
FuncTracker: Discovering Shared Code to Aid Malware Forensics
Extended Abstract

Charles LeDoux, Arun Lakhotia, Craig Miles, Vivek Notani
charles@charlesledoux.com, arun@louisiana.edu, craig@craigmil.es, vivek200690@gmail.com

University of Louisiana at Lafayette

Avi Pfeffer
apfeffer@cra.com

Charles River Analytics

Abstract
Malware code has forensic value, as evident from recent
studies drawing relationships between creators of Duqu
and Stuxnet through similarity of their code. We present
FuncTracker, a system developed on top of Palantir, to
discover, visualize, and explore relationships between
malware code, with the intent of drawing connections
over very large corpi of malware – millions of binaries
consiting of terrabytes of data. To address such scale we
forego the classic data-mining methods requiring pair-
wise comparison of feature vectors, and instead represent
a malware as a set of hashes over carefully selected fea-
tures. To ensure that a hash match implies a strong match
we represent individual functions using hashes of seman-
tic features, in lieu of syntact features commonly used in
the literature. A graph representing a collection of mal-
ware is formed by function hashes representing nodes,
making it possible to explore the collection using classic
graph operations supported by Palantir. By annotating
the nodes with additional information, such as the loca-
tion and time where the malware was discovered, one can
use the relationship within malware to make connections
between otherwise unrelated clues.

1 Introduction

Malware research is currently undergoing a shift in fo-
cus. With the rise of Advanced Persistent Threats (APT),
it is no longer sufficient to simply know what happened.
There is a growing need to understand the who and the
why as well. Essential to this new focus of malware
research is the discovery of relationships between vari-
ous pieces of malware. Every attack, every instance of
malware provides a tiny piece of the larger puzzle. It is
only when these pieces are put together that the impor-
tant questions can be answered. Relationships between
malware help the researcher and analyst determine where
each piece of the puzzle fits.

One of the key indicators of the existence of relation-
ships is shared code. Code share between two malware
can imply shared authorship, behaviors, purpose, lin-
eage, tool chains, etc. For example, shared code was a
major contributor in a report by Kaspersky [5] that postu-
lated close ties between the authors of Duqu and Stuxnet.
Malware forensics, then, would greatly benefit from a
systematic way of discovering, encoding, and searching
these relationships based on shared code.

There have been efforts in clustering related malware,
but the application of these efforts in the general case of
shared code is limited. Clustering algorithms are gener-
ally inefficient, taking on the order of O(n2). This can
be an expensive prospect when dealing with millions of
malware; it is an unaffordable cost when these millions
of malware are each broken into hundreds or thousands
of pieces. In addition, these clustering applications gen-
erally focus on the whole binary. Binaries that share only
a single function will have very low similarity between
them, and a single shared function will be missed.

We present FuncTracker, a system for discovering,
exploring, and visualizing relationships between mal-
ware. Relationships are determined based on shared
functions. This level of comparison was shown to pro-
vide a reasonable level of granularity by Cohen et al. [3]
and Jin et al. [7]. Functions are determined to be sim-
ilar based on matching semantic hash. These semantic
hashes are computed using features at multiple levels of
abstraction, both syntactic and semantic, designed to be
robust against common obfuscations. The use of hashes
instead of a similarity function, such as Jaccard Index,
allows for scalability as the comparison is constant time.

The discovered relationships between malware are
represented in a graph with annotated edges and nodes,
thus allowing for efficient searching and navigation. In
addition to shared functions, this graph based represen-
tation allows for any type of additional relationship to be
represented, such as URLs contacted, APIs called, etc.
Different types of searches are enabled by either travers-

Charles LeDoux, Arun Lakhotia, Craig Miles, Vivek Notani, and Avi Pfeffer. “FuncTracker: Discovering Shared Code
to Aid Malware Forensics Extended Abstract,” 2013.
https://www.usenix.org/conference/leet13/functracker-discovering-shared-code-to-aid-malware-forensics.

mov eax , 0 x5
add ebx , 0 x4
imul eax , ebx

eax = 5
ebx = d e f (ebx) x 5 + 20

(a) Code (c) Semantics
mov A, N1
add B , N2
imul A, B

A = N1
B = d e f (B) x N1 + N2

(b) GenCode (d) GenSemantics

Figure 1: Features provided by BinJuice

ing the graph or by searching for nodes with a specific or
matching annotations.

2 Discovering Shared Functions

Our central problem in FuncTracker is locating small,
but non-trivial pieces of shared code in otherwise unre-
lated binaries. Computing whole binary similarity is too
coarse as we expect the overall similarity to be low. Us-
ing a block level is too fine grain as it is likely there will
be a large number of small, trivial pieces of code match-
ing causing much noise. Functions, however, should pro-
vide a nice middle ground.

Functions are represented by the set of blocks (from
the control flow graph) they contain. Blocks are rep-
resented by four features created using BinJuice [10]:
Code, Semantics, GenSemantics (termed “Juice”), and
GenCode. Each of these features is a single string rep-
resenting a different layer of abstraction. An illustrative
example is given in Figure 1.

Code is, as the name implies, the disassembled code
of the function. This includes the actual instruction
(its mnemonic) and the operands. A common abstrac-
tion from code is to use only the instruction mnemonics
and not the operands [8, 11, 14]. However, by ignoring
operands any data flow information is lost. BinJuice de-
fines the feature GenCode that abstracts away from Code
any specific registers and memory locations, using logic
variable to capture the data flow relationships. The ab-
straction is performed such that two Code features that
differ only in the names of registers and addresses used
will map to the same GenCode feature.

The two syntax based features described above allow
for strong matches, but they are also easy to break. Sim-
ply reordering instructions or substituting one instruction
for a semantically equivalent one will result in a differ-
ent Code and GenCode feature. Thus, BinJuice provides
the Semantics feature using symbolic interpretation and
algebraic simplification to represent the operational se-
mantics of a block. The Semantics feature is designed to
be the same for two blocks that are functionally equiva-
lent, regardless of what the code looks like. GenSeman-
tics is analogous to GenCode in both motivation and cre-
ation. Both Semantics and GenSemantics have a canoni-

cal form that allows for constant time comparison.
A major concern in searching for similar code is scale.

Malware collections often number in the millions of bi-
naries and each individual malware additionally contains
many functions, multiplying the required scale by a hun-
dred or thousand fold. In order to efficiently handle this
scale of comparisons, we use hashes instead of classic
distance functions. Four different kinds of hashes are
created, one corresponding to each type of BinJuice fea-
ture. The hashes are created by sorting the features rep-
resenting the blocks in the function, concatenating them,
and taking a cryptographic hash. Lest this method appear
naı̈ve, work by Cohen et al. [3] showed that even a hash
of raw bytes of a function, abstracted simply by zero-ing
bytes representing memory addresses, is very effecting
in finding similar code. Using hashes of semantics ought
to provide a larger set of functions allowing a constant
time lookup of similar functions.

3 Exploring Relationships

Discovered relationships must still be presented to an an-
alyst in a usable and comprehensible format. We repre-
sent these relationships using a graph structure. Nodes in
the graph represent objects such as a binary or a function;
edges indicate a relationship between objects. Properties
can additionally be attached to a node. Such a repre-
sentation allows for intuitive visualizations and an easy
method of constructing queries to explore the relation-
ships. Searches can be performed by either querying for
nodes with similar properties or by traversing the graph.

In our selected graph structure, the permitted types
of nodes are binaries, functions, and blocks. A binary
contains (has edges between) functions and a function
contains blocks. Blocks have their respective BinJuice
features attached as properties and functions have the
various hashes as properties. An example query is to
start from a binary of interest, traverse the graph to find
all contained functions, query for functions with similar
GenCode hash, and then traverse from the returned nodes
to binaries. This results in returning binaries that share
some function based on GenCode hash, along with the
matching functions.

Graph representation offers the additional benefit of
extensibility. The graph may be populated with addi-
tional types of nodes, edges, and properties; and all of the
connections explored using graph traversal algorithms.
For example, if known, we may associate binaries with
their authors. We can then identify binaries likely writ-
ten by the same author by traversing connections through
similar functions. Similarly, if a set of functions in a par-
ticular binary are known to implement a certain behavior,
this information may be associated with other functions
with similar semantics.

2

4 FuncTracker

We have built an initial prototype titled FuncTracker on
top of the intelligence platform Palantir1. New binaries
are first disassembled and split into functions using IDA
Pro2. The resulting functions are then passed to Bin-
Juice [10], ignoring functions that IDA has marked as
library code. FuncTracker next computes the hashes as
described in Section 2. The graph structure described in
Section 3 is created and loaded into Palantir. The built
in capabilities of Palantir can then be used to explore the
newly discovered relationships, draw additional connec-
tions, and collaborate with other analysts.

5 Example Use Case

We now illustrate the utility of FuncTracker with a con-
trolled study using lab generated malware binaries con-
taining known ground truth. Our study is based around
our motivating use case: finding binaries containing
functions implementing a known behavior. Starting from
a single known implementation of a specific behavior,
we locate binaries containing this implementation. This
could be used, for example, to find binaries containing a
behavioral implementation associated to known authors,
thus associating the binaries with these authors.

The full dataset was first loaded into Palantir as de-
scribed in Section 4. We then located two procedures
known to implement a specific behavior and performed
the following two queries in sequence: a) search for
functions with the same GenSemantics as the two known
procedures, b) find binaries connected to the functions
returned by the previous query.

Figure 2 presents the result of the Palantir queries
along with the ground truth. The two procedures that
started the queries are shown at the top of the hierarchy.
Below these are procedures that share the same GenSe-
mantics as at least one of them. The procedure annotated
in a blue box is a false positive. Below the procedures
are the binaries that contain them and thus contain the
behavior of interest. At the bottom, colored red, are the
false negatives. There were 18 procedures and 2 binaries
incorrectly returned.

As can be seen from this example, FuncTracker has
the potential to establish reliable relationships between
malware based on shared code. Only one false positive
was returned, implying that matches based on the hash
have a higher probability of correctness. This is impor-
tant for many forensics tasks, such as assigning author-
ship to the malware. Even with the high degree of correct
matches, only two binaries were failed to be retrieved. A

1https://www.palantir.com
2https://www.hex-rays.com/products/ida

number of matching procedures were missed, yet the re-
lationships between malware were still established.

6 Related Work

BinDiff [14] uses a number of matching algorithms to
discover similarities between two binaries and a heuristic
to select the correct one. These algorithms are based on
either the structure of the program (ex. call graph) or syn-
tactic features (ex. instruction mnemonics, string refer-
ences). Also relying on syntactic features, Rendevous [8]
uses a classic “index and query” approach to find simi-
lar binaries. BinHunt [4] and Christodorescu et al. [2]
use symbolic interpretation to determine the semantics of
blocks, but their matching algorithms do not scale well as
they attempt to brute force a matching of values (such as
register names) to logic variables (such as in GenCode).

Kruegel et al. [9] defines a method of finding simi-
lar binaries by finding subgraph isomorphism between
their colored control flow graphs. The coloring is done
based on the general “class” of instructions present in a
block. This method is used to good effect by BitShred [6]
to group together both similar malware and the features
causing them to be similar. This method, however, is use-
ful only when the binaries being compared are expected
to be similar.

Jin et al. [7] also match functions using hashes anal-
ogous to those we compute using GenSemantics. They
generalize the semantics by using hashes of values com-
puted by a basic block on a set of predefined, though ran-
dom, inputs. Assuming a sufficiently large set of inputs,
the hashes they compute would create similar partitions
of basic blocks as those computed using GenSemantics.

7 Future Work

While our initial case study is encouraging, a compre-
hensive evaluation is still required. To this end, we are
setting up an experiment designed to test the efficiency
and accuracy of FuncTracker in retrieving all shared
functions in a group of binaries. Additionally, we are
looking at extending our hash based comparison. While
it appears our current hash can be useful, many prac-
tical applications would benefit from the ability to use
an approximate hash such as Locality Sensitive Hash-
ing [1, 7, 13] or a Bloom filter based approach [6, 12].

8 Acknowledgments

This work was supported by Air Force Research Lab-
oratory, Rome, NY and the Defense Advanced Re-
search Projects Agency under contract FA8750-10-C-
0171, with thanks to Mr. Timothy Fraser. The views

3

Figure 2: Using FuncTracker to discover binaries implementing a known behavior.

expressed are those of the authors and do not reflect the
official policy or position of the US Department of De-
fense or the U.S. Government.

References

[1] U. Bayer, P. M. Comparetti, C. Hlauschek,
C. Kruegel, and E. Kirda. Scalable, behavior-based
malware clustering. In 16th Annual Network &
Distributed Security Symposium (NDSS’2009), vol-
ume 9, pages 8–11. Internet Society, 2009.

[2] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. In Proc.
of the 12th USENIX Security Symposium, 2003.

[3] C. Cohen and J. S. Havrilla. Function hashing for
malicious code analysis. In CERT Research Annual
Report, pages 26–29. Software Engineering Insti-
tute, Carnegie Mellon University, 2009.

[4] D. Gao, M. K. Reiter, and D. Song. Binhunt: Au-
tomatically finding semantic differences in binary
programs. In Information and Communications Se-
curity, number 5308 in Lecture Notes in Computer
Science, pages 238–255. Springer, 2008.

[5] A. Gostev and I. Soumenkov. Stuxnet/-
Duqu: the evolution of drivers. https:
//www.securelist.com/en/analysis/204792208/
Stuxnet Duqu The Evolution of Drivers, Dec.
2011.

[6] J. Jang, D. Brumley, and S. Venkataraman. Bit-
shred: Feature hashing malware for scalable triage
and semantic analysis. In Proc. of the 18th ACM
Conf. on Computer and Communications Security
(CCS), pages 309–320. ACM, 2011.

[7] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel,
J. Havrilla, C. Hines, and P. Narasimhan. Bi-
nary function clustering using semantic hashes. In

11th International Conf. on Machine Learning and
Applications (ICMLA), volume 1, pages 386–391,
2012.

[8] W. M. Khoo, A. Mycroft, and R. Anderson. Ren-
dezvous: A search engine for binary code. In
Proc. of the 10th Working Conf. on Mining Software
Repositories (MSR), pages 329–338. IEEE Press,
2013.

[9] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Polymorphic worm detection using struc-
tural information of executables. In Recent Ad-
vances in Intrusion Detection, number 3858 in Lec-
ture Notes in Computer Science, pages 207–226.
Springer, 2006.

[10] A. Lakhotia, M. D. Preda, and R. Giacobazzi. Fast
location of similar code fragments using semantic
’juice’. In Proc. of the 2nd ACM SIGPLAN Pro-
gram Protection and Reverse Engineering Work-
shop (PPREW). ACM, 2013.

[11] A. Lakhotia, A. Walenstein, C. Miles, and
A. Singh. Vilo: A rapid learning nearest-neighbor
classifier for malware triage. Journal of Com-
puter Virology and Hacking Techniques, pages 1–
15, Mar. 2013.

[12] V. Roussev. Data fingerprinting with similarity di-
gests. In Advances in Digital Forensics VI, pages
207–226. Springer, 2010.

[13] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan,
and Z. Su. Detecting code clones in binary exe-
cutables. In Proc. of the 18th International Sym-
posium on Software Testing and Analysis (ISSTA),
pages 117–128. ACM, 2009.

[14] Zynamics. BinDiff 3.2 manual. http://www.
zynamics.com/bindiff/manual/.

4

https://www.securelist.com/en/analysis/204792208/Stuxnet_Duqu_The_Evolution_of_Drivers
https://www.securelist.com/en/analysis/204792208/Stuxnet_Duqu_The_Evolution_of_Drivers
https://www.securelist.com/en/analysis/204792208/Stuxnet_Duqu_The_Evolution_of_Drivers
http://www.zynamics.com/bindiff/manual/
http://www.zynamics.com/bindiff/manual/

	Introduction
	Discovering Shared Functions
	Exploring Relationships
	FuncTracker
	Example Use Case
	Related Work
	Future Work
	Acknowledgments

