ever poses the threat of malicious

code. Such code can break into hosts using a variety of methods such as attacking known

software flaws and vulnerabilities in regular programs. Hence detecting the presence of

such malicious code on a given host is a problem of high concern. Whenever such hostile

programs succeed in spreading over the internet, there is a significant loss to businesses.

For example, mi2g website [1] quotes that within one quarter the NetSky worm and all

it’s A - Q variants put together, had already caused between $35.8 billion and $43.8

billion of estimated economic damages worldwide. The website also quotes that, in

March, combined loss due to the three worms Beagle, MyDoom, and NetSky crossed the

$100 billion mark within a week.

Programmers obfuscate their code with the intent of making it difficult to discern

information from the code. Programs may be obfuscated to protect intellectual property

and to increase security of code (by making it difficult for others to identify

vulnerabilities) [14], [20], [33]. Programs may also be obfuscated to hide malicious

behavior and to evade detection by anti-virus scanners [11], [22], [31]. Most malicious

code writers add or rearrange code in malicious programs to make their detection

difficult, if not impossible. Recent virus writing trends that employ obfuscating

transformations to conceal their behavior are the most difficult to detect. These viruses

are called metamorphic viruses.

 2

The primary goal of obfuscation is to increase the effort involved in manually or

automatically analyzing a program. In the context of anti-virus scanning, the context of

our study, automated analysis may be performed at the desktop, at quarantine servers in

an enterprise, or on back-end machines of an anti-virus company’s laboratory [27]. In

contrast, manual analysis is performed by engineers in Emergency Response Teams of

anti-virus companies and research laboratories. The goal of obfuscation in malicious

programs—virus, worms, Trojans, spy wares, backdoors—is to escape detection by

automated analysis and significantly delay detection by manual analysis.

A common obfuscation technique that is found in viruses, henceforth used

generically to mean malicious programs, is that they obfuscate call instructions [31]. For

instance, the call addr instruction may be replaced by two push instructions and a ret

instruction, the first push pushing the address of instruction after the ret instruction, the

second push pushing the address addr. The code may be further obfuscated by spreading

the three instructions and by further splitting each instruction into multiple instructions.

Obfuscation of call instructions breaks most static analysis based methods for

detecting a virus since these methods depend on recognizing call instructions to (a)

identify the kernel functions used by the program and (b) to identify procedures in the

code. The obfuscation also takes away important cues that are used during manual

analysis. We are then left only with dynamic analysis, i.e., running a suspect program in

an emulator and observing the kernel calls it makes. Such analysis can easily be thwarted

by what is termed as “picky” virus—one that does not always execute its malicious

payload. In addition dynamic analyzers must use some heuristic to determine when to

stop analyzing a program, for it may not terminate without user input. Virus writers can

 3

bypass stopping heuristics by introducing a delay loop that simply wastes cycles. It is

therefore important to detect obfuscated calls both for static and dynamic analysis of

viruses.

1.2 Research Objectives

This aim of this research is to propose and implement a method to statically detect

obfuscated calls when the obfuscation is performed by using other stack (-related)

instructions, such as push and pop, ret, or instructions that can statically be mapped to

such stack operations.

1.3 Research Contributions

The main contribution of this thesis is a novel approach towards detecting

obfuscated calls when the obfuscation is performed by using stack related instructions.

The method uses abstract interpretation [17] wherein the stack instructions are interpreted

to operate on an abstract stack. The infinite set of abstract stacks resulting from all

possible executions of a program, a la, static analysis, is concisely represented in an

abstract stack graph. A method for constructing the abstract stack graph has also been

presented. Application exploration via analysis of malicious programs has been done to

bring forth the merits and limitations of this work.

1.4 Impact of the Research

The proposed detection technique may be used to improve manual and automated

analysis tools, thereby raising the level of difficulty for a virus writer. The method can

help by undoing some common obfuscation techniques. However, it is not claimed that

 4

the method can detect all stack related obfuscations. Indeed, writing a program that

detects all obfuscations is not achievable for the general problem maps to detecting

program equivalence, which is undecidable [23]. The method presented here is a partial

solution. It addresses only the evaluation of operations that can be mapped to stack push

and pop instructions, where each is performed as a unit operation. It does not model

situation where the push and pop instructions themselves may be decomposed into

multiple instructions, such as one to move the stack pointer and one to move data in/out

of the stack. Further, the solution does not model other memory areas, the content of the

stack, and the content of registers. This deficiency may be overcome by combining this

stack model with the Balakrishnan and Reps’ method for analyzing the content of

memory locations [8].

1.5 Organization of Thesis

Chapter 2 presents background work in this area. Chapter 3 presents the notion of an

abstract stack and the abstract stack graph. Chapter 4 presents the algorithm to construct

an abstract stack graph. Chapter 5 describes how the abstract stack graph may be used to

detect various obfuscations. Chapter 6 discusses implementation and results. Chapter 7

presents conclusions and future work to develop a complete solution for detecting

obfuscations. Appendix A describes the analysis of a virus called w32.evol. Appendix B

presents the pseudo code for constructing an abstract stack graph along with an example

followed by bibliography.

2 Background

This chapter outlines the process of static analysis of binary executables. It

describes the application of obfuscating transformations with intent to thwart disassembly

of binary executables and hide malicious code.

2.1 Static Analysis of Binary Code

Static Analysis is the automatic derivation of static properties that hold on every

execution leading to a program point. It can be thought of as interpreting the program

over an “abstract domain” and executing it over a larger set of execution paths. This helps

to automatically obtain information about all executions of the program without really

having to execute it for all possible inputs. Static flow analysis propagates estimates of

actual values and these estimates are always conservative to uphold correctness. Since

static flow analysis considers all (syntactic) program paths (both directions at every

branch) it can be conservative or precise, but not both. It can be conservative in the sense

that it might include some non-executable paths too. By doing this we can only obtain

approximate results. Such approximation methods are particular cases of abstract

interpretations of program semantics [17].

To extract meaningful information from a binary it is first disassembled, i.e.,

translated to assembly instructions [10], [18], [20], [25]. The assembler code is usually

analyzed further, often following steps similar to those performed for decompilation [13]

(see Vinciguerra et al. [32] for a survey of disassembly and decompilation techniques).

Commercial antivirus groups are known to use disassemblers frequently to analyze the

behavior of suspect programs [34]. Lakhotia and Singh [19] proposed a staged

 6

architecture for binary malware analysis. This architecture is shown in Fig. 2-1.

Disassembly is the first step, and it generally must occur before subsequent analysis can

take place. Current disassemblers are used for different purposes such as rewriting

binaries for efficiency [24], portability [12], [26], program maintenance when source

code is not available and for detecting malicious programs. Lakhotia and Singh [19]

discuss how a virus writer could attack the various stages in the decompilation of binaries

by taking advantage of the limitation of static analysis. Indeed, Linn et al. [20] present

code obfuscation techniques for disrupting the disassembly phase, making it difficult for

static analysis to even get started.

Fig. 2-1. Stages in static analysis of binary[19].

2.2 Code Obfuscation to Thwart Disassembly

A number of approaches have been proposed to make the reverse-engineering

process harder [14], [20]. These techniques are based on transformations that preserve the

program’s semantics and functionality and, at the same time, make it more difficult for a

reverse-engineer to extract and comprehend the program’s higher-level structures. The

process of applying one or more of these transformations to an existing program is called

obfuscation.

 7

Techniques used by code-obfuscators [21] for the purpose of protecting

intellectual property can be used by malicious code writers. These writers also rely on

many of the existing virus creation tools [24] and obfuscation techniques, such as junk

byte insertion, statement reordering, call conversions, and opaque predicates, to hinder

the disassembly process of the current algorithms [18], [20].

A major challenge in correctly disassembling malicious code is due to

implications of the von Neumann architecture, where code and data are indistinguishable

[16]. The problem is created by self-modifying code, where code is treated as data, and

what was once data becomes executable. A disassembly algorithm could fail, either by

incorrectly interpreting some instruction as data (false negative) or by incorrectly

interpreting some data as an instruction (false positive).

Fig. 2-2 shows code of a variant of mass mailing worm Beagle.h. Column 1

shows the output of the open source debugger Ollydbg, while column 2 shows the desired

disassembly. This is IA32 code which does not have fixed length instructions. At location

0040A001, opcode E8 is a 5 byte instruction code. The linear sweep algorithm for

disassembly disassembles instructions byte-by-byte without regard to the control flow of

a program. Due to this the algorithm assumes that the next instruction starts at 0040A006

and disassembles from there, interpreting the data as a 5 byte call instruction (CALL

E845648E,) and so the next disassembled instruction starts at 0040A006 which is, in the

correct disassembly, a junk byte. The junk byte is a code for a 5-byte instruction, which

throws off disassembly because it assumes that the next instruction starts at 0040A00A

when in reality it is supposed to start at 0040A007. Since E8 is an opcode for call

instruction, it looks like a legitimate instruction starting at 0040A006. The virus writer

 8

likely chose E8 since he has to insert an opcode that starts a valid instruction else linear

sweep can raise alarms.

Malicious code writers intentionally use a toolkit of similar tricks to try to defeat

static disassembly. They use tricks like jumping into the middle of what appears to be a

valid instruction or use computed jumps make it difficult to determine jump targets

statically. Apart from junk byte insertion, some other obfuscation techniques as proposed

by Linn et al [20] are:

� Call conversion: This obfuscation technique changes the return address of a call

instruction. The program does not return to the instruction just after the call,

rather it is manipulated to return at a predefined offset from the calling location.

The bytes between the offset and location just after call can be filled by junk bytes

to confuse a disassembler.

� Opaque predicates: In this technique the obfuscators can change all the

unconditional jumps and calls to conditional jumps and calls. The branch that is

always taken is known. Malicious code writers insert junk bytes at the location of

branch that is never taken.

Location Column 1 (Disassembly Ollydbg) Column 2 (Actual Disassembly)

 Hex Disassembly Hex Disassembly

0040A000 60 PUSHAD 60 PUSHAD

0040A001 E8 01000000 CALL 0040A007 E8 01000000 CALL 0040A007

…

0040A006 E8 83C404E8 CALL E845648E

0040A007 83C4 04 ADD ESP,4

…

0040A00A E8 01000000 CALL 0040A010

0040A00B 0100 ADD DWORD PTR DS:[EAX],EAX

Fig. 2-2. Obfuscation by junk byte insertion (Beagle.H).

 9

2.3 Obfuscation Game

Malware analysis can be described as an obfuscation-deobfuscation game

between the malicious code writers and researches working on malicious code detection.

The obfuscations are such that there is considerable change in the byte sequence of the

executable obtained but does not change the program behavior i.e. the actual sequence of

instructions being executed is retained. The aim of the malicious code writer is to fool the

antivirus tool in believing that it is dealing with a safe executable. As malicious code

writers try to induce newer obfuscating techniques to fool antivirus tools, the malicious

code detectors hectically race to deobfuscate them.

Christodrescu et al. [11] presents a better understanding of these obfuscating

transformations being employed by malicious code writers. Christodrescu tested the

resilience of three popular commercial virus scanners against code obfuscation attacks.

His results showed that these virus scanners could be subverted by very simple

obfuscating transformations.

Code obfuscation techniques are increasingly being applied in enhancing software

security [14], [20], [33] as well as in malicious code writing to evade detection [11], [22],

[31]. Though the intentions of these two activities differ, there is no denying the fact that

applications of these techniques toward prevention of malicious reverse engineering can

be reused by virus writers to thwart detection of their malicious code, and vice versa.

 10

2.3.1 Simple Code – Level Techniques

Collberg et al. [15] presents taxonomy of obfuscating transformations where a

detailed theoretical description of various possible obfuscating transformations is

presented.

Dead Code Insertion: Inserting code fragments that do not modify program

behavior such as semantic nop insertion, adding zero to a register or an equivalent

operation (such as xor eax, eax), jump/branch to the next instruction, instructions that

modify dead registers, sequence of instructions that modify the program state, only to

restore it back immediately such as: add eax, 1 followed by sub eax, 1, are all examples

of dead code insertion.

Register Renaming: This transformation replaces usage of one register with

another in a specific live range. This technique exchanges register names and has no

other effect on program behavior.

Instruction Reordering: The instructions are shuffled so that the order in the

binary image is different from the execution order, or from the order of instructions

assumed in the signature used by the antivirus software. To achieve the first variation,

instructions are randomly reordered and unconditional branches or jump instructions are

inserted to restore the original control flow. The second variation swaps the instructions if

they are not interdependent to randomize the instruction stream.

Instruction Substitution: This obfuscation technique uses a dictionary of

equivalent instruction sequences to replace one instruction sequence with another. This

poses a tough challenge for automatic detection of malicious code. The Intel instruction

set is rich and often provides several ways of performing an operation. For example, a

 11

memory-based stack can be accessed both as a stack using dedicated instructions and as a

memory area using standard memory operations. Hence, the Intel assembly language

provides ample opportunities for instruction substitution. To handle obfuscation based on

instruction substitution, an analysis tool must maintain a dictionary of equivalent

instruction sequences, similar to the dictionary used to generate them. This is not a

comprehensive solution, but it can cope with the common cases. For example: an

instruction such as test esi, esi can be replaced by or esi, esi; an instruction xor eax, eax

sets eax to zero and can be replaced by sub eax, eax.

Metamorphic viruses apply the above described obfuscation techniques to evade

detection by anti-virus software. The common metamorphic transformations applied are

dead code insertion, register renaming, code transposition (statement reordering or break

& join transformations) and reshaping of expressions [22]. These transformations give

birth to a new variant of the metamorphic virus. There exist obfuscation engines that may

be linked to a program to create a metamorphic virus, a virus that creates a transformed

copy of itself before propagation. The transformations are such that they change the byte

sequence of the executable but do not disrupt the functionality of the program. Two such

engines are Mistfall (by z0mbie), which is a library for binary obfuscation [7], and

Burneye (by TESO), which is a Linux binary encapsulation tool [2]. Other obfuscations

exits, in particular call obfuscation.

2.3.2 Call Obfuscation

Recent virus writing trends heavily depend on making calls to kernel functions to

infect, conceal and propagate [3], [4], [5], [6] [28], [29]. Calls being made to kernel

functions may be used to determine whether the binary is malicious. For example

 12

Symantec’s Bloodhound technology uses classification algorithms to compare the set of

calls being made by any program against a database of calls made by known viruses and

clean programs [27]. Being aware of this approach, rogue programmers make such calls

without using the call instruction [31]. For instance, the call addr instruction may be

replaced by two push instructions and a ret instruction, the first push pushing the address

of instruction after the ret instruction, the second push pushing the address addr. The ret

instruction transfers control to addr. Effectively a call is being made though the call

instruction itself is not being used. This is instruction substitution obfuscation as

described above. The code may be further obfuscated by splitting each instruction into

multiple instructions. Obfuscation of call instructions breaks most static analysis based

methods for detecting a virus since these methods depend on recognizing call instructions

to (a) identify the kernel functions used by the program and (b) to identify procedures in

the code.

2.4 Deobfuscation Game

Metamorphic viruses are particularly insidious in obfuscating their code to evade

detection. Examples of 32-bit Windows metamorphic viruses are Win32/Regswap

(created by Vecna in December 1998), Win32/Apparation, Win95/Zmorph (discovered in

January 2000), Win95/Zperm (appeared in June 2000), and Win32/Evol (appeared in July

2000). Unlike polymorphic viruses, that create new decryptions using different

encryption methods to encrypt the virus body, metamorphic viruses do not have a

decryptor, nor a constant virus body. However, they are able to create new generations

each time by applying obfuscating transformations to their code. They do not use a

constant data area filled with string constants but have one single code body that carries

 13

data as code. Hidden within the code are the various system call function names and

parameters. The data would other wise have appeared in the data area. Most polymorphic

viruses decrypt themselves to a single virus body in memory whereas metamorphic

viruses do not.

The classic virus-detection techniques look for the presence of a fixed virus-

specific sequence of instructions (called a virus signature) inside a program. If the

signature is found, it is considered highly probable that the program is infected. This

detection approach is effective when the virus code does not change significantly over

time and the signatures chosen do not lead to false positives or too many false negatives.

The signature is ideally chosen common to virus variants without increasing the false

positive rates. A problem arises when virus writers obfuscate the virus code so that the

fixed signatures used by the antivirus software cannot detect these obfuscated viruses

anymore. To detect these obfuscated viruses, the virus scanners must first undo the

obfuscation transformation used by the virus writers. A typical example is the

metamorphic virus that modifies its own code [31]. Metamorphic viruses are particularly

insidious because two copies of the virus do not have the same signature. Hence, they

escape signature based anti-virus scanners [11]. Such viruses can sometimes be detected

if the operating system calls made by the program can be determined. For example

Symantec’s Bloodhound technology uses classification algorithms to compare the set

against a database of calls made by known viruses and clean programs [27].

2.4.1 Detecting Obfuscations

Existing static analysis can effectively detect simple obfuscations, like nop-

insertion, by using regular expressions instead of fixed signatures [18]. The signature

 14

must allow for any number of nops at instruction boundaries. Most modern antivirus

software use regular expressions as virus signatures. Some others use heuristic analysis

and emulation techniques. As virus writers employ more complex obfuscation

techniques, these malicious code detection techniques are bound to fail. There is a level

of metamorphosis beyond which no reasonable number of strings can be used to detect

the code that it contains. What is needed is a deeper inspection of malicious code based

upon more sophisticated static analysis techniques. This appears to require the use of

structures that are closer to the semantics of the code rather than mere syntactic

techniques such as regular expression matching.

The antivirus technique usually applied to detect such kind of viruses is by

emulating them using certain heuristics. Virus writers constantly come up with ways to

foil the emulation techniques and make the analysis procedure difficult, if not impossible.

Lakhotia and Singh [19] observe that though metamorphic viruses pose a serious

challenge to anti-virus technologies, these virus writers are confronted with the same

theoretical limitations and have to address some of the same challenges that the anti-virus

technologies face. A recent result by Barak et al. [9] proves that in general program

obfuscation is impossible. This in turn says that a computationally bounded adversary

will not be able to obfuscate a virus to completely hide its malicious behavior. This is

likely to have an effect on the pace at which new metamorphic transformations are

introduced.

Indeed, research results in detecting obfuscated viruses are beginning to emerge.

Christodrescu and Jha [11] use abstract patterns to detect malicious patterns in

executables. Mohammed [22] has developed a technique to undo certain obfuscation

 15

transformations, such as statement reordering, variable renaming, and expression

reshaping.

The challenge, however, is in detecting the operating system calls made by a

program. The Win32 standard PE and ELF format for binaries include mechanism to

inform the linker about the libraries used by a program. But there is no requirement that

this information be included in the file headers. In Windows, the entry point address of

various system functions may be computed by a program at runtime using a kernel32

function called GetProcAddress(). Win32.Evol virus uses precisely this method for

getting addresses of kernel functions and further obfuscates the method it uses to call

these functions.

2.4.2 Using System Call Information for Detection

Many recent viruses heavily depend on calls to system libraries or kernel

functions to conceal, infect and propagate. The Win95/Kala.7620 was one of the first

viruses to use a system call to transfer control to the virus code (in this case, its

decryptor) [30]. Modern anti-virus tools are to have system call emulation to detect these.

To make these system calls, a popular technique adopted by most virus writers (as

observed in recent binary viruses when disassembled and analyzed), targeting the

Windows operating system, is to locate the internal kernel32.dll entry point and call

kernel32 functions by ordinal. This is done by locating kernel32.dll’s PE header in

memory and using the header info to locate kernel32’s export section. This export section

is then used to locate the export info for GetModuleHandle() and GetProcAddress(), to

extract the correct entry point for these two functions and then use these functions to call

any and all needed exported functions from any valid Windows module.

 16

The achieve this, virus writers exploit internal facts of the underlying operating

system such as: loading of kernel32.dll at the same starting address regardless of the

version, revision etc.; DLL files are of the PE format and part of the PE format is an

export table that the operating system uses to resolve what functions are in a module,

where they are and how to call them; there are functions to call functions such as the

GetModuleHandle() and GetProcAddress() class of functions that allow the exported

entry point for any function in any module to be located. The strategy used by recent

virus writers would be to locate kernel32.dll’s PE header in memory and use the header

info to locate kernel32’s export section [30].

Normally, an API import happens by using the name of the API such as

FindFirstFileA(), FindNextFileA(), GetSystemDirectoryA() OpenFile(), ReadFile(),

WriteFile(), GetFileAttributesA(), SetFileAttributesA(), etc. used by many first

generation viruses. A set of suspicious system call name strings will appear in non-

encrypted Win32 viruses. This can make the disassembly of the virus much easier and

potentially useful for heuristic scanning. For example a portion of code from the virus

Win95.z0mbie reads:

1. call _GetCommandLineA

2. SW_NORMAL equ 1

3. push SW_NORMAL

4. push eax

5. call _WinExec

 17

As can be seen from this listing, Win95.z0mbie uses the address at line 1 to

determine its command line path and then loads it once again through the WinExec

function (this is essentially spawning a copy of self).

A trick used to thwart disassembly and heuristic match appears in various modern

viruses is to hide the use of system call name strings to access particular kernel functions

from the Win32 set. For example, the Win32/Dengue virus does not use system call name

strings to access particular kernel functions [30]. Modern viruses use a checksum list of

the actual strings. The checksums are recalculated via the export address table of

kernel32.dll and the address of the kernel function is found. Hence, the absence of system

call name strings should not be inferred as non-existence of any system calls in the

program.

2.4.3 Obfuscating System Calls to Evade Detection

Some antivirus tools can detect malicious code by identifying the calls being

made to kernel functions. To evade this detection process, some metamorphic viruses

obfuscate these calls. The goal of the obfuscator remains to obfuscate the call instruction

in such a way so that the antivirus software is unable to detect that a system call is indeed

being made. The obfuscation is not just limited to the call being made, but in most cases

is also extended to the parameters being passed to the call. The techniques used by

malicious code writers to implement this are centered on instruction substitution.

2.4.4 Call Obfuscation in Win32.Evol

Win32.Evol is a virus that hides constant data as code and modifies it from

generation to generation. It builds the constant data on the stack from variable data,

 18

before it passes them to the actual function or API that needs them. An antivirus tool that

looks at the address of the target of the call instruction to determine if a system library

function is being called will fail in this case. Instead of using the call instruction, the

virus first pushes the address of the function to be called on the stack, and then later uses

the ret instruction to make the call. Analyzers looking for the explicit call will miss it.

Instead of a push the virus may use a mov that modifies the stack pointer to point

to the address of the Windows API function to be called and ret transfers control to the

function. Some of the Win32 API functions that the virus makes use of are:

CreateFileA(), CreateThread(), FindFirstFileA(), FindNextFileA(),

GetCommandLineA(), GetDriveTypeA(), GetWindowsDirectoryA(), LoadLibraryA().

The address of the API functions is looked up form the entry points or addresses within

kernel32.dll using another Win32 API function called GetProcAddress(). This function

requires as parameters the name of the Win32 API function to be called and the kernel32

module handle which is the kernel32.dll base address. These are passed in an obfuscated

way as parameters to GetProcAddress() by constructing the name of the string of the

function being called in a piece meal fashion by pushing several two byte values on the

stack. The kernel32 module handle is placed above a string marker ‘eVOL’ that it

previously pushed on the stack.

The obfuscation lies in the call to GetProcAddress() as well as in the call to each

of the other kernel functions. The virus searches for the GetProcAddress() API entry-

point using an 8-byte string. This string is calculated as the virus generates new

mutations. The actual string is placed on the stack only. Therefore, the virus cannot be

detected using any search strings with wildcards once the virus mutates itself to a few

 19

generations. To detect this call the stack data must be analyzed. The virus calls a routine

that searches through the stack for a special string marker, ‘eVOL’. The address of the

function GetProcAddress() is placed at some constant distance from this string marker. It

retrieves this address, pushes it on the stack and then executes a ret instruction which

transfers control to GetProcAddress(). GetProcAddress(), returns the address of the

kernel function that needs to be called in the register eax. This value is pushed on the

stack and control is transferred to this kernel function by executing a ret instruction. A

detailed analysis of the virus code can be found in Appendix A.

3 Abstract Stack Graph

Detection of call obfuscation in malicious code requires the ability to statically

monitor the stack. In this chapter we discuss the notion of an abstract stack which is an

abstraction of the program’s stack as it would appear while executing. The chapter also

introduces a concise way of representing all possible abstract stacks at each program

point; this compact representation is called an abstract stack graph. Examples are used to

clarify the discussion.

3.1 The Abstract Stack

An abstract stack is an abstraction of the actual/concrete stack that might be

observed on a running program. The actual stack of a program keeps actual data values

that are pushed and popped in a LIFO (Last In First Out) sequence. The abstract stack

instead stores the addresses of the instructions that push values in a LIFO sequence. For

example, consider Fig. 3-1. Each instruction in the sample program is marked with its

address from L1 through L4. The actual stack and the abstract stack, after execution of

the instruction at address L4, are as shown in Fig. 3-1.

Sample Program Concrete Stack Abstract Stack

L1: push eax … …

L2: push ebx … …

L3: pop edx Eax L1

L4: push ecx Ecx L4

 Top of stack Top of stack

Fig. 3-1. Concrete and abstract stacks.

 21

 Initially the addresses L1 and L2 are pushed onto the abstract stack, but due to the

pop instruction at L3, the address L2 is popped and next L4 is pushed.

The following example highlights some issues in creating abstract stacks for each

point in the program. Fig. 3-2 shows a sample program; its control flow graph appears in

Fig. 3-3.

E: //entry point
B0: push eax
B1: sub ecx, 1h
B2: beqz B8
B3: push ebx
B4: push ecx
B5: dec ecx
B6: beqz B3
B7: jmp B10
B8: pop ebx
B9: push esi
B10: pop edx
B11: beq B0
B12: call abc

Fig. 3-2. Sample program.

 E: // entry

B3: push ebx B8: pop ebx

B12: call abc

B4: push ecx
B5: dec ecx
B6: beqz B3
B7: jmp B10

B0: push eax
B1: sub ecx, 1h
B2: beqz B8

1

4

3 7

6

2

B9: push esi 8

B10: pop edx
B11: beq B0

Fig. 3-3. Control flow graph for sample program.

 22

Each block in the control flow graph may contain only a single push, pop or call

instruction or may additionally contain a control transfer instruction. The program points

are numbered. Fig. 3-4 shows a few abstract stacks that are possible at four program

points. For instance, the third abstract stack at program point 2 is the result of the

following execution trace: 1 2 3 4 3 4 5 2. The abstract stack shown at

program point 4 results from the trace 1 2 3 4 3 4 5 2 3 4. The

execution trace 1 2 3 4 5 2 3 4 3 5 2 7 8 yields the

abstract stack at program point 8.

E

B0

6

Stack Growth

B0

B3

B0

E

B0

B3

B4

B3

B0

E

2 4

8

E

B12 B12

B3

B0

E

B12

B3

B4

B3

B0

E

B9

B3

B4

B3

B0

B3

B0

E

B4

B3

B0

B3

B4

B3

B0

E

1

2

3

1

2

3

Fig. 3-4. Possible abstract stacks at some program points.

 23

Our interest is in finding all possible abstract stacks at each program point for all

execution traces. Since there may be multiple execution traces from the entry node to any

program point, there may be multiple abstract stacks at each program point. This is

enumerated in the example by the multiple traces for program points 2 and 6 in Fig. 3-4.

In fact, program points 3 and 4 may have infinite number of abstract stacks. This is

because there is a loop between program points 3 and 4 and the loop contains unbalanced

push, i.e., a push that is not matched with a pop. A more efficient way to handle all

possible abstract stacks at each program point is required.

3.2 The Abstract Stack Graph

An abstract stack graph is a concise representation of all, potentially infinite

number of, abstract stacks at all points in the program. Fig. 3-5 shows the abstract stack

graph for the example program in Fig. 3-2. A path (sequence of nodes beginning form the

abstract stack top towards the bottom) in the graph represents a specific abstract stack.

B3

B12 B9

B0

E

2

1

8 6

5
7

5

7

3
4 B4

Fig. 3-5. Abstract stack graph for sample program.

 24

4 The ASG Domain

As discussed in the previous chapter, an abstract stack graph is a data structure to

efficiently represent all possible abstract stacks at each program point. In abstract

interpretation one needs to define a domain and evaluation function. These are defined in

this chapter and an O(n) algorithm for constructing an abstract stack graph.

4.1 Defining the ASG Domain

Let ADDR denote a set of addresses. An abstract stack graph is a directed graph

represented by the 3-tuple <N, AE, ASPR> defined as follows:

N ⊆ ADDR is a set of nodes. An address n ∈ N implies the instruction at address n

performs a push operation. Our convention is to show nodes as rectangular boxes in

diagrams.

AE ⊆ ADDR × ADDR is a set of edges. An edge <n, m> ∈ AE denotes that there

is possible execution trace in which the instruction at address n may push a value on top

of a value pushed by the instruction at address m.

ASPR ⊆ ADDR × ADDR captures the set of abstract stack pointers (stack tops) for

each statement. A pair <x, n> ∈ ASPR means that program point x receives the abstract

stack resulting from the value pushed by instruction n at the top. We show this

diagrammatically by annotating each node n with the address x in circle, such that <x, n>

∈ AE. This relation may be read as: n is the top of stack at program point x. It is also

stated as: the top of stack n is associated with the program point x.

 25

The domain INST is the abstract syntax domain, representing the set of

instructions. Each instruction is annotated with its address in the program. Thus,

[m: call addr] is the abstract interpretation of the concrete instruction ‘call addr’ at

address m.

The domain ASG is the domain of abstract stack graphs. An element of ASG is a

three-tuple <N, AE, ASP>, where N and AE have the same meaning as in the definition of

abstract stack graph. However, the set ASP is not the same as ASPR. ASP ⊆ ADDR is the

set of stack tops. ASP is a projection of ASPR.

A path in ASG beginning at some stack top, say t, and ending at the entry point E

is associated with every abstract stack that can occur at the program points associated

with t. A path p in ASG is represented as n1| n2 | n3 | .. | nj such that <ni → ni+1> ∈ AE. p is

mapped by a function Ψ to an abstract stack with the last-in element n1, and the first-in

element nj.

To be concise in Fig. 3-3 the number of each block in the CFG, and not the

address of instructions in the block, are used to annotate the CFG nodes. Here an

instruction performing the push operation is always the first instruction in the block, and

a block contains either an instruction that performs a push operation or an instruction that

performs a pop operation, but not both. Thus, in Fig. 3-3, all points in a block receive the

same top of stack. In Fig. 3-5, B3 is an abstract node which is the address of the

instruction push ebx and is associated with the set of program points P = {3, 5, 7}.

Program points in P receive abstract stacks with top B3, i.e. the abstract stack pointer asp

= B3. Two possible abstract stacks, when traversed from asp = B3 are, B3|B0|E and

B3|B4|B3|B0|E.

 26

4.2 Constructing an Abstract Stack Graph

Constructing an abstract stack graph involves defining an evaluation function that

provides the interpretation of each assembly instruction in abstract terms. A set of

abstract operations over the ASG domain needs to be defined first. The following sections

explain the evaluation function built from these abstract operations.

4.2.1 Evaluation Function

Fig. 4-1 presents an evaluation function ℰ for constructing an abstract stack

graph. It is defined piecewise as a set of rewrite rules or equations. The evaluation

function and the abstract operations depend on the following primitive operators; PRIM

next: ADDR → ADDR, returns the address of the instruction executed after the

instruction at the parameter.

inst: ADDR → INST, returns the instruction at the address.

isvalidcall: ADDR → Boolean, returns true iff the instruction at the address is a

call instruction.

The evaluation function ℰ takes in two parameters of type INST and ASG and

outputs an element of ASG. This is denoted by ℰ: INST → ASG → ASG. For example,

ℰ[m: inst] asg = (N, AE, ASP), denotes the evaluation of the instruction inst ∈ INST with

address m ∈ ADDR being the execution address and asg ∈ ASG being the execution

context.

 27

Now we can, loosely speaking, say that ASP and ASPR are related as follows: Let

ℰ [m: inst] asg = (N, AE, ASP), then (m, a) ∈ ASPR where a ∈ ASP. The evaluation

function determines what operations in PRIM are to be applied, and the next instruction

to be interpreted. The next section defines these abstract operations.

ℰ: INST → ASG → ASG

ℰ [m: push] asg =
 ℰ next(m) (abspush m asg)

ℰ [m: call addr] asg =
 ℰ inst(addr) (abspush m asg)

ℰ [m: ret] asg =
 ∪ ℰ n (abspop m asg)

n ∈ absret asg

ℰ [m: pop] asg =
 ℰ next(m) (abspop m asg)

ℰ [m: jnz addr] asg =
 (ℰ inst(addr) asg) ∪ (ℰ next(m) asg)

ℰ [m: jmp addr] asg =
 ℰ inst(addr) (i asg)

ℰ [m: mov esp x] asg =
 ℰ next(m) (reset m asg)

Fig. 4-1. Evaluation function.

 28

4.2.2 Abstract Operations

Fig. 4-2 defines the effects of the abstract operations. Note that the operations and

evaluation function are recursively defined in terms of each other. The operations are

abspush, abspop, absret, reset, and i that operate on the domain ASG.

Operation abspush pushes a new address on the abstract stack. It is used in the

evaluation of the call and push instructions. These two instructions are representative of

abspush: ADDR → ASG → ASG
abspush m (N, AE, ASP)
 = (N ∪ { m },
 AE ∪ { m → asp | asp ∈ ASP },
 { m }
)

abspop: ASG → ASG
abspop m (N, AE, ASP)
 = (N,
 AE,
 { x | a ∈ ASP, (a x) ∈ AE }
)

absret: ASG → ℘ADDR
absret (N, AE, ASP)
 = {next(x) | a ∈ ASP, (a x) ∈ AE,
 validcall(x)}

reset: ADDR → ASG → ASG
reset m (N, AE, ASP)
 = (N ∪ { m },
 AE,
 { m }
)

i: ASG → ASG
i (N, AE, ASP) = (N, AE, ASP)

Fig. 4-2. Abstract operations.

 29

instructions that perform the push operation. Other instructions may be modeled similar

to these instructions. For example, the INT (software interrupt) instruction may be

modeled like the call instruction. Instructions that increase the content of stack by

directly manipulating the stack pointer, such as sub esp, 8h, are modeled using the push

instruction.

Operation abspop pops an element from the abstract stack resulting in a new set

of top of stack. The operator is used in the evaluation of ret and pop instructions.

Operation absret supports the evaluation of the ret instruction. It checks whether

the address at the top of stack represents the address of a call instruction. If so, it returns

the address of instruction after the call. Since the abstract stack does not maintain actual

return address, the address to return to when a call is made by obfuscation is not known.

This function identifies such obfuscations.

Operation reset is for all those instructions that explicitly modify the stack pointer

with value not known to the analysis. For example instructions such as move esp, eax.

Instructions such as add esp, 8h and sub esp, 8h whose effect on the stack pointer is

known may be modeled as pop and push respectively.

Operation i is the identity operator. It is used for evaluation of any operation that

does not modify the stack.

4.2.3 Algorithm

The naïve algorithm constructs an abstract stack graph of a section of code, by

applying the evaluation function to the entry address of the program on an initial abstract

stack graph <Ø, Ø, Ø> and then continuing until a termination condition is reached. The

termination condition may be due to reaching some specific memory address, or reaching

 30

an invalid instruction, or when an empty stack is popped. Details of the termination

condition of the evaluation function are not shown in Fig. 4-1. A sketch of the algorithm

follows; a complete pseudo is in Appendix B.

Assume that the disassembly and an entry point to the code are available. The

current abstract stack graph is initialized to <Ø, Ø, Ø>. The assembly instructions are

then interpreted one by one. A work list W is maintained such that each element in W is a

tuple <ip, asp, succ>. Here ip (instruction pointer) is the address of the next instruction to

be executed; asp (abstract stack pointer) is the address of an instruction denoting top of

the abstract stack graph; succ is the number of successor abstract nodes of asp. Initially W

is the singleton set {<Entry_Inst, 0, 0>}.

A visited list V is also maintained which keeps track of the instructions previously

interpreted for a given state of the abstract stack graph. This is necessary to avoid getting

trapped in a loop because of a backward control transfer or jump. The visited list V

maintains a list of already interpreted work list elements for a given state of the abstract

stack graph. Each w ∈ W carries the abstract stack graphs’ state information in succ. This

is important because whenever a conditional branch instruction is encountered, from

within a loop, information about the updated state of the abstract stack graph has to pass

along the two possible branch paths. This is accomplished by including succ in the tuple

for w.

The algorithm generates a correct abstract stack graph even for programs with

loops with unbalanced push or pop instructions. This means that if there are individual

loops within which push or pop occur, and within these loops the push or pop are not

balanced (i.e., there are more push than pop, or more pop than push), the algorithm can

 31

still generate the correct abstract stack graph that encompasses all the possible abstract

stacks at each program point, including the stack representing the balancing of push and

pop after the two loops.

Each node in the abstract stack graph is created only when a push or a call

instruction is encountered. Hence, nodes in the graph are finite since instructions in the

program space are finite. This implies that the abstract stack graph is finite. Also, since

each instruction is interpreted only once, the algorithm to construct the abstract stack

graph is linear in time and space.

5 Detecting Obfuscations

This chapter shows how an abstract stack graph may be used to detect stack

related obfuscations. The obfuscations detected are:

� Call obfuscation

� Parameter passing obfuscation

� Return obfuscation

For each detection, example programs are used to illustrate the mechanism. They

show the effective real/concrete stack at a program point of interest as well as the abstract

stack graph at that point. Each instruction is annotated with an address label, such as E,

L0, L1, etc. The instructions are also annotated with an arrow followed by a number, such

as “ 4”. The number is the symbolic program point associated with the instruction. The

number is an alias for the instruction’s label: the different symbols are used to simplify

the discussion. In the examples each program point of interest is associated with a single

abstract stack. Hence, the discussion focuses on the specific stack. This should not be

construed to imply that the methods are restricted to a single flow. Rather, the method

discussed may be applied to every abstract stack associated with a program point.

Throughout the following, obfuscation is detected when the contents of the abstract stack

graph at control points is not what would be expected if the call was not obfuscated.

5.1 Detecting Obfuscated Calls

A call to a procedure within the same segment is termed a “near” call and

performs the following: it decrements the stack pointer (esp) by a word and pushes the

instruction pointer onto the stack; the eip, contains the offset of the instruction following

 33

the call. Next it inserts the offset address of the called procedure into eip. The semantics

of a call addr instruction may be defined operationally as follows:

1. Push the memory address of the byte after the current instruction onto the

stack.

2. Assign the address addr to the instruction pointer (eip).

The concrete stack at beginning of program point L0 is as shown in Fig. 5-1.

5.1.1 Obfuscation using push/jmp

Fig. 5-2 shows a program that simulates a call using a combination of push and

jmp instructions. The jump through a register transfers control to L8. Before the jump is

executed, the offset of the instruction following the call is pushed onto the stack. The

instruction at E pushes the entry point of the code onto the stack. The instruction at L0

pushes the offset address of the instruction following the call, which is the return address,

onto the stack. The instruction at L1 loads the effective address of the instruction at L8

into eax and then the instruction at L2 jumps to this address. When ret is encountered at

L9, the control returns to the return address previously pushed onto the stack. Hence,

E: push E ;entry

L0: call L8

L1: …

…

L8:

Normal call Actual Stack

eip = L8

esp

E

L1

Fig. 5-1. Normal call.

 34

without using the call instruction itself, the same functionality is achieved here as is

intended in Fig. 5-1.

That the jmp instruction actually performs a call becomes known from the

abstract stack graph at the entry point of the call. When an address is not known to be the

entry point of a procedure, the abstract stack graph at the ret instruction, program point 6,

discloses the obfuscation. During normal execution the top of the stack at this program

point contains the return address L3 pushed by the push instruction at label L0. In the

abstract stack graph, the top of stack at program point 6 is E. That the ret instruction is

returning from an obfuscated call is detected because E is not the address of a call

instruction.

5.1.2 Obfuscation using push/ret or push/pop

Fig. 5-3 shows two different types of obfuscations of a call. They differ in how

control is transferred to the target address. In the first, the target address is pushed on the

stack and a ret instruction pops this address from the stack and transfers control. In the

second, the target address is pushed on the stack, it is then popped into a register, and an

indirect jump is performed to the address in the register. The labels and program points in

E: push E ;entry 1
L0: push L3 2
L1: lea eax, L8 3
L2: jmp eax 4
L3: …
…
L8: 5
L9: ret 6

Obfuscation using push/jmp

E

L0 2

Abstract Stack Graph

3 4

1 6

Fig. 5-2. Abstract stack graph to detect obfuscation of call due to push/jmp.

 35

the two examples have been chosen such that both examples have the same stack and

abstract stack graph. In both examples the actual transfer of control is done at instruction

labeled L3, i.e. at program point 5.

The instruction at L3, where a ret or a pop ebx is done is the address that was

previously pushed onto the stack by instruction at L2 and is the target of the control

transfer. In the first example this is a ret instruction and in the second example it is pop

ebx. The top of the abstract stack at program point 5 contains L0, the address of the

instruction that pushed the target address on the stack. Thus, once again, when a ret

statement is encountered (at program point 7 in case of first example and at program

E: push E ;entry 1
L0: push L4 2
L1: lea eax, L8 3
L2: push eax 4
L3: ret 5
L4: …
…
L8: 6
L9: ret 7

Obfuscation using push/ret

E

L0 2

Abstract Stack Graph

3 5

1 6

E: push E ;entry 1
L0: push L5 2
L1: lea eax, L8 3
L2: push eax 4
L3: pop ebx 5
L4: jmp ebx 6
L5: …
…
L8: 7
L9: ret 8

Obfuscation using push/pop

6

L2 4

Fig. 5-3. Abstract stack graph to detect obfuscation of call due to push/ret or push/pop.

 36

point 8 in case of second example) it can be determined that it was reached due to an

obfuscated call.

Now the push instruction itself can be substituted by a sequence of instructions

that eventually achieve the same semantics. For example, in Fig. 5-2 the instruction at

address L0 which is push L3 (assume L3 is a 4 byte address) can be substituted by the

following sequence of instructions:

mov ebp, esp

sub esp, 4

mov [ebp - 4], L3

In such cases where the stack operation itself is further obfuscated by instruction

substitution, the abstract stack graph cannot be used to detect the obfuscation since it is

limited to observing the evaluations of only those operations that can be mapped to stack

push and pop instructions, where each is performed as a unit operation. It cannot model

situations where the push and pop instructions themselves may be decomposed into

multiple instructions.

5.2 Detecting Obfuscated Parameters

When analyzing a program for malicious behavior it is often useful to know the

parameters being passed to a function. A program may be deemed malicious depending

on the parameter. For instance, calling a file-open with parameters set to read may be

considered benign, but the same call with parameters set for writing may indicate

malicious intent.

Parameters to a function are ordinarily passed via the stack or through registers.

An abstract stack graph can aid in determining the parameters that are passed on the

 37

stack. If a call takes n instructions, the top n elements on the abstract stacks at a program

point before the call instruction represent the locations where those parameters were

pushed. The ith parameter corresponds to the ith element on the stack (starting from the

top). This is assuming the first parameter is pushed last. If the last parameter is pushed

first, the order is changed to match. At the entry point, the parameter addresses are

connected by compensating for the pushed return address. Fig. 5-4 contains a sample

normal code. In this program, the arguments to the function are pushed immediately

before the call instruction.

5.2.1 Obfuscation using Out of Turn push

Fig. 5-5 contains an example of what is termed as “out-of turn push”. Instructions

at L0 and L1 push parameters in registers eax and ebx onto the stack. These are intended

to be parameters to call L6, but they are pushed before the instruction call L4. This gives

the appearance that the parameters are being passed to the function at L4. The abstract

stack graph for the program can be used to detect where the parameters to a function are

E: push E ;entry

L0: push eax

L1: push ebx

L2: call L8

L3: …

…

L8:

Normal parameter passing

eip = L8

Actual Stack

esp

E

eax

ebx

L3

Fig. 5-4. Normal parameter passing to a call.

 38

assembled. At program point 6, immediately after call L6, the state of the abstract stack is

L3|L1|L0|E. The top of stack, L3, represents the return address. The two elements on the

abstract stack, L1 and L0, represent the location where the parameters for the function are

pushed.

The example also shows how the abstract stack graph may be used to match call

and ret instructions. At program point 4, where the call to L4 is made, the abstract

interpreter actually simulates a control transfer to the target of the call site to interpret the

next instruction at L4. The abstract stack state passed is L2|L1|L0|E with L2 as the

abstract stack top. At program point 5, the ret instruction, the top of the abstract stack

contains L2. Thus the ret instruction will be seen to return from a call made by the call

instruction at address label L2. Now at program point 6, the abstract stack state is

L3|L1|L0|E and does not include L2 since at a call site updated information is only passed

down the taken branch. Hence, at program point 7, the ret instruction, the top of the

E: push E ;entry 1

L0: push eax 2

L1: push ebx 3

L2: call L4 4

L3: call L6 6

L4: …

L5: ret 5

L6: …

L5: ret 7

Obfuscation using Out of turn push

E

L0

L1

1

L2
L3

Abstract Stack Graph

2

3 5

4

7

6

Fig. 5-5. Abstract stack graph to detect obfuscation of parameters due to out of turn push.

 39

abstract stack contains L3. Thus, the ret instruction will be seen to return from the call

made by the call instruction at address label L3.

5.2.2 Obfuscation using Redundant push/pop

Introducing redundant push and pop instructions can obfuscate the parameters.

Consider the program in Fig. 5-6. The value pushed at instruction L1 is popped at L2.

They are thus redundant. The abstract stack at program point 5, before the call instruction

is L3|L0|E, indicating that the parameters to the call are pushed at L3 and L0. The effect

of the redundant push and pop instructions is visible at prior statements, but not at

program point 5.

5.2.3 Obfuscation due to Redundant Control

Fig. 5-7 shows the use of redundant control to obfuscate parameters to a call. This

is done by exploiting the assumption that a conditional branch has two possible targets.

E: push E ;entry 1

L0: push eax 2

L1: push edx 3

L2: pop eax 4

L3: push ebx 5

L4: call L8 6

L5: …

…

L8: ret 7

Obfuscation using redundant push/pop

E

L0

L1

1

L4

L3

Abstract Stack Graph

2

3

6

4

7 5

Fig. 5-6. Abstract stack graph to detect obfuscation of parameters due to redundant push/pop.

 40

The conditional branch may be instrumented to logically follow one direction, i.e., either

it is always taken and never falls through, or it is never taken and always falls through.

This technique relies on using predicates that always evaluate to either the constant true

or the constant false, regardless of the values of their inputs. Such predicates are known

as “opaque predicates”. The instruction at L0 results in edx containing zero. Hence the

instruction at L1 always evaluates to true and the branch is taken to L3.

The abstract stack graph shown here cannot be used to detect this redundant

control unless we are able to compute contents of registers or memory locations. This

example shows the limitation of the abstract stack graph method where a model for

retrieving contents of registers is required to detect the obfuscation. At program point 7,

where the call to L8 is made, the abstract stack state could be L5|L4|L3|E or L5|E. This

means the branch at L1 could either be taken or not taken. But, if we were to determine

the contents of register edx at L0, then we can determine that the branch at L1 is always

E: push E ;entry 1

L0: xor edx edx 2

L1: beqz L3 3

L2: jmp L5 4

L3: push eax 5

L4: push ebx 6

L5: call L8 7

…

L8: ret 8

Obfuscation using redundant control

E

L3

L4

1

L5

Abstract Stack Graph

5

3

6

4

7

8 2

8

Fig. 5-7. Abstract stack graph fails to detect obfuscation due to redundant control.

 41

taken. This information would render a new abstract stack graph in which the edge from

node L5 to E would no longer be present. The only abstract stack state possible would be

L5|L4|L3|E which includes the address of the instructions L3 and L4 that push the

arguments for call at L5, hence detecting the redundant control.

5.3 Detecting Obfuscated ret

A ret statement typically pops the top of the stack and returns control to address it

pops which is basically reversing a call’s steps. It pops the old eip value from the stack

into eip and increments esp by a word. The conventional way of using call and ret is as

shown in Fig. 5-8. After ret is executed, control transfers to the instruction immediately

after the call.

The return may be obfuscated by simulating it using non-return instructions or by

having it transfer control to a location other than the instruction after the original call

instruction. The two we detect are pop to return and return elsewhere.

5.3.1 Using pop to return

In the example in Fig. 5-9, the effect of a ret instruction is achieved by popping an

address at the top of stack into a register and jumping it. The abstract stack at program

E: push E ;entry

L0: call L8

L1: …

…

L8: ret

Normal call/ret

eip = L1

esp

Actual Stack

E

Fig. 5-8. Normal call/ret.

 42

point 2 immediately before the address is popped is L0|E. Thus, it can be determined that

the pop instruction is popping the return address from the call at L0, thereby indicating

that the ret address is obfuscated.

5.3.2 Returning elsewhere

The ret instruction can also be obfuscated by returning elsewhere. Instead of the

conventional way of returning to the instruction immediately following the call

instruction, the return address is modified in the called function and control transferred to

some other instruction.

In Fig. 5-10, the instruction at L0 makes the call to L3. Immediately after the call

instruction, 2 junk bytes are inserted to locate a specific return address (L3 in this case).

The instruction at L4, the contents of the stack pointer are modified by adding 2 bytes to

the return address to generate a new return address so that the ret instruction transfers

control to 2 bytes after the original return address. This is obfuscating ret to return

elsewhere. The abstract stack graph may be augmented to detect this obfuscation. Along

with each location in the stack an additional tag, modified, may be maintained. When a

E: push E ;entry 1

L0: call L8 2

L1: …

…

L8: pop eax 3

L9: jmp eax 4

Using pop to return

E

L0

1

Abstract Stack Graph

2

3 4
eip = L1

esp

Actual Stack

E

Fig. 5-9. Abstract stack graph to detect obfuscation of ret using pop.

 43

value is pushed on the stack, modified is set to false. If an instruction may change the

contents of the stack, and we can determine the stack offset that is being changed, then

we can change the tag of that location to modified. If the value at the top of the stack at a

ret instruction is modified, it implies that ret is returning elsewhere.

Another method of obscuring the ret instruction is by using branch functions. A

branch function does not behave like “normal” function in that it typically does not return

control to the instruction following the call instruction, but instead branches to some

other location in the program that depends, in general, on where it was called from. Given

such a branch function, an unconditional branch in a program (a jump instruction) can

now be replaced by a call to the branch function. Branch functions serve two distinct

purposes. The first is to obscure the flow of control in the program by sufficiently

obscuring the computation of the target address within the branch function. The second is

to create opportunities for misleading the dissembler by inserting junk bytes at the point

immediately after each call of the branch function.

E: push E ;entry 1

L0: call L3 2

L1: nop

L2: nop

L3: …

L4: add esp, 2 3

L5: ret 4

Return elsewhere

E

L0

1

Abstract Stack Graph

2 3

4
eip = L3

esp

Actual Stack

E

Fig. 5-11. Abstract stack graph to detect obfuscation due to returning elsewhere.

 44

The branch function takes an argument and a return address from the callee. The

return address is the address of the instruction immediately following the call. The callee

passes, as an argument to the branch function, the offset from the return address to the

eventual target address of the branch function. The branch function adds the value of its

argument to the return address, so that the return address becomes the address of the

original target. The code for this is as follows:

xchg eax, esp

add [8 + esp], eax

pop eax

ret

The first instruction exchanges the contents of register eax with the word at the

top of the stack, effectively saving the contents of eax (this is required because if any of

the condition code flags is live at the call point, they have to be saved by the caller just

before the call, and restored at the target) and at the same time loading the displacement

to the target (passed to the branch function as an argument on the stack) into eax. The

second instruction adds up this displacement to the return address (which resides a word

below the top of the stack) and the result is placed back on the stack. The third instruction

restores the previously saved value of eax, and the fourth instruction has the effect of

branching to the address computed by the function and now placed on top of the stack.

This too is the case of obfuscation by returning elsewhere and can be detected using the

abstract stack graph as discussed above.

 45

5.3.3 Abusing Call

The call instruction can also be “abused” to jump to a particular instruction. In

Fig. 5-12, at instruction L0 a call is made to L2. At L2, the return address is popped off

the stack. A new return address is computed and pushed onto the stack (instruction at L4).

The instruction at L5 transfers control to the new address location. The abstract stack

graph shown here can be used to detect such abuse. At program point 5, immediately

before the ret instruction the stack is L4|E. This indicates that the ret instruction is

obfuscated, since it will transfer control to the address pushed by a push instruction, and

not after a call.

E: push E ;entry 1

L0: call L2 2

L1: …

L2: pop eax 3

L3: add eax, 16 4

L4: push eax 5

L5: ret 6

L6: …

Abusing call

E

L0

1

Abstract Stack Graph

2

4 3

eip = L6

esp

Actual Stack

E L4 5

6

Fig. 5-12. Abstract stack graph to detect obfuscation due to abusing call.

6 Implementation and Results

This chapter presents a demonstration of the proposed algorithm and highlights its

limitations. A prototype tool, DOCs (Detector for Obfuscated Calls) has been

implemented using the Eclipse 2.1 framework. The goal is to demonstrate the use of

DOCs as a means to detect call obfuscations in known virus programs (w32.evol).

6.1 DOCs Implementation details

DOCs has been implemented using the Eclipse 2.1 framework [35]. The Eclipse

Platform is designed for building integrated development environments (IDEs) that can

be used to create diverse applications. It is an open platform for tool integration built by

an open community of tool providers. The Eclipse Platform is built on a mechanism for

discovering, integrating, and running modules called plug-ins. A tool provider writes a

tool as a separate plug-in that operates on files in the workspace and surfaces its tool-

specific UI in the workbench. When the Platform is launched, the user is presented with

an IDE composed of the set of available plug-ins.

DOCs has been implemented as a plug-in and is hence extendable. It is written in

the Java programming language. A screen shot when the plug-in is used to open an

assembly file (.asm extension) is shown in Fig. 6-1.

 47

6.2 Capabilities of DOCs

DOCs provides the ability to open any number of projects at the same time. The

navigator view helps to browse and open files in a project which are displayed in the file

view. DOCs takes as input an assembly file, and constructs an abstract stack graph on

user selection. The user can now select an option from the choices view to detect

obfuscated calls, obfuscated returns, call-ret sites and manipulated call sites (same as

detecting obfuscated returns).

6.3 Demonstration with test programs

DOCs was used with a few sample assembly files to detect the following:

� Valid call-ret sites

� Non-contiguous call-ret sites

� Obfuscated calls

� Obfuscated returns

6.3.1 Detecting valid call-ret sites

Fig. 6-1 shows a screen shot in which a test assembly file is opened in the file

view and the option to detect call-ret sites has been selected. The instructions highlighted

in red within the file view show valid call-ret sites. The numbering “(0)” at the end of

these highlighted lines denotes that for the call site at address 101F, the ret site is at

address 110B.

 48

Fig. 6-1. Detecting valid call-ret sites.

Navigator View File ViewConstruct ASG

Choices View

Valid call-ret site

 49

In order to flag the instruction addresses as valid call-ret sites requires construction of the

abstract stack graph which has been constructed for the selected assembly file and is as

shown in Fig. 6-2. It is evident from Fig. 6-2 that when program point 12 is reached, the

ret instruction is returning from a node which is a call instruction and hence is a valid

call-ret site.

1000 push ebp 1

1003 push eax 2

1007 add eax, 10h 3

100b mov edx, eax 4

100f pop ecx 5

1013 jmp 101f 6

1017 pop ecx 7

101b cmp ecx, 10h 8

101f call 110b 9

1103 sub ecx, 5h 10

1107 jmp 110f 11

110b ret 12

110f jnz 1017 13

1113 nop 14

Fig. 6-2. Abstract stack graph for test.asm

4

1000

1003

1

2

5

3

6 10

11 12 13 14

101F

9

 50

6.3.2 Detecting non-contiguous call-ret sites

DOCs can also detect non-contiguous call-ret sites as shown for a sample

assembly file in Fig. 6-3. The entry point of the code begins at address 300f. At address

3014 a call to address 3000 is made. Within this code, at address 3004 now a call to

address 2000 is made, and so on. For each of these calls their corresponding ret sites lie

before the call site. The call at address 3014 finally returns at address 300B. Such type of

control transfers are usually absent in compiler generated code that adhere to

conventional procedure entry and exit, but occur in malicious code or hand coded

assembly. A usual linear scan would have rendered incorrect call-ret sites.

Fig. 6-3. Detecting non-contiguous call-ret sites.

Entry point

 51

6.3.3 Detecting obfuscated calls

Fig. 6-4 shows a screen shot in which another assembly file (test1.asm) is opened

in the file view and the option to detect obfuscated calls has been selected. Instructions

highlighted within the file view show possible obfuscation of the call instruction. The ret

site at address 200F is associated with a push at address 2000 and the ret site at address

2213 is associated with the push at address 2017. The entry point of the code begins from

the first instruction at address 1fff. A simple linear scan performed on this code would

render incorrect entry-exit blocks. For example, a popular disassembler, IDAPro, marks

the instructions between addresses 1fff and 200f as comprising a block of code while the

instructions between addresses 2103 through 2213 are marked as another block of code.

Fig. 6-4. Detecting possible obfuscations of the call instruction.

Obfuscated call

Obfuscated call

 52

In order to flag the instruction addresses as obfuscated call requires construction of the

abstract stack graph which has been constructed for the selected assembly file test1.asm

and is as shown in Fig. 6-5. From the abstract stack graph when program points 6 and 23

are reached, the ret instruction is returning from a node which is a push instruction hence

detecting obfuscated calls.

1FFF push ebp 1

2000 push eax 2

2003 add eax, 10h 3

2007 mov eax, 20h 4

200B sub eax, ebx 5

200F ret 6

2013 push eax 7

2017 push ebx 8

201B push ecx 9

201F pop edx 10

2103 call 110F 11

2107 nop 12

210B nop 13

210F nop 14

2113 nop 15

2117 push ecx 16

211B push ecx 17

211F push ecx 18

2203 pop ebx 19

2207 pop ebx 20

220B pop ebx 21

220F pop ebx 22

2213 ret 23

Fig. 6-5. Abstract stack graph for test1.asm

211b 17

4

1fff

2000

1

2 5 3

6

10

11

16 20

14

2013

9

7 23

20178 22

201b 2103 15 21

2117

19

211f 18

 53

6.3.4 Detecting obfuscated returns

Fig. 6-6 shows a screen shot in which the same assembly file test1.asm is opened

in the file view and this time the option to detect obfuscated returns has been selected.

Instructions highlighted in red within the file view show possible obfuscation of the ret

instruction. The pop instruction at address 220F is associated with a call instruction at

address 2103. This information too is retrieved from the abstract stack graph shown in

Fig. 6-5. From the abstract stack graph when program point 22 is reached, the pop

instruction is popping from the node which is a call instruction at address 2103 hence

detecting the obfuscated ret.

 Fig. 6-6. Detecting possible obfuscations of the ret instruction.

Obfuscated return

 54

6.4 Demonstration with w32.evol virus

In case of sample test programs the prototype tool successfully detected all

possible obfuscated calls, returns, valid call-ret sites and non-contiguous call-ret sites. To

demonstrate its use for detecting obfuscations in real virus code, it was used to detect

possible obfuscations in w32.evol virus. The prototype tool detected 20 possible

obfuscated calls and 2 possible obfuscations of the return instruction. This has been

verified by manual analysis of the virus, prior to detection by the tool. Fig. 6-7 shows a

screen shot in which two of the possible obfuscated call sites are highlighted. The call to

Fig. 6-7. Detecting possible obfuscations of the call instruction in w32.evol.

Obfuscated call

Obfuscated call

GetTickCount

GetWindowsDirectory

 55

two of the kernel functions GetTickCount() and GetWindowsDirectory() is obfuscated

and Fig. 6-7 shows these strings being pushed on the stack. The process by which control

is transferred to each of these kernel functions becomes clearer from Fig. 6-8. A detailed

explanation can be found in Appendix A.

 The instructions from addresses 0040153F through 00401557 push a pointer to

the string “GetTickCount” on the stack which is the required kernel function intended to

be called. The instruction at address 00401558 calls a routine which retrieves kernel32

base address and saves it in register eax. The instruction at address 0040155D stores this

value on the stack. The stage is now set to call a kernel function called GetProcAddress()

which takes as parameters the string “GetTickCount” and kernel32 base address that have

previously been pushed on the stack. This kernel function retrieves the procedure address

Fig. 6-8. Obfuscation of call to kernel function GetTickCount ()

The string GetTickCount
Pointer to the string

GetTickCount is pushed on stack

This routine retrieves kernel32
base address and pushes it on stack

This routine retrieves address of
GetTickCount() and pushes it on stack

retn transfers control
to GetTickCount

 56

(in this case the address of GetTickCount) and saves it in register eax. The instruction at

address 0040155E calls a routine that in turn makes a call to GetProcAddress() to

retrieve the address of GetTickCount() in register eax. The instruction at address

00401563 stores this value on the stack. The instructions at addresses 00401566 and

00401569 adjust the stack pointer to point to this address and the retn instruction at

address 0040156A transfers control to GetTickCount().

 Fig. 6-9 shows a screen shot in which the two possible obfuscated ret sites are

highlighted. Each of the call instructions at addresses 004017AA and 004017C1 do not

have a matching ret instruction but rather are popped by a pop instruction immediately

following each.

Fig. 6-9. Detecting possible obfuscations of the ret instruction in w32.evol.

 57

6.5 Limitations

The solution proposed here is a partial solution in the sense that the obfuscation

detection is confined or rather narrowed down to those done using stack related

instructions such as push, pop, call and ret. Also only those instructions that perform unit

push and pop operations are handled. Instructions such as pusha, popa that increment and

decrement the stack by more than one unit (usually 4 bytes) are not handled.

There is no model to retrieve contents of memory locations or contents of

registers which limits the ability of the tool since stack operations done via memory are

not being handled. While analyzing w32.evol for possible obfuscation of the call

instruction, the prototype tool detects calls to each of the kernel functions as being

obfuscated except the obfuscated call to GetProcAddress(), which requires retrieving

value (in this case the address of GetProcAddress) that is being pushed. Also DOCs

cannot be used to analyze code rich in indirect control transfers such as jump through

registers or memory. The idea of abstract locations from [8] can be used to overcome this

limitation.

7 Conclusion and Future Work

A method for modeling stack use of assembly programs has been presented. The

set of all possible stacks due to all possible executions of a program is represented as an

abstract stack graph. The graph is a 3-tuple, with nodes, edges, and annotation on nodes.

Each instruction that pushes a value on the stack is represented as a node in the graph. An

edge represents a push operation, from an instruction pushing a value to an instruction

that pushed the value on the top of the stack. A path in the graph represents a specific

abstract stack. A node is annotated with the statements that receive an abstract stack with

that node at the top. The abstract stack graph was defined in abstract interpretation form.

An algorithm for constructing it was also defined.

An abstract stack graph may be used to support disassembly of obfuscated code and

to detect obfuscations related to stack operations. Ten different obfuscations were shown

to be detectable, and the methods for doing so outlined. These are obfuscations in

common use by virus writers.

The abstract stack graph and the algorithm for constructing an abstract stack

graph are partial solutions for detecting obfuscations in binaries. A more complete

solution would consider additional instructions, provide a method of modeling actual

memory locations, and track the contents of memory locations and content of registers.

Some work done elsewhere may one day provide a way of achieving this

functionality. Balakrishnan and Reps have proposed a method for abstract interpretation

of non-stack related instructions [8]. Their effort is aimed at discovering “something

similar to C variables” by analyzing the memory accesses of a binary executable. Since

their analysis assumes that a program conforms to a ‘standard compilation model,’ their

 59

model of stack use is static. An activation record is associated with each procedure. The

stack is a set of activation records that are linked together during interprocedural analysis.

Adapting Balakrishan and Reps’ algorithm to use an abstract stack graph may help create

a complete system for detecting obfuscations. The adaptation may also help create a

disassembler for obfuscated programs that cannot be fooled easily.

8 Appendix A: Obfuscation in Win32.Evol

The following piece of code is extracted from w32.evol virus.

00401208 CMP EAX, 77E00000

; checking kernel32 base address to identify Windows 2000 operating system

0040120D JNZ SHORT 00401261

; did not find proper Win32 platform, so exiting

0040120F MOV DWORD PTR DS:[ESI], 5500000F

; these are the four bytes beginning at 77E89B15 within kernel32.dll. This is corrupt and

; should actually be 550001F2. These bytes are being pushed on the stack.

00401215 MOV DWORD PTR DS:[ESI+4], 5151EC8B

; the next four bytes are also pushed on the stack. These 8 bytes are used for identifying

; the address of the Windows API module GetProcAddress() which is at 77E89B18

; within kernel32.dll

0040121C ADD EAX, 80000 ; EAX = 77E00000 + 80000 = 77E80000

; since the required API modules begin from 77E80000

00401221 MOV EDI, EAX ; use EDI to iterate between 77E80000

00401223 MOV ECX, 20000; and 77E80000 + 20000 = 77EA0000. ECX is counter

00401228 MOV EDX, DWORD PTR DS:[ESI] ; compare the bytes 550001F2 and

0040122A CMP EDX, DWORD PTR DS:[EDI] ; contents of address in EDI

0040122C JNZ SHORT 00401236 ; if condition fails, go to increment EDI

0040122E MOV EDX, DWORD PTR DS:[ESI+4]

; else compare next four bytes 5151EC8B

00401231 CMP EDX, DWORD PTR DS:[EDI+4]

 61

00401234 JE SHORT 00401243

00401236 ADD EDI, 1

; increment EDI and loop until the marker string bytes ‘eVOL’ are found on the stack

00401239 SUB ECX, 1

0040123C CMP ECX, 0

0040123F JNZ SHORT 00401228

00401241 JMP SHORT 00401261

00401243 ADD EDI, 3

; EDI = 77E89B15 + 3 = 77E89B18 which is the address of GetProcAddress() Win32

; API function. Further for ADD EDI, n EDI would contain an address 77E89B18 – n.

; The virus writer can use this and simply substitute the first 8 bytes occurring at

; (77E89B18 – n) address in place of the 8 bytes at instructions 0040120F and 00401215.

00401246 MOV ECX, EAX

; ECX = 77E80000 which is kernel32.dll base address. This requires to be passed as a

; parameter to GetProcAddress()

00401248 MOV EBX, DWORD PTR SS:[EBP]

0040124B ADD EBX, 10

0040124E MOV DWORD PTR DS:[EBX], 4C4F5665

; push string marker ‘eVOL’ on stack

00401254 MOV DWORD PTR DS:[EBX+4], ECX

; push kernel32.dll base address

00401257 MOV DWORD PTR DS:[EBX+10], EDI

; push address of GetProcAddress()

 62

0040125A MOV EAX, 1

0040125F JMP SHORT 00401263

00401261 XOR EAX, EAX ; destroying the kernel32 base address

00401263 POP EDI ; exiting

00401264 POP ESI

00401265 ADD ESP, 8

00401268 POP EBP

00401269 RETN ; returns back to the main function from where this was called

The main function now calls a routine that pushes the parameters for

GetProcAddress() on the stack and this routine in turn calls another routine that

obfuscates the call to GetProcAddress().

0040153C LEA EAX, DWORD PTR SS:[EBP-14]

; EBP holds contents of ESP

0040153F MOV DWORD PTR DS:[EAX], 54746547 ; ‘TteG’

00401545 MOV DWORD PTR DS:[EAX+4], 436B6369 ; ‘Ckci’

0040154C MOV DWORD PTR DS:[EAX+8], 746E756F ; ‘tnuo’

00401553 MOV BYTE PTR DS:[EAX+C], 0 ; the string “GetTickCount”

00401557 PUSH EAX ; pointer to the string is pushed on the stack. This is Arg2.

00401558 CALL 00401280; this routine retrieves kernel32.dll base address into eax

; which requires a search on the stack for the string marker ‘eVOL’

0040155D PUSH EAX ; this is Arg1 pushed on the stack

0040155E CALL 004012A7 ; this routine obfuscates call to GetProcAddress()

00401563 MOV DWORD PTR SS:[EBP], EAX; Control returns back from 4012A7.

 63

00401566 ADD ESP, 10 ; EAX now holds the address of GetTickCount().

00401569 POP EBP ; these instructions from 00401563 to

0040156A RETN ; 40156A transfer control to GetTickCount().

004012A7 PUSH EBP

004012A8 MOV EBP, ESP

004012AA SUB ESP, 4 ; make space on stack

004012AD MOV EAX, DWORD PTR SS:[EBP]

004012B0 MOV DWORD PTR SS:[EBP-4], EAX

004012B3 CALL 0040126A ; this routine retrieves the address of string marker

‘eVOL’ on the stack

004012B8 MOV EAX, DWORD PTR DS:[EBX+10]

; the contents of EBX+10 on the stack is the address of GetProcAddress() which is

;moved into EAX

004012BB MOV DWORD PTR SS:[EBP], EAX

; the address of GetProcAddress() is pushed on the stack below the actual top of stack

004012BE POP EBP; this pops top of stack and not the address of GetProcAddress()

004012BF RETN ; transfers control to GetProcAddress()

Each of the required Win32 API function is called in the same way. Detection of

this type of call obfuscation can be automated with the help of the abstract stack graph.

The prototype tool can successfully detect calls to each of these kernel functions as being

obfuscated, though, it fails to detect obfuscation of call to GetProcAddress(), which

requires retrieving a value (in this case the address of GetProcAddress) that is being

pushed. The idea of abstract locations from [8] can be used to achieve this.

9 Appendix B

Pseudo code to construct an abstract stack graph:

struct AbstractStackGraph struct AbstractNode

{ {

 abstract_node N; unsigned int inst_addr;

 List predecessor_abstract_nodes; List program_points;

 List successor_abstract_nodes; } abstract_node;

}asg;

struct WorkListElement

{

 unsigned int ip;

// ip holds the address of the next instruction to be executed.

 unsigned int asp;

// asp is the abstract stack pointer that holds the address of an instruction,

// which is the top of an abstract stack.

int num_of_successors; // This is the number of successors for the instruction in

// asp, which is also a node in the abstract stack graph.

}wle;

List elements;// This holds a list of worklist elements that are objects of type wle.

wle.asp = E; // E is the address of entry instruction

wle.ip = E + instLength(E);

// The function instLength(A) returns the length of an instruction at address A.

wle.num_of_successors = 0;

 65

W = { <wle > } // Work List V = { } // Visited List

while (W != NULL)

{

 retrieve w from W, where w Є W;

 if (w !Є V)

 {

 add w to V;

 // abstract_interpret() interprets the instruction specified by wle.ip,

// modifies the abstract stack graph accordingly and either returns null, or

// a new work list element or a list of work list elements. A list is returned

// whenever an instruction is interpreted as a branch instruction or jump to

// a case table.

 elements = abstract_interpret(wle);

 add elements to W;

 }

}

abstract_interpret(wle)

{

 instruction = getInstruction(wle.ip);

 prog_point = getProgramPoint(wle.asp);

 successor_prog_points = getSuccessorProgPoints(wle.asp);

 switch(instruction)

 {

 66

 case “push”: // New abstract node is created and is made to point toward

// all those nodes (in the so far formed abstract stack graph)

// whose list of program points constitutes prog_point. Then

// do the following:

If no new change to the abstract stack graph, return(null);

else {

wle.asp = wle.ip;

wle.num_of_successors = sizeof(successor_abstract_nodes);

// successor_abstract_nodes is associated with the new wle.asp

wle.ip += instLength(wle.ip);

return(<wle>);

} // end of else statement

 case “pop”: // The program point associated with wle.ip is added to the

// list of program points of each successor abstract node

// associated with wle.asp i.e. successor_prog_points. This

// could mean to add the program point of wle.ip to more

// than one abstract node, as wle.asp might have more than

// one successor nodes. Then do the following:

If no new change to the abstract stack graph, return(null);

else {

temp_ip = wle.ip;

temp_asp = wle.asp;

wle.ip += instLength(wle.ip);

 67

for each (successor abstract node, s_a_n, of temp_asp to which the

program point of temp_ip was added) {

 wle.asp = s_a_n;

wle.num_of_successors = sizeof(successor_abstract_nodes);

// successor_abstract_nodes is associated with the new wle.asp

wle_list = add(<wle>);

} // end of for loop

return(<wle_list>);

} // end of else statement

 case “beqz”: // A branch statement has two possible destinations. One is

// the address to where it branches to and the other is to the

// fall through address. This basically just changes wle.ip.

 wle.ip = getOperand(instruction);

 wle_list = add(<wle>);

 wle.ip += instLength(wle.ip);

 wle_list = add(<wle>);

 return(<wle_list>);

 case “jmp”: // A jmp statement jumps to a single destination address.

 wle.ip = getOperand(instruction);

 return(<wle>);

 // Similarly other cases can be defined …

 } // end of switch statement.

} // end of abstract_interpret()

 68

Example showing step-by-step process of constructing an abstract stack graph:

1. W = { <B0, E, 0> } V = { }

Retrieving <B0, E, 0> from W => W = { } and V = { <B0, E, 0> }

abstract_interpret(<B0, E, 0>) => push eax

return(<C1, B0, 1>)

W = { <C1, B0, 1> }

2. Retrieving <C1, B0, 1> from W => W = { } and

V = { < B0, E, 0>, <C1, B0, 1> }

abstract_interpret(<C1, B0, 1>) => sub ecx, 1h

return(<C2, B0, 1>)

W = { <C2, B0, 1> }

E: //entry point
B0: push eax
B1: sub ecx, 1h
B2: beqz B8
B3: push ebx
B4: push ecx
B5: dec ecx
B6: beqz B3
B7: jmp B10
B8: pop ebx
B9: push esi
B10: pop edx
B11: beq B0
B12: call abc

Sample program.

2
B0

E
1

 69

3. Retrieving <C2, B0, 1> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1> }

abstract_interpret(<C2, B0, 1>) => beqz B2

return(<B2, B0, 1>, <B1, B0, 1>)

W = { <B2, B0, 1>, <B1, B0, 1> }

4. Retrieving <B2, B0, 1> from W => W = { <B1, B0, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1> }

abstract_interpret(<B2, B0, 1>) => pop eip

return(<B4, E, 0>)

W = { <B1, B0, 1>, <B4, E, 0> }

5. Retrieving <B1, B0, 1> from W => W = { <B4, E, 0> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,

 <B1, B0, 1> }

abstract_interpret(<B1, B0, 1>) => push ebx

return(<B3, B1, 1>)

W = { <B4, E, 0>, <B3, B1, 1> }

6. Retrieving <B4, E, 0> from W => W = { <B3, B1, 1> }

and V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0> }

abstract_interpret(<B4, E, 0>) => push esi

7
E

B0
2

1

7

2
B0

E
1

B13

7

2
B0

E
1

B1 3

B4

8

 70

return(<B5, B4, 1>)

W = { <B3, B1, 1>, <B5, B4, 1> }

7. Retrieving <B3, B1, 1> from W => W = { <B5, B4, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1> }

abstract_interpret(<B3, B1, 1>) => push ecx

return(<C4, B3, 1>)

W = { <B5, B4, 1>, <C4, B3, 1> }

8. Retrieving <B5, B4, 1> from W => W = { <C4, B3, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,

 <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>,

<B5, B4, 1> }

abstract_interpret(<B5, B4, 1>) => pop eip

return(<C7, E, 0>)

W = { <C4, B3, 1>, <C7, E, 0> }

9. Retrieving <C4, B3, 1> from W => W = { <C7, E, 0> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,

 <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1> }

abstract_interpret(<C4, B3, 1>) => dec ecx

return(<C5, B3, 1>)

B4

8

7

2
B0

E
1

B1 3

B3

4

B4

8

7

2
B0

E
1

B1 3

B3

4

5

 71

W = { <C7, E, 0>, <C5, B3, 1> }

10. Retrieving <C7, E, 0> from W => W = { <C5, B3, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,

<B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0> }

abstract_interpret(<C7, E, 0>) => beq B0

return(<B0, E, 0>, <B6, E, 0>)

W = { <C5, B3, 1>, <B0, E, 0>, <B6, E, 0> }

11. Retrieving <C5, B3, 1> from W => W = { <B0, E, 0>, <B6, E, 0> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,

 <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0> }

abstract_interpret(<C5, B3, 1>) => beqz B1

return(<B1, B3, 1>, <C6, B3, 1>)

W = { <B0, E, 0>, <B6, E, 0>, <B1, B3, 1>, <C6, B3, 1> }

12. Retrieving <B0, E, 0> from W, but this is visited in V.

 Retrieving <B6, E, 0> from W =>

W = { <B1, B3, 1>, <C6, B3, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>,

<C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

 72

<B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0> }

abstract_interpret(<B6, E, 0>) => call abc

return(null)

W = { <B1, B3, 1>, <C6, B3, 1> }

13. Retrieving <B1, B3, 1> from W => W = { <C6, B3, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>,

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1> }

abstract_interpret(<B1, B3, 1>) => push ebx

return(<B3, B1, 2>)

W = { <C6, B3, 1>, <B3, B1, 2> }

14. Retrieving <C6, B3, 1> from W => W = { <B3, B1, 2> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3 1> }

abstract_interpret(<C6, B3, 1>) => jmp B5

return(<B5, B3, 1>)

W = { <B3, B1, 2>, <B5, B3, 1> }

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

 73

15. Retrieving <B3, B1, 2> from W => W = { <B5, B3, 1> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2> }

abstract_interpret(<B3, B1, 2>) => push ecx

/*Adds nothing new to the abstract stack graph*/

return(null)

16. Retrieving <B5, B3, 1> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>,

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>,

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1> }

abstract_interpret(<B5, B3, 1>) => pop eip

return(<C7, B1, 2>)

W = { <C7, B1, 2> }

17. Retrieving <C7, B1, 2> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2> }

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

5

 74

abstract_interpret(<C7, B1, 2>) => beq B0

return(<B0, B1, 2>, <B6, B1, 2>)

W = { <B0, B1, 2>, <B6, B1, 2> }

18. Retrieving <B0, B1, 2> from W => W = { <B6, B1, 2> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>,

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>,

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2> }

abstract_interpret(<B0, B1, 2>) => push eax

return(<C1, B0, 2>)

W = { <B6, B1, 2>, <C1, B0, 2> }

19. Retrieving <B6, B1, 2> from W => W = { <C1, B0, 2> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>,

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>,

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>,

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2> }

abstract_interpret(<B6, B1, 2>) => call abc

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

5

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

5

 75

return(null)

W = { <C1, B0, 2> }

20. Retrieving <C1, B0, 2> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>,

<B5, B3, 1>, <C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2> }

abstract_interpret(<C1, B0, 2>) => sub ecx, 1h

return(null)

W = { <C2, B0, 2> }

21. Retrieving <C2, B0, 2> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2> }

abstract_interpret(<C2, B0, 2>) => beqz B2

return(<B2, B0, 2>, <B1, B0, 2>)

W = { <B2, B0, 2>, <B1, B0, 2> }

22. Retrieving <B2, B0, 2> from W => W = { <B1, B0, 2> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 76

<B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>,

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>,

<C1, B0, 2>, <C2, B0, 2>, <B2, B0, 2> }

abstract_interpret(<B2, B0, 2>) => pop eip

return(<B4, B1, 2>)

W = { <B1, B0, 2>, <B4, B1, 2> }

23. Retrieving <B1, B0, 2> from W => W = { <B4, B1, 2> } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2>,

<B2, B0, 2>, <B1, B0, 2> }

abstract_interpret(<B1, B0, 2>) => push ebx

/*Adds nothing new to the abstract stack graph*/

return(null)

24. Retrieving <B4, B1, 2> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

57

 77

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>,

<C2, B0, 2>, <B2, B0, 2>, <B1, B0, 2>,

<B4, B1, 2> }

abstract_interpret(<B4, B1, 2>) => push esi

return(<B5, B4, 2>)

W = { <B5, B4, 2> }

25. Retrieving <B5, B4, 2> from W => W = { } and

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>,

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>,

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>,

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2>,

<B2, B0, 2>, <B1, B0, 2>, <B4, B1, 2>, <B5, B4, 2> }

abstract_interpret(<B5, B4, 2>) => pop eip

/*Adds nothing new to the abstract stack graph*/

return(null)

At step 25, the work list W is empty. The complete abstract stack graph is

obtained at step 24.

The reason for tracking the num_of_successors information for the elements of W

is that whenever a branch instruction is encountered, there are two possible paths that can

be taken. Information has to be passed along both of these possible paths. In our case, the

2

B4

8

7

B0

E

1

B1 3

B3

4

5

6

B6

57

 78

elements of the work list W are being passed. These elements denote the state of the

abstract stack graph.

From the above example run we see at step 3 there is a branch instruction. At step

4, we have a partial abstract stack graph constructed with wle.ip = B2 and wle.asp = B0

with B0 having a single successor in the abstract stack graph. Now whenever instruction

at B2 is visited again due to a loop, at step 22, we again have the same wle.ip = B2 and

wle.asp = B0 but now with B0 having two successors in the abstract stack graph. As can

be noticed, the state of the graph has been updated and hence it is required that this

updated graph be passed. If we hadn’t introduced the num_of_successors information for

an element, we would have concluded <B2, B0> as already visited and the abstract stack

graph would have been incomplete.

The reason for this is the occurrence of pop in between a loop. Now, at step 4

whenever B0 is pointing toward E, which means B0 is the top of the abstract stack, and

due to the pop instruction at B2, the top of stack would now be E. Hence, at step 22

whenever the instruction at B2 is reached again, the state of the abstract stack graph has

changed wherein B0 now points toward E and B1. Due to the pop at B0, the top of the

abstract stack can now be either E or B1. If this information were not considered (i.e.

num_of_successors) then the abstract stack graph would be incomplete.

Bibliography

[1] "2004-03-30, News Alert, Netsky Climbs to 2nd Worst Malware since 1995,"
http://www.mi2g.com/, Last accessed November 29, 2004.

[2] "Teso, Burneye Elf Encryption Program," https://teso.scene.at, Last accessed
November 29, 2004.

[3] "W32.Cabanas,"
http://securityresponse.symantec.com/avcenter/venc/data/w32.cabanas.html, Last
accessed November 29, 2004.

[4] "W32/Chiton," http://www.virusbtn.com/resources/viruses/indepth/gemini.xml, Last
accessed November 29, 2004.

[5] "W32/Gemini," http://www.virusbtn.com/resources/viruses/indepth/gemini.xml, Last
accessed November 29, 2004.

[6] "W95.Bistro,"
http://securityresponse.symantec.com/avcenter/venc/data/w95.bistro.html, Last accessed
November 29, 2004.

[7] "Z0mbie," http://z0mbie.host.sk, Last accessed November 29, 2004.

[8] G. Balakrishnan and T. Reps, "Analyzing Memory Accesses in X86 Executables," in
International Conference on Compiler Construction (CC) 2004, Barcelona, Spain, 2004.

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang,
"On the (Im)Possibility of Obfuscating Programs," in Advances in Cryptology
(CRYPTO'01), Santa Barbara, CA, 2001.

[10] S. Cho, "Win32 Disassembler," http://www.geocities.com/~sangcho/disasm.html,
Last accessed November 29, 2004.

[11] M. Christodrescu and S. Jha, "Static Analysis of Executables to Detect Malicious
Patterns," in The 12th USENIX Security Symposium (Security '03), Washington, DC,
2003.

[12] C. Cifuentes and M. V. Emmerik, "Uqbt: Adaptable Binary Translation at Low
Cost," in IEEE Computer org, 2000.

[13] C. Cifuentes and K. J. Gough, "Decompilation of Binary Programs," Software
Practice and Experience, vol. 25, pp. 811 - 829, 1995.

 80

[14] C. Collberg and C. Thomborson, "Watermarking, Tamper-Proofing, and
Obfuscation - Tools for Software Protection," IEEE Transactions on Software
Engineering, vol. 28, pp. 735-746, 2002.

[15] C. Collberg, C. Thomborson, and D. Low, "A Taxonomy of Obfuscating
Transformations," Department of Computer Science, The University of Auckland, 148,
July 1997.

[16] R. N. Horspool and N. Marovac, "An Approach to the Problem of Detranslation of
Computer Programs," The Computer Journal, vol. 23, pp. 223-229, 1979.

[17] N. D. Jones and F. Nielson, "Abstract Interpretation: A Semantics-Based Tool for
Program Analysis," in Handbook of Logic in Computer Science: Semantic Modelling,
vol. 4, S. Abramsky, et al., Eds. Oxford, UK: Oxford University Press, 1995, pp. 527-
636.

[18] C. Kruegel, W. Robertson, F. Valeur and G. Vigna, "Static Disassembly of
Obfuscated Binaries," in USENIX Secuirty 2004, San Diego, 2004.

[19] A. Lakhotia and P. K. Singh, "Challenges in Getting Formal with Viruses," Virus
Bulletin, 2003, http://www.virusbtn.com/magazine/archives/200309/formal.xml.

[20] C. Linn and S. Debray, "Obfuscation of Executable Code to Improve Resistance to
Static Disassembly," in Proceedings of the 10th ACM Conference on Computer and
Communication Security 2003, Washington, DC 2003.

[21] N. Mehta and S. Clowes, "A Security Microcosm Attacking and Defending Shiva,"
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-asia-03/bh-asia-03-
clowes.pdf, Last accessed June 30 2004.

[22] M. Mohammed, Zeroing in on Metamorphic Viruses, The Center for Advanced
Computer Studies, University of Louisiana at Lafayette, M.S. Thesis, 2003.

[23] A. S. Murawski, "About the Undecidability of Program Equivalence in Finitary
Languages with State," in ACM Transactions on Computational Logic, 2004.

[24] R. Muth, S. Debray and S. Watterson, "Alto: A Link-Time Optimizer for Compaq
Alpha," Software - Practice and Experience, vol. 31, pp. 67-101, 2001.

[25] B. Schwarz, S. Debray, and G. Andrews, "Disassembly of Executable Code
Revisited," in Ninth Working Conference on Reverse Engineering (WCRE'02),
Richmond, VA, 2002.

[26] R. L. Sites, A. Chernoff, M. B. Kerk, M. P. Marks and S. G. Robinson, "Binary
Translation," Communications of the ACM, vol. 36, pp. 69-81, 1993.

 81

[27] Symantec, "Understanding Heuristics: Symantec's Bloodhound Technology,"
http://www.symantec.com/avcenter/reference/heuristc.pdf, Last accessed July 1, 2004.

[28] P. Szor, "Coping with Cabanas," Virus Bulletin, pp. 10-12, 1997.

[29] P. Szor, "Hps," Virus Bulletin, 1998, http://www.peterszor.com/hps.pdf.

[30] P. Szor, "Attacks on Win32 - Part Ii," in Virus Bulletin Conference, Orlando, 2000.

[31] P. Szor and P. Ferrie, "Hunting for Metamorphic," in Virus Bulletin Conference,
Prague, 2001.

[32] L. Vinciguerra, et al., "An Experimentation Framework for Evaluating Disassembly
and Decompilation Tools for C++ and Java," in 10th Working Conference on Reverse
Engineering, 2003.

[33] G. Wroblewski, General Method of Program Code Obfuscation, Institute of
Engineering Cybernetics, Wroclaw University of Technology, Ph.D. Thesis, 2002.

[34] L. Zeltser, "Reverse Engineering Malware," http://www.zeltser.com/sans/gcih-
practical/revmalw.html, Last accessed June 30 2004.

Abstract

A common approach to detecting malicious code is to examine the calls a binary makes

to the operating system. Knowing this, malicious code programmers hide the calls using a

variety of obfuscations. For instance, the call addr instruction may be replaced by two

push instructions and a return instruction, the first push pushes the address of instruction

after the return instruction, and the second push pushes the address addr. The code may

be further obfuscated by spreading the three instructions and by splitting each instruction

into multiple instructions. This work presents a method to statically detect calls in binary

code. The main idea is to use abstract interpretation to detect where the normal call-ret

calling convention is violated. These violations can be detected by what is called an

abstract stack graph. An abstract stack graph is a concise representation of all potential

abstract stacks at every point in a program. An abstract stack is used to associate each

element in the stack to the instruction that pushes the element. A linear algorithm is

defined for calculating the abstract stack graph. Methods for using the abstract stack

graph are shown to detect ten different obfuscations. The technique is demonstrated by

implementing a prototype tool called DOCs using several test programs and a

metamorphic virus called w32.evol.

Biographical Sketch

Mr. Eric Uday Kumar was born in Hyderabad, India on September 24, 1979. He

graduated with a bachelor’s degree with distinction in Computer Science in 2002 from

the B. V. Raju Institute of Technology, (affiliated to Jawaharlal Nehru Technological

University), Andhra Pradesh, India. He entered the master’s program in Computer

Science at the University of Louisiana at Lafayette in Fall 2002. Following completion of

this degree, he will pursue a Ph.D. in the area of computer security.

