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1 Introduction 

1.1 Motivation 

The highly interconnected world of computers ever poses the threat of malicious 

code. Such code can break into hosts using a variety of methods such as attacking known 

software flaws and vulnerabilities in regular programs. Hence detecting the presence of 

such malicious code on a given host is a problem of high concern. Whenever such hostile 

programs succeed in spreading over the internet, there is a significant loss to businesses. 

For example, mi2g website [1] quotes that within one quarter the NetSky worm and all 

it’s A - Q variants put together, had already caused between $35.8 billion and $43.8 

billion of estimated economic damages worldwide. The website also quotes that, in 

March, combined loss due to the three worms Beagle, MyDoom, and NetSky crossed the 

$100 billion mark within a week. 

Programmers obfuscate their code with the intent of making it difficult to discern 

information from the code. Programs may be obfuscated to protect intellectual property 

and to increase security of code (by making it difficult for others to identify 

vulnerabilities) [14], [20], [33]. Programs may also be obfuscated to hide malicious 

behavior and to evade detection by anti-virus scanners [11], [22], [31]. Most malicious 

code writers add or rearrange code in malicious programs to make their detection 

difficult, if not impossible. Recent virus writing trends that employ obfuscating 

transformations to conceal their behavior are the most difficult to detect. These viruses 

are called metamorphic viruses. 
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The primary goal of obfuscation is to increase the effort involved in manually or 

automatically analyzing a program. In the context of anti-virus scanning, the context of 

our study, automated analysis may be performed at the desktop, at quarantine servers in 

an enterprise, or on back-end machines of an anti-virus company’s laboratory [27]. In 

contrast, manual analysis is performed by engineers in Emergency Response Teams of 

anti-virus companies and research laboratories. The goal of obfuscation in malicious 

programs—virus, worms, Trojans, spy wares, backdoors—is to escape detection by 

automated analysis and significantly delay detection by manual analysis.  

A common obfuscation technique that is found in viruses, henceforth used 

generically to mean malicious programs, is that they obfuscate call instructions [31]. For 

instance, the call addr instruction may be replaced by two push instructions and a ret 

instruction, the first push pushing the address of instruction after the ret instruction, the 

second push pushing the address addr. The code may be further obfuscated by spreading 

the three instructions and by further splitting each instruction into multiple instructions. 

Obfuscation of call instructions breaks most static analysis based methods for 

detecting a virus since these methods depend on recognizing call instructions to (a) 

identify the kernel functions used by the program and (b) to identify procedures in the 

code. The obfuscation also takes away important cues that are used during manual 

analysis. We are then left only with dynamic analysis, i.e., running a suspect program in 

an emulator and observing the kernel calls it makes. Such analysis can easily be thwarted 

by what is termed as “picky” virus—one that does not always execute its malicious 

payload. In addition dynamic analyzers must use some heuristic to determine when to 

stop analyzing a program, for it may not terminate without user input. Virus writers can 
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bypass stopping heuristics by introducing a delay loop that simply wastes cycles. It is 

therefore important to detect obfuscated calls both for static and dynamic analysis of 

viruses. 

1.2 Research Objectives 

This aim of this research is to propose and implement a method to statically detect 

obfuscated calls when the obfuscation is performed by using other stack (-related) 

instructions, such as push and pop, ret, or instructions that can statically be mapped to 

such stack operations. 

1.3 Research Contributions  

The main contribution of this thesis is a novel approach towards detecting 

obfuscated calls when the obfuscation is performed by using stack related instructions. 

The method uses abstract interpretation [17] wherein the stack instructions are interpreted 

to operate on an abstract stack. The infinite set of abstract stacks resulting from all 

possible executions of a program, a la, static analysis, is concisely represented in an 

abstract stack graph. A method for constructing the abstract stack graph has also been 

presented. Application exploration via analysis of malicious programs has been done to 

bring forth the merits and limitations of this work.  

1.4 Impact of the Research 

The proposed detection technique may be used to improve manual and automated 

analysis tools, thereby raising the level of difficulty for a virus writer. The method can 

help by undoing some common obfuscation techniques. However, it is not claimed that 
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the method can detect all stack related obfuscations. Indeed, writing a program that 

detects all obfuscations is not achievable for the general problem maps to detecting 

program equivalence, which is undecidable [23]. The method presented here is a partial 

solution. It addresses only the evaluation of operations that can be mapped to stack push 

and pop instructions, where each is performed as a unit operation. It does not model 

situation where the push and pop instructions themselves may be decomposed into 

multiple instructions, such as one to move the stack pointer and one to move data in/out 

of the stack. Further, the solution does not model other memory areas, the content of the 

stack, and the content of registers. This deficiency may be overcome by combining this 

stack model with the Balakrishnan and Reps’ method for analyzing the content of 

memory locations [8]. 

1.5  Organization of Thesis 

Chapter 2 presents background work in this area.  Chapter 3 presents the notion of an 

abstract stack and the abstract stack graph. Chapter 4 presents the algorithm to construct 

an abstract stack graph. Chapter 5 describes how the abstract stack graph may be used to 

detect various obfuscations. Chapter 6 discusses implementation and results. Chapter 7 

presents conclusions and future work to develop a complete solution for detecting 

obfuscations. Appendix A describes the analysis of a virus called w32.evol. Appendix B 

presents the pseudo code for constructing an abstract stack graph along with an example 

followed by bibliography.



2 Background 

This chapter outlines the process of static analysis of binary executables. It 

describes the application of obfuscating transformations with intent to thwart disassembly 

of binary executables and hide malicious code. 

2.1 Static Analysis of Binary Code 

Static Analysis is the automatic derivation of static properties that hold on every 

execution leading to a program point. It can be thought of as interpreting the program 

over an “abstract domain” and executing it over a larger set of execution paths. This helps 

to automatically obtain information about all executions of the program without really 

having to execute it for all possible inputs. Static flow analysis propagates estimates of 

actual values and these estimates are always conservative to uphold correctness. Since 

static flow analysis considers all (syntactic) program paths (both directions at every 

branch) it can be conservative or precise, but not both. It can be conservative in the sense 

that it might include some non-executable paths too. By doing this we can only obtain 

approximate results. Such approximation methods are particular cases of abstract 

interpretations of program semantics [17]. 

To extract meaningful information from a binary it is first disassembled, i.e., 

translated to assembly instructions [10], [18], [20], [25]. The assembler code is usually 

analyzed further, often following steps similar to those performed for decompilation [13] 

(see Vinciguerra et al. [32] for a survey of disassembly and decompilation techniques). 

Commercial antivirus groups are known to use disassemblers frequently to analyze the 

behavior of suspect programs [34]. Lakhotia and Singh [19] proposed a staged 
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architecture for binary malware analysis. This architecture is shown in Fig. 2-1. 

Disassembly is the first step, and it generally must occur before subsequent analysis can 

take place. Current disassemblers are used for different purposes such as rewriting 

binaries for efficiency [24], portability [12], [26], program maintenance when source 

code is not available and for detecting malicious programs. Lakhotia and Singh [19] 

discuss how a virus writer could attack the various stages in the decompilation of binaries 

by taking advantage of the limitation of  static analysis. Indeed, Linn et al. [20] present 

code obfuscation techniques for disrupting the disassembly phase, making it difficult for 

static analysis to even get started. 

 

 

Fig. 2-1. Stages in static analysis of binary[19]. 

 

2.2 Code Obfuscation to Thwart Disassembly 

A number of approaches have been proposed to make the reverse-engineering 

process harder [14], [20]. These techniques are based on transformations that preserve the 

program’s semantics and functionality and, at the same time, make it more difficult for a 

reverse-engineer to extract and comprehend the program’s higher-level structures. The 

process of applying one or more of these transformations to an existing program is called 

obfuscation. 
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Techniques used by code-obfuscators [21] for the purpose of protecting 

intellectual property can be used by malicious code writers. These writers also rely on 

many of the existing virus creation tools [24] and obfuscation techniques, such as junk 

byte insertion, statement reordering, call conversions, and opaque predicates, to hinder 

the disassembly process of the current algorithms [18], [20]. 

A major challenge in correctly disassembling malicious code is due to 

implications of the von Neumann architecture, where code and data are indistinguishable 

[16]. The problem is created by self-modifying code, where code is treated as data, and 

what was once data becomes executable. A disassembly algorithm could fail, either by 

incorrectly interpreting some instruction as data (false negative) or by incorrectly 

interpreting some data as an instruction (false positive). 

Fig. 2-2 shows code of a variant of mass mailing worm Beagle.h. Column 1 

shows the output of the open source debugger Ollydbg, while column 2 shows the desired 

disassembly. This is IA32 code which does not have fixed length instructions. At location 

0040A001, opcode E8 is a 5 byte instruction code. The linear sweep algorithm for 

disassembly disassembles instructions byte-by-byte without regard to the control flow of 

a program. Due to this the algorithm assumes that the next instruction starts at 0040A006 

and disassembles from there, interpreting the data as a 5 byte call instruction (CALL 

E845648E,) and so the next disassembled instruction starts at 0040A006 which is, in the 

correct disassembly, a junk byte. The junk byte is a code for a 5-byte instruction, which 

throws off disassembly because it assumes that the next instruction starts at 0040A00A 

when in reality it is supposed to start at 0040A007. Since E8 is an opcode for call 

instruction, it looks like a legitimate instruction starting at 0040A006. The virus writer 
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likely chose E8 since he has to insert an opcode that starts a valid instruction else linear 

sweep can raise alarms. 

Malicious code writers intentionally use a toolkit of similar tricks to try to defeat 

static disassembly. They use tricks like jumping into the middle of what appears to be a 

valid instruction or use computed jumps make it difficult to determine jump targets 

statically. Apart from junk byte insertion, some other obfuscation techniques as proposed 

by Linn et al [20] are: 

� Call conversion: This obfuscation technique changes the return address of a call 

instruction. The program does not return to the instruction just after the call, 

rather it is manipulated to return at a predefined offset from the calling location. 

The bytes between the offset and location just after call can be filled by junk bytes 

to confuse a disassembler. 

�  Opaque predicates: In this technique the obfuscators can change all the 

unconditional jumps and calls to conditional jumps and calls. The branch that is 

always taken is known. Malicious code writers insert junk bytes at the location of 

branch that is never taken. 

Location Column 1 (Disassembly Ollydbg) Column 2 (Actual Disassembly) 

 Hex             Disassembly  Hex           Disassembly 

0040A000 60              PUSHAD 60            PUSHAD 

0040A001 E8 01000000     CALL 0040A007 E8 01000000   CALL 0040A007 

…   

0040A006 E8 83C404E8     CALL E845648E  

0040A007  83C4 04       ADD ESP,4 

…   

0040A00A  E8 01000000   CALL 0040A010 

0040A00B 0100         ADD DWORD PTR DS:[EAX],EAX  

Fig. 2-2. Obfuscation by junk byte insertion (Beagle.H). 
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2.3 Obfuscation Game 

Malware analysis can be described as an obfuscation-deobfuscation game 

between the malicious code writers and researches working on malicious code detection. 

The obfuscations are such that there is considerable change in the byte sequence of the 

executable obtained but does not change the program behavior i.e. the actual sequence of 

instructions being executed is retained. The aim of the malicious code writer is to fool the 

antivirus tool in believing that it is dealing with a safe executable. As malicious code 

writers try to induce newer obfuscating techniques to fool antivirus tools, the malicious 

code detectors hectically race to deobfuscate them. 

Christodrescu et al. [11] presents a better understanding of these obfuscating 

transformations being employed by malicious code writers. Christodrescu tested the 

resilience of three popular commercial virus scanners against code obfuscation attacks. 

His results showed that these virus scanners could be subverted by very simple 

obfuscating transformations. 

Code obfuscation techniques are increasingly being applied in enhancing software 

security [14], [20], [33] as well as in malicious code writing to evade detection [11], [22], 

[31]. Though the intentions of these two activities differ, there is no denying the fact that 

applications of these techniques toward prevention of malicious reverse engineering can 

be reused by virus writers to thwart detection of their malicious code, and vice versa.  
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2.3.1 Simple Code – Level Techniques 

Collberg et al. [15] presents taxonomy of obfuscating transformations where a 

detailed theoretical description of various possible obfuscating transformations is 

presented. 

Dead Code Insertion: Inserting code fragments that do not modify program 

behavior such as semantic nop insertion, adding zero to a register or an equivalent 

operation (such as xor eax, eax), jump/branch to the next instruction, instructions that 

modify dead registers, sequence of instructions that modify the program state, only to 

restore it back immediately such as: add eax, 1 followed by sub eax, 1, are all examples 

of dead code insertion. 

Register Renaming: This transformation replaces usage of one register with 

another in a specific live range. This technique exchanges register names and has no 

other effect on program behavior. 

Instruction Reordering: The instructions are shuffled so that the order in the 

binary image is different from the execution order, or from the order of instructions 

assumed in the signature used by the antivirus software. To achieve the first variation, 

instructions are randomly reordered and unconditional branches or jump instructions are 

inserted to restore the original control flow. The second variation swaps the instructions if 

they are not interdependent to randomize the instruction stream. 

Instruction Substitution: This obfuscation technique uses a dictionary of 

equivalent instruction sequences to replace one instruction sequence with another. This 

poses a tough challenge for automatic detection of malicious code. The Intel instruction 

set is rich and often provides several ways of performing an operation. For example, a 
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memory-based stack can be accessed both as a stack using dedicated instructions and as a 

memory area using standard memory operations. Hence, the Intel assembly language 

provides ample opportunities for instruction substitution. To handle obfuscation based on 

instruction substitution, an analysis tool must maintain a dictionary of equivalent 

instruction sequences, similar to the dictionary used to generate them. This is not a 

comprehensive solution, but it can cope with the common cases. For example: an 

instruction such as test esi, esi can be replaced by or esi, esi; an instruction xor eax, eax 

sets eax to zero and can be replaced by sub eax, eax. 

Metamorphic viruses apply the above described obfuscation techniques to evade 

detection by anti-virus software. The common metamorphic transformations applied are 

dead code insertion, register renaming, code transposition (statement reordering or break 

& join transformations) and reshaping of expressions [22]. These transformations give 

birth to a new variant of the metamorphic virus. There exist obfuscation engines that may 

be linked to a program to create a metamorphic virus, a virus that creates a transformed 

copy of itself before propagation.  The transformations are such that they change the byte 

sequence of the executable but do not disrupt the functionality of the program. Two such 

engines are Mistfall (by z0mbie), which is a library for binary obfuscation [7], and 

Burneye (by TESO), which is a Linux binary encapsulation tool [2]. Other obfuscations 

exits, in particular call obfuscation. 

2.3.2 Call Obfuscation 

Recent virus writing trends heavily depend on making calls to kernel functions to 

infect, conceal and propagate [3], [4], [5], [6] [28], [29]. Calls being made to kernel 

functions may be used to determine whether the binary is malicious. For example 
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Symantec’s Bloodhound technology uses classification algorithms to compare the set of 

calls being made by any program against a database of calls made by known viruses and 

clean programs [27]. Being aware of this approach, rogue programmers make such calls 

without using the call instruction [31]. For instance, the call addr instruction may be 

replaced by two push instructions and a ret instruction, the first push pushing the address 

of instruction after the ret instruction, the second push pushing the address addr. The ret 

instruction transfers control to addr. Effectively a call is being made though the call 

instruction itself is not being used. This is instruction substitution obfuscation as 

described above. The code may be further obfuscated by splitting each instruction into 

multiple instructions. Obfuscation of call instructions breaks most static analysis based 

methods for detecting a virus since these methods depend on recognizing call instructions 

to (a) identify the kernel functions used by the program and (b) to identify procedures in 

the code.  

2.4 Deobfuscation Game 

Metamorphic viruses are particularly insidious in obfuscating their code to evade 

detection. Examples of 32-bit Windows metamorphic viruses are Win32/Regswap 

(created by Vecna in December 1998), Win32/Apparation, Win95/Zmorph (discovered in 

January 2000), Win95/Zperm (appeared in June 2000), and Win32/Evol (appeared in July 

2000). Unlike polymorphic viruses, that create new decryptions using different 

encryption methods to encrypt the virus body, metamorphic viruses do not have a 

decryptor, nor a constant virus body. However, they are able to create new generations 

each time by applying obfuscating transformations to their code.  They do not use a 

constant data area filled with string constants but have one single code body that carries 
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data as code. Hidden within the code are the various system call function names and 

parameters. The data would other wise have appeared in the data area. Most polymorphic 

viruses decrypt themselves to a single virus body in memory whereas metamorphic 

viruses do not. 

The classic virus-detection techniques look for the presence of a fixed virus-

specific sequence of instructions (called a virus signature) inside a program. If the 

signature is found, it is considered highly probable that the program is infected. This 

detection approach is effective when the virus code does not change significantly over 

time and the signatures chosen do not lead to false positives or too many false negatives. 

The signature is ideally chosen common to virus variants without increasing the false 

positive rates. A problem arises when virus writers obfuscate the virus code so that the 

fixed signatures used by the antivirus software cannot detect these obfuscated viruses 

anymore. To detect these obfuscated viruses, the virus scanners must first undo the 

obfuscation transformation used by the virus writers. A typical example is the 

metamorphic virus that modifies its own code [31]. Metamorphic viruses are particularly 

insidious because two copies of the virus do not have the same signature. Hence, they 

escape signature based anti-virus scanners [11]. Such viruses can sometimes be detected 

if the operating system calls made by the program can be determined. For example 

Symantec’s Bloodhound technology uses classification algorithms to compare the set 

against a database of calls made by known viruses and clean programs [27]. 

2.4.1 Detecting Obfuscations 

Existing static analysis can effectively detect simple obfuscations, like nop-

insertion, by using regular expressions instead of fixed signatures [18]. The signature 
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must allow for any number of nops at instruction boundaries. Most modern antivirus 

software use regular expressions as virus signatures. Some others use heuristic analysis 

and emulation techniques. As virus writers employ more complex obfuscation 

techniques, these malicious code detection techniques are bound to fail. There is a level 

of metamorphosis beyond which no reasonable number of strings can be used to detect 

the code that it contains. What is needed is a deeper inspection of malicious code based 

upon more sophisticated static analysis techniques. This appears to require the use of 

structures that are closer to the semantics of the code rather than mere syntactic 

techniques such as regular expression matching. 

The antivirus technique usually applied to detect such kind of viruses is by 

emulating them using certain heuristics. Virus writers constantly come up with ways to 

foil the emulation techniques and make the analysis procedure difficult, if not impossible. 

Lakhotia and Singh [19] observe that though metamorphic viruses pose a serious 

challenge to anti-virus technologies, these virus writers are confronted with the same 

theoretical limitations and have to address some of the same challenges that the anti-virus 

technologies face. A recent result by Barak et al. [9]  proves that in general program 

obfuscation is impossible. This in turn says that a computationally bounded adversary 

will not be able to obfuscate a virus to completely hide its malicious behavior. This is 

likely to have an effect on the pace at which new metamorphic transformations are 

introduced. 

Indeed, research results in detecting obfuscated viruses are beginning to emerge. 

Christodrescu and Jha [11] use abstract patterns to detect malicious patterns in 

executables. Mohammed [22] has developed a technique to undo certain obfuscation 
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transformations, such as statement reordering, variable renaming, and expression 

reshaping. 

The challenge, however, is in detecting the operating system calls made by a 

program. The Win32 standard PE and ELF format for binaries include mechanism to 

inform the linker about the libraries used by a program. But there is no requirement that 

this information be included in the file headers. In Windows, the entry point address of 

various system functions may be computed by a program at runtime using a kernel32 

function called GetProcAddress( ). Win32.Evol virus uses precisely this method for 

getting addresses of kernel functions and further obfuscates the method it uses to call 

these functions. 

2.4.2 Using System Call Information for Detection 

Many recent viruses heavily depend on calls to system libraries or kernel 

functions to conceal, infect and propagate. The Win95/Kala.7620 was one of the first 

viruses to use a system call to transfer control to the virus code (in this case, its 

decryptor) [30]. Modern anti-virus tools are to have system call emulation to detect these. 

To make these system calls, a popular technique adopted by most virus writers (as 

observed in recent binary viruses when disassembled and analyzed), targeting the 

Windows operating system, is to locate the internal kernel32.dll entry point and call 

kernel32 functions by ordinal. This is done by locating kernel32.dll’s PE header in 

memory and using the header info to locate kernel32’s export section. This export section 

is then used to locate the export info for GetModuleHandle( ) and GetProcAddress( ), to 

extract the correct entry point for these two functions and then use these functions to call 

any and all needed exported functions from any valid Windows module. 
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The achieve this, virus writers exploit internal facts of the underlying operating 

system such as: loading of kernel32.dll at the same starting address regardless of the 

version, revision etc.; DLL files are of the PE format and part of the PE format is an 

export table that the operating system uses to resolve what functions are in a module, 

where they are and how to call them; there are functions to call functions such as the 

GetModuleHandle( ) and GetProcAddress( ) class of functions that allow the exported 

entry point for any function in any module to be located. The strategy used by recent 

virus writers would be to locate kernel32.dll’s PE header in memory and use the header 

info to locate kernel32’s export section [30]. 

Normally, an API import happens by using the name of the API such as 

FindFirstFileA( ), FindNextFileA( ), GetSystemDirectoryA( ) OpenFile( ), ReadFile( ), 

WriteFile( ), GetFileAttributesA( ), SetFileAttributesA( ), etc. used by many first 

generation viruses. A set of suspicious system call name strings will appear in non-

encrypted Win32 viruses. This can make the disassembly of the virus much easier and 

potentially useful for heuristic scanning. For example a portion of code from the virus 

Win95.z0mbie reads: 

1. call _GetCommandLineA 

2. SW_NORMAL equ 1 

3. push SW_NORMAL 

4. push eax 

5. call _WinExec 
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As can be seen from this listing, Win95.z0mbie uses the address at line 1 to 

determine its command line path and then loads it once again through the WinExec 

function (this is essentially spawning a copy of self). 

A trick used to thwart disassembly and heuristic match appears in various modern 

viruses is to hide the use of system call name strings to access particular kernel functions 

from the Win32 set. For example, the Win32/Dengue virus does not use system call name 

strings to access particular kernel functions [30]. Modern viruses use a checksum list of 

the actual strings. The checksums are recalculated via the export address table of 

kernel32.dll and the address of the kernel function is found. Hence, the absence of system 

call name strings should not be inferred as non-existence of any system calls in the 

program. 

2.4.3 Obfuscating System Calls to Evade Detection 

Some antivirus tools can detect malicious code by identifying the calls being 

made to kernel functions. To evade this detection process, some metamorphic viruses 

obfuscate these calls. The goal of the obfuscator remains to obfuscate the call instruction 

in such a way so that the antivirus software is unable to detect that a system call is indeed 

being made. The obfuscation is not just limited to the call being made, but in most cases 

is also extended to the parameters being passed to the call. The techniques used by 

malicious code writers to implement this are centered on instruction substitution. 

2.4.4 Call Obfuscation in Win32.Evol 

Win32.Evol is a virus that hides constant data as code and modifies it from 

generation to generation. It builds the constant data on the stack from variable data, 
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before it passes them to the actual function or API that needs them. An antivirus tool that 

looks at the address of the target of the call instruction to determine if a system library 

function is being called will fail in this case. Instead of using the call instruction, the 

virus first pushes the address of the function to be called on the stack, and then later uses 

the ret instruction to make the call. Analyzers looking for the explicit call will miss it. 

Instead of a push the virus may use a mov that modifies the stack pointer to point 

to the address of the Windows API function to be called and ret transfers control to the 

function. Some of the Win32 API functions that the virus makes use of are: 

CreateFileA( ), CreateThread( ), FindFirstFileA( ), FindNextFileA( ), 

GetCommandLineA( ), GetDriveTypeA( ), GetWindowsDirectoryA( ), LoadLibraryA( ). 

The address of the API functions is looked up form the entry points or addresses within 

kernel32.dll using another Win32 API function called GetProcAddress( ). This function 

requires as parameters the name of the Win32 API function to be called and the kernel32 

module handle which is the kernel32.dll base address. These are passed in an obfuscated 

way as parameters to GetProcAddress( ) by constructing the name of the string of the 

function being called in a piece meal fashion by pushing several two byte values on the 

stack. The kernel32 module handle is placed above a string marker ‘eVOL’ that it 

previously pushed on the stack. 

The obfuscation lies in the call to GetProcAddress( ) as well as in the call to each 

of the other kernel functions. The virus searches for the GetProcAddress( ) API entry-

point using an 8-byte string. This string is calculated as the virus generates new 

mutations. The actual string is placed on the stack only. Therefore, the virus cannot be 

detected using any search strings with wildcards once the virus mutates itself to a few 
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generations. To detect this call the stack data must be analyzed. The virus calls a routine 

that searches through the stack for a special string marker, ‘eVOL’. The address of the 

function GetProcAddress( ) is placed at some constant distance from this string marker. It 

retrieves this address, pushes it on the stack and then executes a ret instruction which 

transfers control to GetProcAddress( ). GetProcAddress( ), returns the address of the 

kernel function that needs to be called in the register eax. This value is pushed on the 

stack and control is transferred to this kernel function by executing a ret instruction. A 

detailed analysis of the virus code can be found in Appendix A.



3 Abstract Stack Graph 

Detection of call obfuscation in malicious code requires the ability to statically 

monitor the stack. In this chapter we discuss the notion of an abstract stack which is an 

abstraction of the program’s stack as it would appear while executing. The chapter also 

introduces a concise way of representing all possible abstract stacks at each program 

point; this compact representation is called an abstract stack graph. Examples are used to 

clarify the discussion. 

3.1 The Abstract Stack 

An abstract stack is an abstraction of the actual/concrete stack that might be 

observed on a running program. The actual stack of a program keeps actual data values 

that are pushed and popped in a LIFO (Last In First Out) sequence. The abstract stack 

instead stores the addresses of the instructions that push values in a LIFO sequence. For 

example, consider Fig. 3-1. Each instruction in the sample program is marked with its 

address from L1 through L4. The actual stack and the abstract stack, after execution of 

the instruction at address L4, are as shown in Fig. 3-1. 

 

 

 

 

 

 

Sample Program Concrete Stack  Abstract Stack 

L1: push eax … … 

L2: push ebx … … 

L3: pop edx Eax L1 

L4: push ecx Ecx L4 

 Top of stack  Top of stack 

Fig. 3-1. Concrete and abstract stacks. 
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 Initially the addresses L1 and L2 are pushed onto the abstract stack, but due to the 

pop instruction at L3, the address L2 is popped and next L4 is pushed. 

The following example highlights some issues in creating abstract stacks for each 

point in the program. Fig. 3-2 shows a sample program; its control flow graph appears in 

Fig. 3-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E: //entry point 
B0: push eax 
B1: sub   ecx, 1h 
B2: beqz B8 
B3: push ebx 
B4: push ecx 
B5: dec   ecx 
B6: beqz B3 
B7: jmp  B10 
B8: pop  ebx 
B9: push esi 
B10: pop edx 
B11: beq B0 
B12: call abc 

Fig. 3-2. Sample program. 

 E: // entry 

B3: push ebx B8: pop ebx 

B12: call abc

B4: push ecx 
B5: dec ecx 
B6: beqz B3 
B7: jmp B10

B0: push eax 
B1: sub ecx, 1h 
B2: beqz B8 

1 

4 

3 7 

6 

2 

B9: push esi 8 

B10:  pop edx 
B11: beq B0

Fig. 3-3. Control flow graph for sample program. 
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Each block in the control flow graph may contain only a single push, pop or call 

instruction or may additionally contain a control transfer instruction. The program points 

are numbered. Fig. 3-4 shows a few abstract stacks that are possible at four program 

points. For instance, the third abstract stack at program point 2 is the result of the 

following execution trace: 1  2  3  4  3  4  5  2. The abstract stack shown at 

program point 4 results from the trace 1  2  3  4  3  4  5  2  3  4. The 

execution trace 1  2  3  4  5  2  3  4  3  5  2  7  8 yields the 

abstract stack at program point 8. 
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E
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Fig. 3-4. Possible abstract stacks at some program points. 
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Our interest is in finding all possible abstract stacks at each program point for all 

execution traces. Since there may be multiple execution traces from the entry node to any 

program point, there may be multiple abstract stacks at each program point. This is 

enumerated in the example by the multiple traces for program points 2 and 6 in Fig. 3-4. 

In fact, program points 3 and 4 may have infinite number of abstract stacks. This is 

because there is a loop between program points 3 and 4 and the loop contains unbalanced 

push, i.e., a push that is not matched with a pop. A more efficient way to handle all 

possible abstract stacks at each program point is required. 

3.2 The Abstract Stack Graph 

An abstract stack graph is a concise representation of all, potentially infinite 

number of, abstract stacks at all points in the program. Fig. 3-5 shows the abstract stack 

graph for the example program in Fig. 3-2. A path (sequence of nodes beginning form the 

abstract stack top towards the bottom) in the graph represents a specific abstract stack. 

 

 

 

 

 

 

 

 

 

B3

B12 B9

B0

E
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4 B4

Fig. 3-5. Abstract stack graph for sample program. 
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4 The ASG Domain  

As discussed in the previous chapter, an abstract stack graph is a data structure to 

efficiently represent all possible abstract stacks at each program point. In abstract 

interpretation one needs to define a domain and evaluation function. These are defined in 

this chapter and an O(n) algorithm for constructing an abstract stack graph. 

4.1 Defining the ASG Domain 

Let ADDR denote a set of addresses. An abstract stack graph is a directed graph 

represented by the 3-tuple <N, AE, ASPR> defined as follows: 

N ⊆ ADDR is a set of nodes. An address n ∈ N implies the instruction at address n 

performs a push operation. Our convention is to show nodes as rectangular boxes in 

diagrams. 

AE ⊆ ADDR × ADDR is a set of edges. An edge <n, m> ∈ AE denotes that there 

is possible execution trace in which the instruction at address n may push a value on top 

of a value pushed by the instruction at address m.  

ASPR ⊆ ADDR × ADDR captures the set of abstract stack pointers (stack tops) for 

each statement. A pair <x, n> ∈ ASPR means that program point x receives the abstract 

stack resulting from the value pushed by instruction n at the top. We show this 

diagrammatically by annotating each node n with the address x in circle, such that <x, n> 

∈ AE. This relation may be read as: n is the top of stack at program point x. It is also 

stated as: the top of stack n is associated with the program point x. 
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The domain INST is the abstract syntax domain, representing the set of 

instructions. Each instruction is annotated with its address in the program. Thus, 

[ m: call addr ] is the abstract interpretation of the concrete instruction ‘call addr’ at 

address m. 

The domain ASG is the domain of abstract stack graphs. An element of ASG is a 

three-tuple <N, AE, ASP>, where N and AE have the same meaning as in the definition of 

abstract stack graph. However, the set ASP is not the same as ASPR. ASP ⊆ ADDR is the 

set of stack tops. ASP is a projection of ASPR. 

A path in ASG beginning at some stack top, say t, and ending at the entry point E 

is associated with every abstract stack that can occur at the program points associated 

with t. A path p in ASG is represented as n1| n2 | n3 | .. | nj such that <ni → ni+1> ∈ AE. p is 

mapped by a function Ψ to an abstract stack with the last-in element n1, and the first-in 

element nj. 

To be concise in Fig. 3-3 the number of each block in the CFG, and not the 

address of instructions in the block, are used to annotate the CFG nodes.  Here an 

instruction performing the push operation is always the first instruction in the block, and 

a block contains either an instruction that performs a push operation or an instruction that 

performs a pop operation, but not both. Thus, in Fig. 3-3, all points in a block receive the 

same top of stack. In Fig. 3-5, B3 is an abstract node which is the address of the 

instruction push ebx and is associated with the set of program points P = {3, 5, 7}. 

Program points in P receive abstract stacks with top B3, i.e. the abstract stack pointer asp 

= B3. Two possible abstract stacks, when traversed from asp = B3 are, B3|B0|E and 

B3|B4|B3|B0|E. 



 26

4.2 Constructing an Abstract Stack Graph 

Constructing an abstract stack graph involves defining an evaluation function that 

provides the interpretation of each assembly instruction in abstract terms. A set of 

abstract operations over the ASG domain needs to be defined first. The following sections 

explain the evaluation function built from these abstract operations. 

4.2.1 Evaluation Function 

Fig. 4-1 presents an evaluation function ℰ for constructing an abstract stack 

graph. It is defined piecewise as a set of rewrite rules or equations. The evaluation 

function and the abstract operations depend on the following primitive operators; PRIM 

next: ADDR → ADDR, returns the address of the instruction executed after the 

instruction at the parameter. 

inst: ADDR → INST, returns the instruction at the address. 

isvalidcall: ADDR → Boolean, returns true iff the instruction at the address is a 

call instruction. 

The evaluation function ℰ takes in two parameters of type INST and ASG and 

outputs an element of ASG. This is denoted by ℰ: INST →  ASG →  ASG. For example, 

ℰ[ m: inst ] asg = (N, AE, ASP), denotes the evaluation of the instruction inst ∈ INST with 

address m ∈ ADDR being the execution address and asg ∈ ASG being the execution 

context. 
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Now we can, loosely speaking, say that ASP and ASPR are related as follows: Let 

ℰ [ m: inst ] asg = (N, AE, ASP), then (m, a) ∈ ASPR where a ∈ ASP. The evaluation 

function determines what operations in PRIM are to be applied, and the next instruction 

to be interpreted. The next section defines these abstract operations. 

 

ℰ: INST →  ASG →  ASG 
 
ℰ [ m: push ] asg =  
 ℰ next(m) ( abspush m asg ) 

 
ℰ [ m: call addr ] asg =  
 ℰ inst(addr) ( abspush m asg ) 

 
ℰ [ m: ret ] asg =    
 ∪      ℰ n ( abspop m asg ) 

n ∈ absret asg 
 

ℰ [ m: pop ] asg =  
 ℰ next(m) ( abspop m asg ) 

 
ℰ [ m: jnz addr ] asg = 
 (ℰ inst(addr) asg ) ∪ (ℰ next(m) asg) 

 
ℰ [ m: jmp addr ] asg =  
 ℰ inst(addr) ( i asg ) 

 
ℰ [ m: mov esp x ] asg =  
 ℰ next(m) ( reset m asg ) 

 
Fig. 4-1. Evaluation function. 
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4.2.2 Abstract Operations 

Fig. 4-2 defines the effects of the abstract operations. Note that the operations and 

evaluation function are recursively defined in terms of each other. The operations are 

abspush, abspop, absret, reset, and i that operate on the domain ASG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operation abspush pushes a new address on the abstract stack. It is used in the 

evaluation of the call and push instructions. These two instructions are representative of 

abspush: ADDR → ASG →  ASG  
abspush m ( N, AE, ASP )  
 = (  N ∪ { m },    
        AE ∪ { m →  asp | asp ∈ ASP }, 
        { m } 
    ) 
 
abspop: ASG →  ASG 
abspop m ( N, AE, ASP ) 
 = ( N,  
       AE, 
       { x | a ∈ ASP, (a  x)  ∈ AE }  
     ) 
 
absret: ASG → ℘ADDR 
absret ( N, AE, ASP ) 
             = {next(x) | a ∈ ASP, (a  x)  ∈ AE, 
                         validcall(x)} 
 
reset: ADDR →  ASG →  ASG  
reset m (N, AE, ASP )  
 = ( N ∪ { m },  
       AE,   
       { m } 
     ) 
 
i: ASG →  ASG  
i ( N, AE, ASP )  = ( N, AE, ASP )  

 

Fig. 4-2. Abstract operations. 
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instructions that perform the push operation. Other instructions may be modeled similar 

to these instructions. For example, the INT (software interrupt) instruction may be 

modeled like the call instruction. Instructions that increase the content of stack by 

directly manipulating the stack pointer, such as sub esp, 8h, are modeled using the push 

instruction. 

Operation abspop pops an element from the abstract stack resulting in a new set 

of top of stack. The operator is used in the evaluation of ret and pop instructions. 

Operation absret supports the evaluation of the ret instruction. It checks whether 

the address at the top of stack represents the address of a call instruction. If so, it returns 

the address of instruction after the call. Since the abstract stack does not maintain actual 

return address, the address to return to when a call is made by obfuscation is not known. 

This function identifies such obfuscations. 

Operation reset is for all those instructions that explicitly modify the stack pointer 

with value not known to the analysis. For example instructions such as move esp, eax. 

Instructions such as add esp, 8h and sub esp, 8h whose effect on the stack pointer is 

known may be modeled as pop and push respectively. 

Operation i is the identity operator. It is used for evaluation of any operation that 

does not modify the stack. 

4.2.3 Algorithm 

The naïve algorithm constructs an abstract stack graph of a section of code, by 

applying the evaluation function to the entry address of the program on an initial abstract 

stack graph <Ø, Ø, Ø> and then continuing until a termination condition is reached. The 

termination condition may be due to reaching some specific memory address, or reaching 
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an invalid instruction, or when an empty stack is popped.  Details of the termination 

condition of the evaluation function are not shown in Fig. 4-1. A sketch of the algorithm 

follows; a complete pseudo is in Appendix B. 

Assume that the disassembly and an entry point to the code are available. The 

current abstract stack graph is initialized to <Ø, Ø, Ø>. The assembly instructions are 

then interpreted one by one. A work list W is maintained such that each element in W is a 

tuple <ip, asp, succ>. Here ip (instruction pointer) is the address of the next instruction to 

be executed; asp (abstract stack pointer) is the address of an instruction denoting top of 

the abstract stack graph; succ is the number of successor abstract nodes of asp. Initially W 

is the singleton set {<Entry_Inst, 0, 0>}. 

A visited list V is also maintained which keeps track of the instructions previously 

interpreted for a given state of the abstract stack graph. This is necessary to avoid getting 

trapped in a loop because of a backward control transfer or jump. The visited list V 

maintains a list of already interpreted work list elements for a given state of the abstract 

stack graph. Each w ∈ W carries the abstract stack graphs’ state information in succ. This 

is important because whenever a conditional branch instruction is encountered, from 

within a loop, information about the updated state of the abstract stack graph has to pass 

along the two possible branch paths. This is accomplished by including succ in the tuple 

for w. 

The algorithm generates a correct abstract stack graph even for programs with 

loops with unbalanced push or pop instructions. This means that if there are individual 

loops within which push or pop occur, and within these loops the push or pop are not 

balanced (i.e., there are more push than pop, or more pop than push), the algorithm can 
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still generate the correct abstract stack graph that encompasses all the possible abstract 

stacks at each program point, including the stack representing the balancing of push and 

pop after the two loops. 

Each node in the abstract stack graph is created only when a push or a call 

instruction is encountered. Hence, nodes in the graph are finite since instructions in the 

program space are finite. This implies that the abstract stack graph is finite. Also, since 

each instruction is interpreted only once, the algorithm to construct the abstract stack 

graph is linear in time and space. 



5 Detecting Obfuscations 

This chapter shows how an abstract stack graph may be used to detect stack 

related obfuscations. The obfuscations detected are: 

� Call obfuscation 

� Parameter passing obfuscation 

� Return obfuscation 

For each detection, example programs are used to illustrate the mechanism. They 

show the effective real/concrete stack at a program point of interest as well as the abstract 

stack graph at that point. Each instruction is annotated with an address label, such as E, 

L0, L1, etc. The instructions are also annotated with an arrow followed by a number, such 

as “  4”. The number is the symbolic program point associated with the instruction. The 

number is an alias for the instruction’s label: the different symbols are used to simplify 

the discussion. In the examples each program point of interest is associated with a single 

abstract stack. Hence, the discussion focuses on the specific stack. This should not be 

construed to imply that the methods are restricted to a single flow. Rather, the method 

discussed may be applied to every abstract stack associated with a program point. 

Throughout the following, obfuscation is detected when the contents of the abstract stack 

graph at control points is not what would be expected if the call was not obfuscated. 

5.1 Detecting Obfuscated Calls 

A call to a procedure within the same segment is termed a “near” call and 

performs the following: it decrements the stack pointer (esp) by a word and pushes the 

instruction pointer onto the stack; the eip, contains the offset of the instruction following 
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the call. Next it inserts the offset address of the called procedure into eip. The semantics 

of a call addr instruction may be defined operationally as follows: 

1. Push the memory address of the byte after the current instruction onto the 

stack.  

2. Assign the address addr to the instruction pointer (eip). 

The concrete stack at beginning of program point L0 is as shown in Fig. 5-1. 

 

 

 

 

 

 

 

5.1.1 Obfuscation using push/jmp 

Fig. 5-2 shows a program that simulates a call using a combination of push and 

jmp instructions. The jump through a register transfers control to L8. Before the jump is 

executed, the offset of the instruction following the call is pushed onto the stack. The 

instruction at E pushes the entry point of the code onto the stack. The instruction at L0 

pushes the offset address of the instruction following the call, which is the return address, 

onto the stack. The instruction at L1 loads the effective address of the instruction at L8 

into eax and then the instruction at L2 jumps to this address. When ret is encountered at 

L9, the control returns to the return address previously pushed onto the stack. Hence, 

 

E: push E ;entry 

L0: call L8 

L1: … 

… 

L8:  

Normal call Actual Stack

eip = L8 

esp

E 

L1 

Fig. 5-1. Normal call. 
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without using the call instruction itself, the same functionality is achieved here as is 

intended in Fig. 5-1. 

 

 

 

 

 

 

 

That the jmp instruction actually performs a call becomes known from the 

abstract stack graph at the entry point of the call. When an address is not known to be the 

entry point of a procedure, the abstract stack graph at the ret instruction, program point 6, 

discloses the obfuscation.  During normal execution the top of the stack at this program 

point contains the return address L3 pushed by the push instruction at label L0. In the 

abstract stack graph, the top of stack at program point 6 is E. That the ret instruction is 

returning from an obfuscated call is detected because E is not the address of a call 

instruction. 

5.1.2 Obfuscation using push/ret or push/pop 

Fig. 5-3 shows two different types of obfuscations of a call. They differ in how 

control is transferred to the target address. In the first, the target address is pushed on the 

stack and a ret instruction pops this address from the stack and transfers control. In the 

second, the target address is pushed on the stack, it is then popped into a register, and an 

indirect jump is performed to the address in the register. The labels and program points in 

 

E: push E ;entry            1 
L0: push  L3              2 
L1: lea  eax, L8             3 
L2: jmp  eax              4 
L3: … 
… 
L8:                5 
L9: ret               6 

Obfuscation using push/jmp

E 

L0 2 

Abstract Stack Graph 

3 4 

1 6 

Fig. 5-2. Abstract stack graph to detect obfuscation of call due to push/jmp. 
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the two examples have been chosen such that both examples have the same stack and 

abstract stack graph. In both examples the actual transfer of control is done at instruction 

labeled L3, i.e. at program point 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The instruction at L3, where a ret or a pop ebx is done is the address that was 

previously pushed onto the stack by instruction at L2 and is the target of the control 

transfer. In the first example this is a ret instruction and in the second example it is pop 

ebx. The top of the abstract stack at program point 5 contains L0, the address of the 

instruction that pushed the target address on the stack.  Thus, once again, when a ret 

statement is encountered (at program point 7 in case of first example and at program 

 

E: push E ;entry            1 
L0: push  L4              2 
L1: lea  eax, L8             3 
L2: push  eax              4 
L3: ret                5 
L4: … 
… 
L8:                6 
L9: ret               7 

Obfuscation using push/ret 

E 

L0 2 

Abstract Stack Graph 

3 5 

1 6 

E: push E ;entry            1 
L0: push  L5              2 
L1: lea  eax, L8             3 
L2: push  eax              4 
L3: pop ebx              5 
L4: jmp ebx              6 
L5: … 
… 
L8:                7 
L9: ret            8

Obfuscation using push/pop

6 

L2 4 

Fig. 5-3. Abstract stack graph to detect obfuscation of call due to push/ret or push/pop.
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point 8 in case of second example) it can be determined that it was reached due to an 

obfuscated call. 

Now the push instruction itself can be substituted by a sequence of instructions 

that eventually achieve the same semantics. For example, in Fig. 5-2 the instruction at 

address L0 which is push L3 (assume L3 is a 4 byte address) can be substituted by the 

following sequence of instructions: 

mov ebp, esp 

sub esp, 4 

mov [ebp - 4], L3 

In such cases where the stack operation itself is further obfuscated by instruction 

substitution, the abstract stack graph cannot be used to detect the obfuscation since it is 

limited to observing the evaluations of only those operations that can be mapped to stack 

push and pop instructions, where each is performed as a unit operation. It cannot model 

situations where the push and pop instructions themselves may be decomposed into 

multiple instructions. 

5.2 Detecting Obfuscated Parameters 

When analyzing a program for malicious behavior it is often useful to know the 

parameters being passed to a function. A program may be deemed malicious depending 

on the parameter. For instance, calling a file-open with parameters set to read may be 

considered benign, but the same call with parameters set for writing may indicate 

malicious intent. 

Parameters to a function are ordinarily passed via the stack or through registers. 

An abstract stack graph can aid in determining the parameters that are passed on the 
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stack. If a call takes n instructions, the top n elements on the abstract stacks at a program 

point before the call instruction represent the locations where those parameters were 

pushed. The ith parameter corresponds to the ith element on the stack (starting from the 

top). This is assuming the first parameter is pushed last. If the last parameter is pushed 

first, the order is changed to match. At the entry point, the parameter addresses are 

connected by compensating for the pushed return address. Fig. 5-4 contains a sample 

normal code. In this program, the arguments to the function are pushed immediately 

before the call instruction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.1 Obfuscation using Out of Turn push 

Fig. 5-5 contains an example of what is termed as “out-of turn push”. Instructions 

at L0 and L1 push parameters in registers eax and ebx onto the stack.  These are intended 

to be parameters to call L6, but they are pushed before the instruction call L4. This gives 

the appearance that the parameters are being passed to the function at L4. The abstract 

stack graph for the program can be used to detect where the parameters to a function are 

 

E: push E ;entry 

L0: push eax 

L1: push ebx 

L2: call L8 

L3: … 

… 

L8: 

Normal parameter passing

eip = L8 

Actual Stack

esp 

E 

eax

ebx

L3 

Fig. 5-4. Normal parameter passing to a call. 
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assembled. At program point 6, immediately after call L6, the state of the abstract stack is 

L3|L1|L0|E. The top of stack, L3, represents the return address. The two elements on the 

abstract stack, L1 and L0, represent the location where the parameters for the function are 

pushed. 

 

 

 

 

 

 

 

 

 

 

The example also shows how the abstract stack graph may be used to match call 

and ret instructions. At program point 4, where the call to L4 is made, the abstract 

interpreter actually simulates a control transfer to the target of the call site to interpret the 

next instruction at L4. The abstract stack state passed is L2|L1|L0|E with L2 as the 

abstract stack top. At program point 5, the ret instruction, the top of the abstract stack 

contains L2. Thus the ret instruction will be seen to return from a call made by the call 

instruction at address label L2. Now at program point 6, the abstract stack state is 

L3|L1|L0|E and does not include L2 since at a call site updated information is only passed 

down the taken branch. Hence, at program point 7, the ret instruction, the top of the 

 

E: push E ;entry  1 

L0: push eax  2 

L1: push ebx  3 

L2: call L4  4 

L3: call L6   6 

L4: … 

L5: ret   5 

L6: … 

L5: ret   7 

Obfuscation using Out of turn push

E 

L0

L1

1 

L2
L3 

Abstract Stack Graph 

2 

3 5 

4 

7 

6 

Fig. 5-5. Abstract stack graph to detect obfuscation of parameters due to out of turn push. 
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abstract stack contains L3. Thus, the ret instruction will be seen to return from the call 

made by the call instruction at address label L3. 

5.2.2 Obfuscation using Redundant push/pop 

Introducing redundant push and pop instructions can obfuscate the parameters. 

Consider the program in Fig. 5-6. The value pushed at instruction L1 is popped at L2. 

They are thus redundant. The abstract stack at program point 5, before the call instruction 

 

 

 

 

 

 

 

 

 

 

is L3|L0|E, indicating that the parameters to the call are pushed at L3 and L0. The effect 

of the redundant push and pop instructions is visible at prior statements, but not at 

program point 5. 

5.2.3 Obfuscation due to Redundant Control 

Fig. 5-7 shows the use of redundant control to obfuscate parameters to a call. This 

is done by exploiting the assumption that a conditional branch has two possible targets. 

 

E: push E ;entry  1 

L0: push eax  2 

L1: push edx  3 

L2: pop eax  4 

L3: push ebx   5 

L4: call L8  6 

L5: … 

… 

L8: ret   7 

Obfuscation using redundant push/pop 

E 

L0

L1

1 

L4 

L3 

Abstract Stack Graph 

2 

3 

6 

4 

7 5 

Fig. 5-6. Abstract stack graph to detect obfuscation of parameters due to redundant push/pop. 
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The conditional branch may be instrumented to logically follow one direction, i.e., either 

it is always taken and never falls through, or it is never taken and always falls through. 

This technique relies on using predicates that always evaluate to either the constant true 

or the constant false, regardless of the values of their inputs. Such predicates are known 

as “opaque predicates”. The instruction at L0 results in edx containing zero. Hence the 

instruction at L1 always evaluates to true and the branch is taken to L3. 

 

 

 

 

 

 

 

 

 

 

The abstract stack graph shown here cannot be used to detect this redundant 

control unless we are able to compute contents of registers or memory locations. This 

example shows the limitation of the abstract stack graph method where a model for 

retrieving contents of registers is required to detect the obfuscation. At program point 7, 

where the call to L8 is made, the abstract stack state could be L5|L4|L3|E or L5|E. This 

means the branch at L1 could either be taken or not taken. But, if we were to determine 

the contents of register edx at L0, then we can determine that the branch at L1 is always 

 

E: push E ;entry  1 

L0: xor edx edx  2 

L1: beqz L3   3 

L2: jmp L5   4 

L3: push eax    5 

L4: push ebx   6 

L5: call L8   7 

… 

L8: ret    8 

Obfuscation using redundant control 

E 

L3

L4

1 

L5 

Abstract Stack Graph 

5 

3 

6 

4 

7 

8 2 

8 

Fig. 5-7. Abstract stack graph fails to detect obfuscation due to redundant control. 
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taken. This information would render a new abstract stack graph in which the edge from 

node L5 to E would no longer be present. The only abstract stack state possible would be 

L5|L4|L3|E which includes the address of the instructions L3 and L4 that push the 

arguments for call at L5, hence detecting the redundant control. 

5.3 Detecting Obfuscated ret 

A ret statement typically pops the top of the stack and returns control to address it 

pops which is basically reversing a call’s steps. It pops the old eip value from the stack 

into eip and increments esp by a word. The conventional way of using call and ret is as 

shown in Fig. 5-8. After ret is executed, control transfers to the instruction immediately 

after the call. 

 

 

 

 

 

 

The return may be obfuscated by simulating it using non-return instructions or by 

having it transfer control to a location other than the instruction after the original call 

instruction. The two we detect are pop to return and return elsewhere. 

5.3.1 Using pop to return 

In the example in Fig. 5-9, the effect of a ret instruction is achieved by popping an 

address at the top of stack into a register and jumping it.  The abstract stack at program 

 

E: push E ;entry

L0: call L8 

L1: … 

… 

L8: ret  

Normal call/ret 

eip = L1 

esp

Actual Stack

E 

Fig. 5-8. Normal call/ret. 
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point 2 immediately before the address is popped is L0|E. Thus, it can be determined that 

the pop instruction is popping the return address from the call at L0, thereby indicating 

that the ret address is obfuscated. 

 

 

 

 

 

 

 

 

5.3.2 Returning elsewhere 

The ret instruction can also be obfuscated by returning elsewhere. Instead of the 

conventional way of returning to the instruction immediately following the call 

instruction, the return address is modified in the called function and control transferred to 

some other instruction. 

In Fig. 5-10, the instruction at L0 makes the call to L3. Immediately after the call 

instruction, 2 junk bytes are inserted to locate a specific return address (L3 in this case). 

The instruction at L4, the contents of the stack pointer are modified by adding 2 bytes to 

the return address to generate a new return address so that the ret instruction transfers 

control to 2 bytes after the original return address.  This is obfuscating ret to return 

elsewhere. The abstract stack graph may be augmented to detect this obfuscation. Along 

with each location in the stack an additional tag, modified, may be maintained.  When a 

 

E: push E ;entry    1 

L0: call L8      2 

L1: … 

… 

L8: pop eax      3 

L9: jmp eax       4 

Using pop to return 

E 

L0

1 

Abstract Stack Graph 

2 

3 4 
eip = L1 

esp

Actual Stack

E 

Fig. 5-9. Abstract stack graph to detect obfuscation of ret using pop. 
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value is pushed on the stack, modified is set to false. If an instruction may change the 

contents of the stack, and we can determine the stack offset that is being changed, then 

we can change the tag of that location to modified. If the value at the top of the stack at a 

ret instruction is modified, it implies that ret is returning elsewhere. 

 

 

 

 

 

 

 

 

 

Another method of obscuring the ret instruction is by using branch functions. A 

branch function does not behave like “normal” function in that it typically does not return 

control to the instruction following the call instruction, but instead branches to some 

other location in the program that depends, in general, on where it was called from. Given 

such a branch function, an unconditional branch in a program (a jump instruction) can 

now be replaced by a call to the branch function. Branch functions serve two distinct 

purposes. The first is to obscure the flow of control in the program by sufficiently 

obscuring the computation of the target address within the branch function. The second is 

to create opportunities for misleading the dissembler by inserting junk bytes at the point 

immediately after each call of the branch function. 

 

E: push E ;entry    1 

L0: call L3      2 

L1: nop 

L2: nop 

L3: … 

L4: add esp, 2        3 

L5: ret        4 

Return elsewhere 

E 

L0

1 

Abstract Stack Graph 

2 3 

4 
eip = L3 

esp

Actual Stack

E 

Fig. 5-11. Abstract stack graph to detect obfuscation due to returning elsewhere. 
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The branch function takes an argument and a return address from the callee. The 

return address is the address of the instruction immediately following the call. The callee 

passes, as an argument to the branch function, the offset from the return address to the 

eventual target address of the branch function. The branch function adds the value of its 

argument to the return address, so that the return address becomes the address of the 

original target. The code for this is as follows: 

xchg eax, esp 

add [8 + esp], eax 

pop eax 

ret 

The first instruction exchanges the contents of register eax with the word at the 

top of the stack, effectively saving the contents of eax (this is required because if any of 

the condition code flags is live at the call point, they have to be saved by the caller just 

before the call, and restored at the target) and at the same time loading the displacement 

to the target (passed to the branch function as an argument on the stack) into eax. The 

second instruction adds up this displacement to the return address (which resides a word 

below the top of the stack) and the result is placed back on the stack. The third instruction 

restores the previously saved value of eax, and the fourth instruction has the effect of 

branching to the address computed by the function and now placed on top of the stack. 

This too is the case of obfuscation by returning elsewhere and can be detected using the 

abstract stack graph as discussed above. 
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5.3.3 Abusing Call 

The call instruction can also be “abused” to jump to a particular instruction. In 

Fig. 5-12, at instruction L0 a call is made to L2. At L2, the return address is popped off 

the stack. A new return address is computed and pushed onto the stack (instruction at L4). 

The instruction at L5 transfers control to the new address location. The abstract stack 

graph shown here can be used to detect such abuse. At program point 5, immediately 

before the ret instruction the stack is L4|E. This indicates that the ret instruction is 

obfuscated, since it will transfer control to the address pushed by a push instruction, and 

not after a call. 

  

E: push E ;entry    1 

L0: call L2      2 

L1: … 

L2: pop eax           3 

L3: add eax, 16      4 

L4: push eax      5 

L5: ret        6 

L6: … 

Abusing call 

E 

L0

1 

Abstract Stack Graph 

2 

4 3 

eip = L6 

esp

Actual Stack

E L4 5 

6 

Fig. 5-12. Abstract stack graph to detect obfuscation due to abusing call. 



6 Implementation and Results 

This chapter presents a demonstration of the proposed algorithm and highlights its 

limitations. A prototype tool, DOCs (Detector for Obfuscated Calls) has been 

implemented using the Eclipse 2.1 framework. The goal is to demonstrate the use of 

DOCs as a means to detect call obfuscations in known virus programs (w32.evol). 

6.1 DOCs Implementation details 

DOCs has been implemented using the Eclipse 2.1 framework [35]. The Eclipse 

Platform is designed for building integrated development environments (IDEs) that can 

be used to create diverse applications. It is an open platform for tool integration built by 

an open community of tool providers. The Eclipse Platform is built on a mechanism for 

discovering, integrating, and running modules called plug-ins. A tool provider writes a 

tool as a separate plug-in that operates on files in the workspace and surfaces its tool-

specific UI in the workbench. When the Platform is launched, the user is presented with 

an IDE composed of the set of available plug-ins. 

DOCs has been implemented as a plug-in and is hence extendable. It is written in 

the Java programming language. A screen shot when the plug-in is used to open an 

assembly file (.asm extension) is shown in Fig. 6-1. 
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6.2 Capabilities of DOCs 

DOCs provides the ability to open any number of projects at the same time. The 

navigator view helps to browse and open files in a project which are displayed in the file 

view. DOCs takes as input an assembly file, and constructs an abstract stack graph on 

user selection. The user can now select an option from the choices view to detect 

obfuscated calls, obfuscated returns, call-ret sites and manipulated call sites (same as 

detecting obfuscated returns). 

6.3 Demonstration with test programs 

DOCs was used with a few sample assembly files to detect the following: 

� Valid call-ret sites 

� Non-contiguous call-ret sites 

� Obfuscated calls 

� Obfuscated returns 

6.3.1 Detecting valid call-ret sites 

Fig. 6-1 shows a screen shot in which a test assembly file is opened in the file 

view and the option to detect call-ret sites has been selected. The instructions highlighted 

in red within the file view show valid call-ret sites. The numbering “(0)” at the end of 

these highlighted lines denotes that for the call site at address 101F, the ret site is at 

address 110B. 
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Fig. 6-1. Detecting valid call-ret sites. 

Navigator View File ViewConstruct ASG

Choices View

Valid call-ret site
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In order to flag the instruction addresses as valid call-ret sites requires construction of the 

abstract stack graph which has been constructed for the selected assembly file and is as 

shown in Fig. 6-2. It is evident from Fig. 6-2 that when program point 12 is reached, the 

ret instruction is returning from a node which is a call instruction and hence is a valid 

call-ret site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000 push ebp   1 

1003 push eax   2 

1007 add eax, 10h  3 

100b mov edx, eax  4 

100f pop ecx   5 

1013 jmp 101f   6 

1017 pop ecx   7 

101b cmp ecx, 10h  8 

101f call 110b   9 

1103 sub ecx, 5h   10 

1107  jmp 110f   11 

110b ret    12 

110f jnz 1017   13 

1113 nop    14 

Fig. 6-2. Abstract stack graph for test.asm 
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6.3.2 Detecting non-contiguous call-ret sites 

DOCs can also detect non-contiguous call-ret sites as shown for a sample 

assembly file in Fig. 6-3. The entry point of the code begins at address 300f. At address 

3014 a call to address 3000 is made. Within this code, at address 3004 now a call to 

address 2000 is made, and so on. For each of these calls their corresponding ret sites lie 

before the call site. The call at address 3014 finally returns at address 300B. Such type of 

control transfers are usually absent in compiler generated code that adhere to 

conventional procedure entry and exit, but occur in malicious code or hand coded 

assembly. A usual linear scan would have rendered incorrect call-ret sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6-3. Detecting non-contiguous call-ret sites. 

Entry point 
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6.3.3 Detecting obfuscated calls 

Fig. 6-4 shows a screen shot in which another assembly file (test1.asm) is opened 

in the file view and the option to detect obfuscated calls has been selected. Instructions 

highlighted within the file view show possible obfuscation of the call instruction. The ret 

site at address 200F is associated with a push at address 2000 and the ret site at address 

2213 is associated with the push at address 2017. The entry point of the code begins from 

the first instruction at address 1fff. A simple linear scan performed on this code would 

render incorrect entry-exit blocks. For example, a popular disassembler, IDAPro, marks 

the instructions between addresses 1fff and 200f as comprising a block of code while the 

instructions between addresses 2103 through 2213 are marked as another block of code.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-4. Detecting possible obfuscations of the call instruction. 

Obfuscated call

Obfuscated call
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In order to flag the instruction addresses as obfuscated call requires construction of the 

abstract stack graph which has been constructed for the selected assembly file test1.asm 

and is as shown in Fig. 6-5. From the abstract stack graph when program points 6 and 23 

are reached, the ret instruction is returning from a node which is a push instruction hence 

detecting obfuscated calls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1FFF push ebp   1 

2000 push eax   2 

2003 add eax, 10h  3 

2007 mov eax, 20h  4 

200B sub eax, ebx  5 

200F ret    6 

2013 push eax   7 

2017 push ebx   8 

201B push ecx   9 

201F pop edx   10 

2103  call 110F   11 

2107 nop    12 

210B nop    13 

210F nop    14 

2113 nop    15 

2117 push ecx   16 

211B push ecx   17 

211F push ecx   18 

2203 pop ebx   19 

2207 pop ebx   20 

220B pop ebx   21 

220F pop ebx   22 

2213 ret    23 

Fig. 6-5. Abstract stack graph for test1.asm 
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6.3.4 Detecting obfuscated returns 

Fig. 6-6 shows a screen shot in which the same assembly file test1.asm is opened 

in the file view and this time the option to detect obfuscated returns has been selected. 

Instructions highlighted in red within the file view show possible obfuscation of the ret 

instruction. The pop instruction at address 220F is associated with a call instruction at 

address 2103. This information too is retrieved from the abstract stack graph shown in 

Fig. 6-5. From the abstract stack graph when program point 22 is reached, the pop 

instruction is popping from the node which is a call instruction at address 2103 hence 

detecting the obfuscated ret. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6-6. Detecting possible obfuscations of the ret instruction. 

Obfuscated return
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6.4 Demonstration with w32.evol virus 

In case of sample test programs the prototype tool successfully detected all 

possible obfuscated calls, returns, valid call-ret sites and non-contiguous call-ret sites. To 

demonstrate its use for detecting obfuscations in real virus code, it was used to detect 

possible obfuscations in w32.evol virus. The prototype tool detected 20 possible 

obfuscated calls and 2 possible obfuscations of the return instruction. This has been 

verified by manual analysis of the virus, prior to detection by the tool. Fig. 6-7 shows a 

screen shot in which two of the possible obfuscated call sites are highlighted. The call to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-7. Detecting possible obfuscations of the call instruction in w32.evol. 
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two of the kernel functions GetTickCount( ) and GetWindowsDirectory( ) is obfuscated 

and  Fig. 6-7 shows these strings being pushed on the stack. The process by which control 

is transferred to each of these kernel functions becomes clearer from Fig. 6-8. A detailed 

explanation can be found in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 The instructions from addresses 0040153F through 00401557 push a pointer to 

the string “GetTickCount” on the stack which is the required kernel function intended to 

be called. The instruction at address 00401558 calls a routine which retrieves kernel32 

base address and saves it in register eax. The instruction at address 0040155D stores this 

value on the stack. The stage is now set to call a kernel function called GetProcAddress( ) 

which takes as parameters the string “GetTickCount” and kernel32 base address that have 

previously been pushed on the stack. This kernel function retrieves the procedure address 

Fig. 6-8. Obfuscation of call to kernel function GetTickCount ( ) 

The string GetTickCount
Pointer to the string 

GetTickCount is pushed on stack

This routine retrieves kernel32 
base address and pushes it on stack

This routine retrieves address of 
GetTickCount() and pushes it on stack 

retn transfers control 
to GetTickCount 
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(in this case the address of GetTickCount) and saves it in register eax. The instruction at 

address 0040155E calls a routine that in turn makes a call to GetProcAddress( ) to 

retrieve the address of GetTickCount( ) in register eax. The instruction at address 

00401563 stores this value on the stack. The instructions at addresses 00401566 and 

00401569 adjust the stack pointer to point to this address and the retn instruction at 

address 0040156A transfers control to GetTickCount( ). 

 Fig. 6-9 shows a screen shot in which the two possible obfuscated ret sites are 

highlighted. Each of the call instructions at addresses 004017AA and 004017C1 do not 

have a matching ret instruction but rather are popped by a pop instruction immediately 

following each.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-9. Detecting possible obfuscations of the ret instruction in w32.evol. 
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6.5 Limitations 

The solution proposed here is a partial solution in the sense that the obfuscation 

detection is confined or rather narrowed down to those done using stack related 

instructions such as push, pop, call and ret. Also only those instructions that perform unit 

push and pop operations are handled. Instructions such as pusha, popa that increment and 

decrement the stack by more than one unit (usually 4 bytes) are not handled. 

There is no model to retrieve contents of memory locations or contents of 

registers which limits the ability of the tool since stack operations done via memory are 

not being handled. While analyzing w32.evol for possible obfuscation of the call 

instruction, the prototype tool detects calls to each of the kernel functions as being 

obfuscated except the obfuscated call to GetProcAddress( ), which requires retrieving 

value (in this case the address of GetProcAddress) that is being pushed. Also DOCs 

cannot be used to analyze code rich in indirect control transfers such as jump through 

registers or memory. The idea of abstract locations from [8] can be used to overcome this 

limitation. 



7 Conclusion and Future Work 

A method for modeling stack use of assembly programs has been presented. The 

set of all possible stacks due to all possible executions of a program is represented as an 

abstract stack graph. The graph is a 3-tuple, with nodes, edges, and annotation on nodes. 

Each instruction that pushes a value on the stack is represented as a node in the graph. An 

edge represents a push operation, from an instruction pushing a value to an instruction 

that pushed the value on the top of the stack.  A path in the graph represents a specific 

abstract stack. A node is annotated with the statements that receive an abstract stack with 

that node at the top. The abstract stack graph was defined in abstract interpretation form. 

An algorithm for constructing it was also defined. 

An abstract stack graph may be used to support disassembly of obfuscated code and 

to detect obfuscations related to stack operations. Ten different obfuscations were shown 

to be detectable, and the methods for doing so outlined. These are obfuscations in 

common use by virus writers. 

The abstract stack graph and the algorithm for constructing an abstract stack 

graph are partial solutions for detecting obfuscations in binaries. A more complete 

solution would consider additional instructions, provide a method of modeling actual 

memory locations, and track the contents of memory locations and content of registers.   

Some work done elsewhere may one day provide a way of achieving this 

functionality. Balakrishnan and Reps have proposed a method for abstract interpretation 

of non-stack related instructions [8]. Their effort is aimed at discovering “something 

similar to C variables” by analyzing the memory accesses of a binary executable.  Since 

their analysis assumes that a program conforms to a ‘standard compilation model,’ their 
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model of stack use is static. An activation record is associated with each procedure. The 

stack is a set of activation records that are linked together during interprocedural analysis. 

Adapting Balakrishan and Reps’ algorithm to use an abstract stack graph may help create 

a complete system for detecting obfuscations. The adaptation may also help create a 

disassembler for obfuscated programs that cannot be fooled easily.



8 Appendix A: Obfuscation in Win32.Evol 

The following piece of code is extracted from w32.evol virus. 

00401208 CMP EAX, 77E00000 

; checking kernel32 base address to identify Windows 2000 operating system 

0040120D JNZ SHORT 00401261 

; did not find proper Win32 platform, so exiting 

0040120F MOV DWORD PTR DS:[ESI], 5500000F 

; these are the four bytes beginning at 77E89B15 within kernel32.dll. This is corrupt and 

; should actually be 550001F2. These bytes are being pushed on the stack. 

00401215 MOV DWORD PTR DS:[ESI+4], 5151EC8B 

; the next four bytes are also pushed on the stack. These 8 bytes are used for identifying 

; the address of the Windows API module GetProcAddress( ) which is at 77E89B18 

; within kernel32.dll 

0040121C ADD EAX, 80000 ; EAX = 77E00000 + 80000 = 77E80000 

; since the required API modules begin from 77E80000 

00401221 MOV EDI, EAX ; use EDI to iterate between 77E80000 

00401223 MOV ECX, 20000; and 77E80000 + 20000 = 77EA0000. ECX is counter 

00401228 MOV EDX, DWORD PTR DS:[ESI] ; compare the bytes 550001F2 and 

0040122A CMP EDX, DWORD PTR DS:[EDI] ; contents of address in EDI 

0040122C JNZ SHORT 00401236 ; if condition fails, go to increment EDI 

0040122E MOV EDX, DWORD PTR DS:[ESI+4] 

; else compare next four bytes 5151EC8B 

00401231 CMP EDX, DWORD PTR DS:[EDI+4] 
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00401234 JE SHORT 00401243 

00401236 ADD EDI, 1 

; increment EDI and loop until the marker string bytes ‘eVOL’ are found on the stack 

00401239 SUB ECX, 1 

0040123C CMP ECX, 0 

0040123F JNZ SHORT 00401228 

00401241 JMP SHORT 00401261 

00401243 ADD EDI, 3 

; EDI = 77E89B15 + 3 = 77E89B18 which is the address of GetProcAddress() Win32 

; API function. Further for ADD EDI, n EDI would contain an address 77E89B18 – n. 

; The virus writer can use this and simply substitute the first 8 bytes occurring at 

; (77E89B18 – n) address in place of the 8 bytes at instructions 0040120F and 00401215. 

00401246 MOV ECX, EAX 

; ECX = 77E80000 which is kernel32.dll base address. This requires to be passed as a 

; parameter to GetProcAddress() 

00401248 MOV EBX, DWORD PTR SS:[EBP] 

0040124B ADD EBX, 10 

0040124E MOV DWORD PTR DS:[EBX], 4C4F5665 

; push string marker ‘eVOL’ on stack 

00401254 MOV DWORD PTR DS:[EBX+4], ECX 

; push kernel32.dll base address 

00401257 MOV DWORD PTR DS:[EBX+10], EDI 

; push address of GetProcAddress( ) 
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0040125A MOV EAX, 1 

0040125F JMP SHORT 00401263 

00401261 XOR EAX, EAX ; destroying the kernel32 base address 

00401263 POP EDI  ; exiting 

00401264 POP ESI 

00401265 ADD ESP, 8 

00401268 POP EBP 

00401269 RETN ; returns back to the main function from where this was called 

The main function now calls a routine that pushes the parameters for 

GetProcAddress( ) on the stack and this routine in turn calls another routine that 

obfuscates the call to GetProcAddress( ). 

0040153C LEA EAX, DWORD PTR SS:[EBP-14] 

; EBP holds contents of ESP 

0040153F MOV DWORD PTR DS:[EAX], 54746547  ; ‘TteG’ 

00401545 MOV DWORD PTR DS:[EAX+4], 436B6369 ; ‘Ckci’ 

0040154C MOV DWORD PTR DS:[EAX+8], 746E756F ; ‘tnuo’ 

00401553 MOV BYTE PTR DS:[EAX+C], 0  ; the string “GetTickCount” 

00401557 PUSH EAX ; pointer to the string is pushed on the stack. This is Arg2. 

00401558 CALL 00401280; this routine retrieves kernel32.dll base address into eax 

; which requires a search on the stack for the string marker ‘eVOL’ 

0040155D PUSH EAX  ; this is Arg1 pushed on the stack 

0040155E CALL 004012A7 ; this routine obfuscates call to GetProcAddress( ) 

00401563 MOV DWORD PTR SS:[EBP], EAX; Control returns back from 4012A7. 
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00401566 ADD ESP, 10  ; EAX now holds the address of GetTickCount(). 

00401569 POP EBP  ; these instructions from 00401563 to 

0040156A RETN   ; 40156A transfer control to GetTickCount(). 

004012A7 PUSH EBP 

004012A8 MOV EBP, ESP 

004012AA SUB ESP, 4 ; make space on stack 

004012AD MOV EAX, DWORD PTR SS:[EBP] 

004012B0 MOV DWORD PTR SS:[EBP-4], EAX 

004012B3 CALL 0040126A ; this routine retrieves the address of string marker 

‘eVOL’ on the stack 

004012B8 MOV EAX, DWORD PTR DS:[EBX+10] 

; the contents of EBX+10 on the stack is the address of GetProcAddress( ) which is 

;moved into EAX 

004012BB MOV DWORD PTR SS:[EBP], EAX 

; the address of GetProcAddress( ) is pushed on the stack below the actual top of stack 

004012BE POP EBP; this pops top of stack and not the address of GetProcAddress( ) 

004012BF RETN  ; transfers control to GetProcAddress( ) 

Each of the required Win32 API function is called in the same way. Detection of 

this type of call obfuscation can be automated with the help of the abstract stack graph. 

The prototype tool can successfully detect calls to each of these kernel functions as being 

obfuscated, though, it fails to detect obfuscation of call to GetProcAddress(), which 

requires retrieving a value (in this case the address of GetProcAddress) that is being 

pushed. The idea of abstract locations from [8] can be used to achieve this.



9 Appendix B 

Pseudo code to construct an abstract stack graph: 

struct AbstractStackGraph   struct AbstractNode 

{      { 

     abstract_node  N;          unsigned int inst_addr; 

     List  predecessor_abstract_nodes;        List program_points; 

     List  successor_abstract_nodes;  } abstract_node; 

}asg; 

struct WorkListElement 

{ 

     unsigned int ip; 

// ip holds the address of the next instruction to be executed. 

     unsigned int asp; 

// asp is the abstract stack pointer that holds the address of an instruction, 

// which is the top of an abstract stack. 

int num_of_successors;     // This is the number of successors for the instruction in  

// asp, which is also a node in the abstract stack graph. 

}wle; 

List  elements;// This holds a list of worklist elements that are objects of type wle.  

wle.asp = E; // E is the address of entry instruction 

wle.ip = E + instLength(E); 

// The function instLength(A) returns the length of an instruction at address A. 

wle.num_of_successors = 0; 
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W = { <wle > } // Work List  V = { }   // Visited List 

while ( W != NULL ) 

{ 

 retrieve w from W, where w Є W; 

 if ( w !Є V )  

 { 

 add w to V; 

 // abstract_interpret( ) interprets the instruction specified by wle.ip,  

// modifies the abstract stack graph accordingly and either returns null, or  

// a new work list element or a list of work list elements. A list is returned  

// whenever an instruction is interpreted as a branch instruction or jump to  

// a case table. 

 elements = abstract_interpret(wle); 

 add elements to W; 

 } 

} 

abstract_interpret(wle) 

{ 

 instruction = getInstruction(wle.ip); 

 prog_point = getProgramPoint(wle.asp); 

 successor_prog_points = getSuccessorProgPoints(wle.asp); 

 switch(instruction) 

 { 
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   case “push”: // New abstract node is created and is made to point toward  

// all those nodes (in the so far formed abstract stack graph)  

// whose list of program points constitutes prog_point. Then  

// do the following: 

If no new change to the abstract stack graph, return(null); 

else { 

wle.asp = wle.ip; 

wle.num_of_successors = sizeof(successor_abstract_nodes); 

// successor_abstract_nodes is associated with the new wle.asp 

wle.ip += instLength(wle.ip); 

return(<wle>); 

}  // end of else statement 

   case “pop”: // The program point associated with wle.ip is added to the  

// list of program points of each successor abstract node  

// associated with wle.asp i.e. successor_prog_points. This  

// could mean to add the program point of wle.ip to more  

// than one abstract node, as wle.asp might have more than  

// one successor nodes. Then do the following: 

If no new change to the abstract stack graph, return(null); 

else { 

temp_ip = wle.ip; 

temp_asp = wle.asp; 

wle.ip += instLength(wle.ip); 
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for each ( successor abstract node, s_a_n, of temp_asp to which the 

program point of temp_ip was added ) { 

  wle.asp =  s_a_n; 

wle.num_of_successors = sizeof(successor_abstract_nodes); 

// successor_abstract_nodes is associated with the new wle.asp 

wle_list = add(<wle>); 

}  // end of for loop 

return(<wle_list>); 

}  // end of else statement 

 case “beqz”: // A branch statement has two possible destinations. One is  

// the address to where it branches to and the other is to the  

// fall through address. This basically just changes wle.ip. 

   wle.ip = getOperand(instruction); 

   wle_list = add(<wle>); 

   wle.ip += instLength(wle.ip); 

   wle_list = add(<wle>); 

   return(<wle_list>); 

   case “jmp”:  // A jmp statement jumps to a single destination address. 

   wle.ip = getOperand(instruction); 

   return(<wle>); 

   // Similarly other cases can be defined … 

 }  // end of switch statement. 

}  // end of abstract_interpret( ) 
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Example showing step-by-step process of constructing an abstract stack graph: 

 

 

 

 

 

 

 

 

 

1. W = { <B0, E, 0> }  V = { } 

Retrieving <B0, E, 0> from W => W = { } and V = { <B0, E, 0> } 

abstract_interpret(<B0, E, 0>) => push eax 

return( <C1, B0, 1> ) 

W = { <C1, B0, 1> } 

 

2. Retrieving <C1, B0, 1> from W => W = { } and 

V = { < B0, E, 0>, <C1, B0, 1> } 

abstract_interpret(<C1, B0, 1>) => sub ecx, 1h 

return( <C2, B0, 1> ) 

W = { <C2, B0, 1> } 

 

 

E: //entry point 
B0: push eax 
B1: sub   ecx, 1h 
B2: beqz B8 
B3: push ebx 
B4: push ecx 
B5: dec   ecx 
B6: beqz B3 
B7: jmp  B10 
B8: pop  ebx 
B9: push esi 
B10: pop edx 
B11: beq B0 
B12: call abc 

Sample program. 

2
B0

E
1 
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3. Retrieving <C2, B0, 1> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1> } 

abstract_interpret(<C2, B0, 1>) => beqz B2 

return( <B2, B0, 1>, <B1, B0, 1> ) 

W = { <B2, B0, 1>, <B1, B0, 1> } 

 

4. Retrieving <B2, B0, 1> from W => W = { <B1, B0, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1> } 

abstract_interpret(<B2, B0, 1>) => pop eip 

return( <B4, E, 0> ) 

W = { <B1, B0, 1>, <B4, E, 0> } 

 

5. Retrieving <B1, B0, 1> from W => W = { <B4, E, 0> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,  

  <B1, B0, 1> } 

abstract_interpret(<B1, B0, 1>) => push ebx 

return( <B3, B1, 1> ) 

W = { <B4, E, 0>, <B3, B1, 1> } 

 

6. Retrieving <B4, E, 0> from W => W = { <B3, B1, 1> } 

and V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0> } 

abstract_interpret(<B4, E, 0>) => push esi 

7
E

B0
2

1 
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2
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E
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return( <B5, B4, 1> ) 

W = { <B3, B1, 1>, <B5, B4, 1> } 

 

7. Retrieving <B3, B1, 1> from W => W = { <B5, B4, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1> } 

abstract_interpret(<B3, B1, 1>) => push ecx 

return( <C4, B3, 1> ) 

W = { <B5, B4, 1>, <C4, B3, 1> } 

 

8. Retrieving <B5, B4, 1> from W => W = { <C4, B3, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,  

  <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, 

<B5, B4, 1> } 

abstract_interpret(<B5, B4, 1>) => pop eip 

return( <C7, E, 0> ) 

W = { <C4, B3, 1>, <C7, E, 0> } 

 

9. Retrieving <C4, B3, 1> from W => W = { <C7, E, 0> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,  

  <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1> } 

abstract_interpret(<C4, B3, 1>) => dec ecx 

return( <C5, B3, 1> ) 
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W = { <C7, E, 0>, <C5, B3, 1> } 

  

10. Retrieving <C7, E, 0> from W => W = { <C5, B3, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,  

<B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>,  

<C7, E, 0> } 

abstract_interpret(<C7, E, 0>) => beq B0 

return( <B0, E, 0>, <B6, E, 0> ) 

W = { <C5, B3, 1>, <B0, E, 0>, <B6, E, 0> } 

 

11. Retrieving <C5, B3, 1> from W => W = { <B0, E, 0>, <B6, E, 0> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>,  

 <B1, B0, 1>, <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0> } 

abstract_interpret(<C5, B3, 1>) => beqz B1 

return( <B1, B3, 1>, <C6, B3, 1> ) 

W = { <B0, E, 0>, <B6, E, 0>, <B1, B3, 1>, <C6, B3, 1> } 

 

12. Retrieving <B0, E, 0> from W, but this is visited in V. 

 Retrieving <B6, E, 0> from W => 

W = { <B1, B3, 1>, <C6, B3, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, 

<C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 
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<B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0> } 

abstract_interpret(<B6, E, 0>)   =>   call abc 

return( null ) 

W = { <B1, B3, 1>, <C6, B3, 1> } 

 

13. Retrieving <B1, B3, 1> from W => W = { <C6, B3, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, 

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1> } 

abstract_interpret(<B1, B3, 1>)   =>   push ebx 

return( <B3, B1, 2> ) 

W = { <C6, B3, 1>, <B3, B1, 2> } 

 

14. Retrieving <C6, B3, 1> from W => W = { <B3, B1, 2> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

  <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3 1> } 

abstract_interpret(<C6, B3, 1>)   =>   jmp B5 

return( <B5, B3, 1> ) 

W = { <B3, B1, 2>, <B5, B3, 1> } 
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15. Retrieving <B3, B1, 2> from W => W = { <B5, B3, 1> } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

  <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2> } 

abstract_interpret(<B3, B1, 2>)   =>   push ecx 

/*Adds nothing new to the abstract stack graph*/ 

return( null ) 

 

16. Retrieving <B5, B3, 1> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, 

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>, 

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1> } 

abstract_interpret(<B5, B3, 1>)   =>   pop eip 

return( <C7, B1, 2> ) 

W = { <C7, B1, 2> } 

 

17. Retrieving <C7, B1, 2> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2> } 
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abstract_interpret(<C7, B1, 2>)   =>   beq B0 

return( <B0, B1, 2>, <B6, B1, 2> ) 

W = { <B0, B1, 2>, <B6, B1, 2> } 

 

18. Retrieving <B0, B1, 2> from W => W = { <B6, B1, 2>  } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, 

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>, 

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2> } 

abstract_interpret(<B0, B1, 2>)   =>   push eax 

return( <C1, B0, 2> ) 

W = { <B6, B1, 2>, <C1, B0, 2> } 

 

19. Retrieving <B6, B1, 2> from W => W = { <C1, B0, 2>  } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, 

<B2, B0, 1>, <B1, B0, 1>, <B4, E, 0>, 

<B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>, 

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2> } 

abstract_interpret(<B6, B1, 2>)   =>   call abc 
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return( null ) 

W = { <C1, B0, 2> } 

 

20. Retrieving <C1, B0, 2> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1> 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, 

<B5, B3, 1>, <C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2> } 

abstract_interpret(<C1, B0, 2>)   =>   sub ecx, 1h 

return( null ) 

W = { <C2, B0, 2> } 

 

21. Retrieving <C2, B0, 2> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1> 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2> } 

abstract_interpret(<C2, B0, 2>)   =>   beqz B2 

return( <B2, B0, 2>, <B1, B0, 2> ) 

W = { <B2, B0, 2>, <B1, B0, 2> } 

 

22. Retrieving <B2, B0, 2> from W => W = { <B1, B0, 2>  } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 
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<B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, 

<C7, E, 0>, <B6, E, 0>, <B1, B3, 1>, 

<C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, 

<C1, B0, 2>, <C2, B0, 2>, <B2, B0, 2> } 

abstract_interpret(<B2, B0, 2>)   =>   pop eip 

return( <B4, B1, 2> ) 

W = { <B1, B0, 2>, <B4, B1, 2> } 

 

23. Retrieving <B1, B0, 2> from W => W = { <B4, B1, 2>  } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2>, 

<B2, B0, 2>, <B1, B0, 2> } 

abstract_interpret(<B1, B0, 2>)   =>   push ebx 

/*Adds nothing new to the abstract stack graph*/ 

return( null ) 

 

24. Retrieving <B4, B1, 2> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 
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<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, 

<C2, B0, 2>, <B2, B0, 2>, <B1, B0, 2>, 

<B4, B1, 2> } 

abstract_interpret(<B4, B1, 2>)   =>   push esi 

return( <B5, B4, 2> ) 

W = { <B5, B4, 2> } 

 

 

25. Retrieving <B5, B4, 2> from W => W = { } and 

 V = { < B0, E, 0>, <C1, B0, 1>, <C2, B0, 1>, <B2, B0, 1>, <B1, B0, 1>, 

 <B4, E, 0>, <B3, B1, 1>, <B5, B4, 1>, <C4, B3, 1>, <C7, E, 0>, 

<B6, E, 0>, <B1, B3, 1>, <C6, B3, 1>, <B3, B1, 2>, <B5, B3, 1>, 

<C7, B1, 2>, <B0, B1, 2>, <B6, B1, 2>, <C1, B0, 2>, <C2, B0, 2>, 

<B2, B0, 2>, <B1, B0, 2>, <B4, B1, 2>, <B5, B4, 2> } 

abstract_interpret(<B5, B4, 2>)   =>   pop eip 

/*Adds nothing new to the abstract stack graph*/ 

return( null ) 

 

At step 25, the work list W is empty. The complete abstract stack graph is 

obtained at step 24. 

The reason for tracking the num_of_successors information for the elements of W 

is that whenever a branch instruction is encountered, there are two possible paths that can 

be taken. Information has to be passed along both of these possible paths. In our case, the 
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elements of the work list W are being passed. These elements denote the state of the 

abstract stack graph. 

From the above example run we see at step 3 there is a branch instruction. At step 

4, we have a partial abstract stack graph constructed with wle.ip = B2 and wle.asp = B0 

with B0 having a single successor in the abstract stack graph. Now whenever instruction 

at B2 is visited again due to a loop, at step 22, we again have the same wle.ip = B2 and 

wle.asp = B0 but now with B0 having two successors in the abstract stack graph. As can 

be noticed, the state of the graph has been updated and hence it is required that this 

updated graph be passed. If we hadn’t introduced the num_of_successors information for 

an element, we would have concluded <B2, B0> as already visited and the abstract stack 

graph would have been incomplete. 

The reason for this is the occurrence of pop in between a loop. Now, at step 4 

whenever B0 is pointing toward E, which means B0 is the top of the abstract stack, and 

due to the  pop instruction at B2, the top of stack would now be E. Hence, at step 22 

whenever the instruction at B2 is reached again, the state of the abstract stack graph has 

changed wherein B0 now points toward E and B1. Due to the pop at B0, the top of the 

abstract stack can now be either E or B1. If this information were not considered (i.e. 

num_of_successors) then the abstract stack graph would be incomplete. 
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Abstract 

A common approach to detecting malicious code is to examine the calls a binary makes 

to the operating system. Knowing this, malicious code programmers hide the calls using a 

variety of obfuscations. For instance, the call addr instruction may be replaced by two 

push instructions and a return instruction, the first push pushes the address of instruction 

after the return instruction, and the second push pushes the address addr. The code may 

be further obfuscated by spreading the three instructions and by splitting each instruction 

into multiple instructions. This work presents a method to statically detect calls in binary 

code. The main idea is to use abstract interpretation to detect where the normal call-ret 

calling convention is violated. These violations can be detected by what is called an 

abstract stack graph. An abstract stack graph is a concise representation of all potential 

abstract stacks at every point in a program. An abstract stack is used to associate each 

element in the stack to the instruction that pushes the element. A linear algorithm is 

defined for calculating the abstract stack graph. Methods for using the abstract stack 

graph are shown to detect ten different obfuscations. The technique is demonstrated by 

implementing a prototype tool called DOCs using several test programs and a 

metamorphic virus called w32.evol.
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