A CONTEXT-SENSITIVE FORMAL
TRANSFORMATION FOR
RESTRUCTURING PROGRAMS

A thesis presented to
the Graduate Faculty of
the University of Southwestern Louisiana
in partial fulfillment of the requirements for
the degree Master of Science

Jean-Christophe Deprez

Fall 1997

© Jean-Christophe Deprez
1997

All Rights Reserved

A CONTEXT-SENSITIVE FORMAL TRANSFORMATION

FOR RESTRUCTURING PROGRAMS

Jean-Christophe Deprez

APPROVED:

Arun Lakhotia, Chair
Associate Professor of Computer Science

William R. Edwards Jr.
Associate Professor of Computer Science

Kema Efe
Associate Professor of Computer Science

Lewis Pyenson
Dean, Graduate School

Tothe memory of

my father, Jean-Jacques Deprez

Acknowledgment

My deepest thanksto Dr. Arun Lakhotiafor his supervision. Dr. Lakhotiawas always available
and gave some very constructive observations. | aso want to give my greatest gratitude to
Dr. William R. Edwards Jr. and Dr. Kemal Efe. Both gave valuable comments that significantly
improved the quality of thisthesis.

| want to express my thanks to my mother, Nadine Deprez Lemoine and my brother,
Mathias Deprez who have shared every of my joys and disappointments. To both of you, and to
my father whom | miss very much: Je vous aime.

The work was partially supported by a contract from the Department of Defense and a
grant from the Department of Army, US Army Research Office. The contents of the paper do not
necessarily reflect the position or the policy of the funding agencies, and no official endorsement

should be inferred.

Abstract

Over time, due to repeated modifications, the structure of a software deteriorates, causing its
logical threads to get intertwined, like noodlesin abow! of spaghetti. The threads become
entangled to a point where the program can hardly be understood or modified. We have devel oped
atransformation that restructures a software — disentanglesitslogical threads — to reduce its
complexity. Our transformation isintuitivein that it mimics the activities a programmer may
perform during manual restructuring. Our transformation is also general in that it is applicable to
any re-engineering need. We have proven that the transformation does not alter the semantics of
the restructured program. Our transformation is a composition of two primitive transformations:
TUCK and SPILT. Given aset of statements specified by a programmer, TUCK identifies the
computational thread related to these statements, and SPLIT separates this thread from the rest of
the entangled computations.

A restructuring transformation such has that presented has not been studied before.
Previous transformations for restructuring programs were either not intuitive, or not general, or did
not preserve the semantics of programs. Thus, our transformation is better amenable for usein a

re-engineering environment.

Biography

Mr. Jean-Christophe Deprez was born in Liége (Belgium) on Jantiat9a1. He graduated with

a Bachelor degree in May 1994 from the University of Southwestern Louisiana. After a year spent
in the industry, he came back to U.S.L. in 1995, under the Graduate School fellowship program.
In Fall 1996, he started to work in software re-engineering, and participated in the successful
completion of a project for the U.S. Department of Defense. Mr. Jean-Christophe Deprez is now

planning to continue his Ph.D. studies in software re-engineering.

Table of Contents

I L o Yo [U Yox e o PP 1
L IMIOLIVELION ..ttt ettt sttt sb e b e bbbt bt e s bt e e bt e b e e e bt e e Rt e b e e b e e be e be e beeabeenreeneenre e 1

1.2 RESEAICN ODJECLIVESeeiieiie ettt ettt b ettt e et e e e sb e e e saee e sabe e s be e e nbeeeneee 2

1.3 1MPACt Of the FESEAICN ... bbb 2

1.4 OVErVIaw Of the theSIS......cii i 3

2. RESTIUCTUIING SIrat@QIeS ...ccieiiiiiiiiee e e 4
2.1 SIMUIBEE SCENAITOS ... veeteeiteesteesteesteesteeste e st e sbeesreesreesbeesbeesbeesheesbeesbeesbeesbeesbeesreesbeesbeesreesreesreens 5

2.2 ReStruCturing ProCESS MOOE!coouiiiiiiie ettt ettt ettt sa e sabe e s be e e sbe e e sbee e sabeesnbeaans 8

2.3 Transformations fOr FESIIUCTUITNGovvieiureaiieeiiee ettt ettt e e sbe e sbee e snbe e sbeeens 8

G = - Tod 1o | o 1U 1 Lo N 10
3.1 Control fIOW graph (CFG)....ccoveiiieieitii ettt ettt b et sabe et e b e e rbe e e seee e saee s 10
3.1.1 Post-dominator relationshipSin CFG.........coociiiiiiiiiie et 12

3.2 Program dependence graph (PDG):oo ittt 13
3.2.1 Control relationshipSin PDGcccoeiieiieiieiie ettt nne e 15

O s o PP PP TP TP PRPP 16

4. Restructuring transformation ... 17
AL TUCK ettt bbb bkt b e bt bt a e e e bt e Rt e h e e b e e R e e b e e R e e b e A b e e R e e R e e e ReebeeRe e bRt ebe e e e e e 17
4.1.1 Intuitive reasoning Behind TUCKcooiiiiii e 18

4.1.2 Formal definition and propertieS of TUCKcccoiiiiiiiiiiiie e 19

4.1.3 TUCK: AlGOrTML......eeiiieiiiee ettt ettt sb e sate et e b e e 23
S I N OOV RSP PRT PR 29
4.2.1 Intuitive explanation Of SPLIT ..o 30

4.2.2 SPLIT: AlQOITRM ..t sb e e b e 33

4.2.3 Creating anew module using the NEeW CFG............cocoiiiiiiiie e 35

4.3 Proof that SPLIT preserves the semantics of the original module.............ccccooiiiiiiiiiiiieee 35

4.4 Composing TUCK @nd SPLIT ...ttt e s b e e 37
4.4.1 Context-sensitive formal transformation: Algorithm............ccooeeeiiiiniine e 38

5. Examples: Restructuring of Sale_Pay Profit.......cccccccceoiiiiiiiiiiiiie, 39
5.1 Example 1: Separate iNPUL PArSING........oiueirerrirriirearesressresre e sre s snesre s snesnesreenreenes 39

5.2 Example 2: Restructure to have 0bjeCt deSIgN........ocviaiiiiiiie e 40

6. Related WOTKScoviiiiiiiiiiiiiiiieee e 44
A O3] 11 11 1] Lo o IR 46
T (] =T =] Lo = N 48

Table

of figures

Figure 1: Program Sal@ Pay Profit............ooiioiiiiii ettt 5
Figure 2: Sale Pay Profit program restructured to separate the parsing of iNpUL..........ccccoceeieeiieniieeen 7
Figure 3: Sale Pay Profit program restructured to have an object-based design...........ccoveiveiiii e 7
Figure 4: CFG fOor SAl@ Pay Profitooouiiiieeiii ittt et sb e s sbe e 11
Figure 5: Immediate post-dominator relation for Sale Pay Profit...........cccoeiiiiiiiiiii e 12
Figure 6: PDG for Sale Pay Profit and Sample SliCe........oouii i 14
Figure 7: Definite control and single definite CONroloocuii i 16
Figure 8: RESITUCTUINNG CONMEEXL. eiitiiiieie ittt ettt ettt ettt ettt sbe e sabe e sabe e s be e e sbee e sbee e sabeesnreeans 22
Figure 9: TUCK: Initial work, single definite control NOAES (SUC),veverveirieeeiiie e 24
Figure 10: TUCK: SAMPIE L. ..ottt ettt b et e sbae e sabe e sabe e e be e e sbe e e sbee e snbeesnbeeans 26
Figure 11: TUCK: SAMPIE 2. ..ottt ettt ettt sbee e e be e st e e s be e e sbe e e sbbe e snbeesmbeeans 27
Figure 12: TUCK: SAMPIE 3. ..ttt ettt sttt ettt e e e sb et e sabe e sabe e s be e e sbeeesbee e snbeesnbeeans 28
Figure 13: SPLIT: Stepl, new CFG created (N0 SEPArated)coveiiieiinieieiiee et 34
Figure 14: Example 1- TUCK and the single definite control of theseed S. ... 39
Figure 15: Example 1- TUCK and the slice within the restructuring CONteXt............ccooverniirreeiieerienne 39
Figure 16: Example 1- SPLIT: Sale_Pay Profit restructured to separate input parsing...........ccceeceercveenne 40
Figure 17: Example 2- Extract Read Input from Sale Pay Profit.......c.cccciiiiiiiiii e 41
Figure 18: Example 2- Extract Total_Pay from Sale Pay Profit ... 41
Figure 19: Example 2- Extract Total_Sale from Sale Pay Profitcccccooiiiiiiiiiii e 42
Figure 20: Example 2- Extract Pay from Sale Pay Profit ...t 42
Figure 21: Example 2- Sale Pay Profit restructured for recovery of ObjeCtS..........ocovviiiiiiiiiii e 43

1. Introduction

1.1 Motivation

Software is composed of many small logical threads. Over time, due to repeated modifications, the
structure of a system deteriorates, causing its logical threads to get intertwined, like noodles in a
bowl of spaghetti. The threads become entangled to a point where the program can hardly be

understood or modified.

The deterioration of structure is not always an indication of poor programming practices.
It is a law of software evolution [Lehman85, page 253]. A good design, by definition, optimizes
on several constraints [Dasgupta94]. But a design that is sound for a given set of constraints may
not be sound for another. Given the changes in the market, customer needs, and computing
environment, the initial version of a software soon gets outdated. The software, optimally designed
for an initial set of constraints, is modified to satisfy a different set of constrains. The
modifications are performed under market and schedule pressures that do not leave room for
optimizing the design to the new set of constraints. Every successive change compromises the
optimality of the system design, and its structure deteriorates.

One wonders: Why couldn't companies discard the old system and develop a new one
afresh, whose design is sound for the new constraints?
The answer comes from the following list of myths compiled by Yourdon [Yourdon92, pages 239-
240]:

Myth 1: We can always afford to scrap out the old system and replace them with new

systems, as long as we can demonstrate to the users & management that the new system

will be better.

Myth 2: We can be absolutely, positively, totally confident that a new replacement would

be much, much, much better that the old one.

Myth 3: We can aways figure out what the old system is doing and trandlate it into a

new implementation.

According to Y ourdon, world-class organi zations have recognized these myths and have abandoned
them. These myths further substantiate the necessity of software restructuring. Since we cannot
always recover all of the specifications of an old system and cannot guarantee that it performs

exactly what the users want, we must restructure the old system to enable new modifications.
1.2 Research objectives

To restructure a software isto change its internal structure without affecting its external behavior
[Chikofsky90]. Thisthesisisdirected towards developing aformal transformation for
restructuring software. This transformation should separate the intertwined logical threads of an
old program to reduce its complexity. The transformation should be intuitive, general, and
semantics preserving. A transformation is intuitive if a programmer can anticipate itsresults. Itis
general if it can be applied to any re-engineering goal desired by a programmer. It is semantics

preserving if it does not modify the external semantics of the transformed program.

1.3 Impact of the research

Our restructuring transformation when introduced in a software re-engineering environment will

offer the following benefits:

» Reduction of maintenance costs: In the absence of automated support, programmers
restructure software manually. The manually restructured programs must be tested to ensure

their behavior is not changed. This increases the cost of maintenance. Programs restructured

using our transformation need not be re-tested since their external semanticsis guaranteed to
remain the same.

* Smooth migration of old code to new technology: Due to the rapid changes in technology,
there is a constant need to migrate software devel oped using one language or design paradigm
to another. Our transformation may be used to restructure the old code such that it effectively

uses the advantages offered by a new paradigm.

1.4 Overview of the thesis

After thisintroduction, in Chapter 2, we discuss the strategy used to develop our transformation.
In Chapter 3, we introduce the background information and terminology used for expressing our
transformation. Chapter 4 presents the transformation in detail aswell asthe proof that it is
semantics preserving. We explore the use of the transformation through two examplesin Chapter

5. Before the conclusion, we review the related research in Chapter 6

2. Restructuring strategies

In this chapter we provide insight into the issues in restructuring a software and derive strategies

that guide the development of our transformation.

It is our objective that the transformation we develop be intuitive, i.e., its results should be
fairly closeto what a programmer may do. To gain insight into how a programmer may
restructure a program, in Section 2.1, we present averbal simulation of a programmer
restructuring some code. A step in this simulation consists of a question asked by a programmer
and the answer to that question. In Section 2.2, the question/answer sequence is abstracted to
model the restructuring process followed by the programmer. This process model consists of steps
that a programmer takes during restructuring. Automated support for restructuring may be

provided by automating one or more of these steps.

Our restructuring transformation automates the last step in the restructuring process. This
step is further subdivided in two smaller steps, each of which can be mapped to a primitive

transformation. These transformations are introduced in Section 2.3.

2.1 Simulated scenarios

process: boolean);
2 vari, j: integer;total_sale, total_pay: float;
3 begin
4 i:=0;
5 while i < days do begin
6 i=i+1;
7 readIn(sale[i])
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for j := 1 to days do begin

18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

1 Procedure Sale_Pay_ Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit: float;

13 total_sale := total_sale + sale[i];

14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then

16 total_pay := total_pay + 50;

17 end;

Figure 1: Program Sale_Pay_Profit. Example of a deteriorated function

simultaneoudly for the same number of days.

Consider the program

Sale Pay_Profit of Figure 1.
This program — asits name
suggests — computes the sale, the
pay, and the profit for an
organization. A closeinspection
of the program revealsthat it by
passes the computation of sale,
pay, and profit if its ‘process’
parameter isnot true. The
computation of pay and sale are
unrelated but for the fact that

they are computed

We now simulate the steps a programmer may follow to restructure this program. The

steps are presented as a series of questions the programmer may ask, and the corresponding

answers.

Question What are the different tasks computed by the procedure?

Answer The program performs the following tasks: read the sale per day from the input line,

calculate the total sale, the overal pay, the average pay per day, and the company profit. These

tasks depend on two inputs. The number of days worked and the cost of production. For

uniformity, we treat these inputs as tasks too.

Question: How are the tasks dependent on each other?

Answer: The dependencies between tasks is given in the graph below.

days (input to Read input cost (input to
Sale_Pay_Profit sale per da Sale_Pay_Profi

total pay total sale

/

average pa company profi
per day

——> ‘depends on’ relationshi

Question: How are the results of the procedure being re-engineered used in other procedures?

More specifically are all the results (reference parameters) of each task used outside this

procedure? If so, are all its results used by the procedures calling it?

Answers to these questions, may influence the programmer’s restructuring decisions but are

outside the scope of this thesis. They are left for further research.

Question: What are the goals of the re-engineering tasks?

Answers. Let us assume these two different goals:

» Separate the parsing of input from the core of the program in preparation for modifying the
user interface of the application. For efficiency reasons, the main part of the code must not be
modified. Figure 2 contains the result of such restructuring

» Isolate each task in order to identify objects in the new program, as in Figure 3.

Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit; float;
process: boolean);
var j: integer; total_sale, total_pay: float;
begin
sale ;= Read_Input(days, sale);
if process = True then begin
total_sale :=0;
total_pay :=0;
for j := 1 to days do begin
total_sale :=total_sale + sale[j];
total_pay := total_pay + 0.1 * salej];
if sale[j] > 1000 then
total_pay := total_pay + 50,
end;
pay := total_pay / days + 100;
profit ;= 0.9 * total_sale - cost;
end;
end;

Function Read_Input(days: integer;
var sale: int_array): int_array;
var i:integer;
begin
i:=0;
while i < days do begin
=it
readln(sale[i])
end;
return (sale);

end;

Figure 2: Sale_Pay Profit program restructured to separate the parsing of input from the core

application

Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit: float;

process: boolean);

var i, j, total_sales: integer;total_pay: float;

begin

sale := Read_Input(days, sale);
if process = True then begin
total_pay := Compute_Pay(days, sale);
total_sale := Compute_Sale(days, sale);
pay := Compute_Avg_Pay(total_pay,
days);
profit := Compute_Profit(total_sale,
cost);
end;
end;

Function Read_Input(days:integer;
var sale: int_array): int_array;
var i: integer;
begin
i:=0;
while i < days do begin
=i+l
readIn(sale[i]);
end;
return (sale);

end;

Function Compute_Pay(days: integer;
var sale: int_array): float;
var j: integer;

begin
total_pay :=0;
for j := 1 to days do
begin

total_pay := total_pay + 0.1 * salefj];
if sale[j] > 1000 then
total_pay := total_pay + 50;
end;
return (total_pay);
end;

Function Compute_Sale(days: integer;
var sale: int_array): floatt;
var j: integer;

begin
total_sale := 0;
for j := 1 to days do
begin

total_sale := total_sale + sale[j];
end;
return (total_sale);

end;

Function Compute_Avg_Pay
(total_pay: float; days: integer): float;

var avg_pay:float;

begin
avg_pay := total_pay / days + 100;
return (avg_pay);

end;

Function Compute_Profit
(total_pay: float; days: integer): float;
var profit: float;
begin
profit := 0.9 * total_sale - cost;
return (profit);
end;

Figure 3: Sale_Pay Profit program restructured to have an object-based design.

2.2 Restructuring process model

The restructuring process in our simulated scenario may be abstracted as a sequence of the

following steps:

1.

2.

Identify each task.
Identify the ‘depends on’ relations between each pair of tasks.
Determine the order in which the tasks are to be restructured.
Restructure each task:
a) Identify the computations that influence the given task.
b) Collect all these computations in a new module and create a function call to the new

function in the appropriate position of the original procedure.

Each step in the above model may be considered to be independent of the other steps. Thus each

step is a candidate for automated support.

2.3 Transformations for restructuring

In this thesis, we develop a transformation to restructure an individual task (Steps 4.a and 4.b).

We assume that a subset of statements representing a task, the dependencies between the tasks, and

the order in which the tasks should be restructured have already been identified.

The input to the restructuring process is a task, therefore, we must determine how to

represent a task. A programmer identifies a task, by analyzing the statements of a function, so it is

natural to define a task as a set of statements. Also, we want our transformation to be useful in

interactive tools. To reduce the overhead of the user of such interactive tools, (s)he should only

have to select a very few crucial statements relevant to a given task and our transformation should

determine the rest of the statements that belong to that task. We refer to the crucial statements as a

set of'seed'statements and the wotdsk'defines all the statements related to a seed.

We now have an outline for our transformation: It first collects all the statements related to
an input seed. This collection of statements identifies a task. Next, it extracts and creates a new
function for that task. The transformation has two distinct steps, each of which can be defined as a

primitive transformation:

* TUCK: Identify the entiretask from theinput seed

Given an initial seeé a set of statementsthe transformation TUCK creates a task
containing all the statements related to that seed.

e SPLIT: Extract thetask

The transformation SPLIT extracts a task and generates a new function for it. In doing so,
this transformation should not change the external behavior of the function.
To generate good solutions, TUCK should take into account the cantesttich the statements of
the seed are placed in the function. If TUCK determines several contexts for a seed, it should
create a solution for each context. TUCK must also deal with statement interleaving. If statements
not related to the seed are interleaved with statements related with the seed then TUCK should not
collect the non-relevant statements. For example, in Figure 1, the computations of total_pay and

total_sale are interleaved. They should be separated on restructuring.

! The meaning of ‘context’ will be clarified in Chapter 4 where a precise definition of TUCK is introduced. For now,
a context can simply be viewed as a region of the function within which TUCK may find the statements related to a
seed.

3. Background

TUCK and SPLIT both make use of control flow graphs (CFG), program dependence graph
(PDG), and dlicing to computes their results. For thisthesis to be self-contained, we only present
the definitions necessary for our discussion and our algorithms. For more detailsthe reader is
referred to other literature [Aho86, Ferrante87, Muchnick97, Ottenstein84, Tips95, Weiser84].

We define the notion of a conditional path for both the CFG and the PDG. Thisnationis
not discussed in previous literature and is necessary to exploit some important properties of both
the graphs.

In this chapter, we merely present the definitions and some explanationsto clarify the
definitions. The intuition behind the definitions are introduced in the next chapter when we
introduce our transformation. We discuss CFG, PDG, and dlicing in Sections 3.1, 3.2, and 3.3,

respectively.
3.1 Control flow graph (CFG)

Definition: A control flow graph of amodule M, denoted CFG(M), isagraph G = <V, E> where
V isaset of nodesin CFG(M) and E isaset of edgesin CFG(M). A edge between two CFG
nodes v; and v, denoted v; - v, represents a control flow from v, to v,. A CFG edge may be of
one of threetypes: Always, True or False. In addition, a CFG has a unique start node, Start(M),
and a unique end node, End(M), such that there exists a path from the Start(M) to every other node
and there is a path from every other node to End(M). The CFG of Sale Pay Profit isshown in

Figure 4.

10

vl
Sale_pay_Profit —_—T Always flow edge
Entry
F —T—¢= Trueflowedge

— F—— Falseflowedge

v10

[total_sale := total_sale + sale[j]

total_pay := total_pay + 0.1 * sale[j]

(for j := 1 to days do $
vi2

7
F ,
(If sale[j] > 1000)
y vi4 I
pay := total_pay / days + T
100 ‘L
‘ V13]

v15
(total_pay := total_pay + 50
Sale_pay_Profit
Exit

Figure 4: CFG for Sale_Pay Profit procedure of Figure 1.

v9

Definition: A path in CFG(M) from CFG node v; to CFG node v,,, denoted v; - *V,, iS a sequence
of zero or more CFG nodes that belong to CFG(M) such that (i, 1 <=1 <n, vi-» Vis; iISaCFG

edge in CFG(M).

Thefirst node and the last node in the sequence as well as al the intermediate nodes are
said to be in the path.

Definition: A conditional path in CFG(M) from CFG node v; to CFG node v;,, denoted

Vi - *cVp, ISa CFG path v, - *v, such that v; - v, isa CFG edge in CFG(M) and this edge istypec

wherec [{True, False}.

11

Thetag c on the edge represents the type (True or False) of the first edgein the path. The types of

the subsequent edgesin the path do not matter in this definition. There exist two possible

instantiations for a conditional path in CFG(M) from v, to vy, (1) v; - *Truevn or (2) vi— *Fa,sevn.

3.1.1 Post-dominator relationshipsin CFG

Definition: Post-dominator & immediate post-dominator in CFG(M): A CFG node w is the post-
dominator of a CFG nodev if path from v to End(M) contains w. Furthermore, wistheimmediate
post-dominator of v, denoted ipdom(v), if every post-dominator of v, other than v and w, also post-

dominatesw. Figure 5 gives the immediate post dominator relation of CFG in Figure 4.

Sale_pay_Profit
Entry
B ————
v2 immediate post-dominator
i=o0] relationship
% v3 v4
[=i+ 1]
[while i < days do
‘L \I\ % v5
v6 [readln(saleli])]
[if process = true]
v7
[total_sale := 0] v10
% [total_sale := total_sale + sale[j]
v8
[total_pay := 0] Vil
% [total_pay := total_pay + 0.1 * sale[j]
v9

If sale[j] > 1000]
pay := total_pay / days +
100

ﬁ v1l5
profit := 0.9 * total_sale -
cost

v16
Sale_pay_Profit
Exit

Figure 5: Immediate post-dominator relation: From the immediate post-dominator treeit is possible to identify the ipdom of
any CFG node.

—/

V13

(rori=1tdaysdo
7 — v
(

total_pay := total_pay + 50 j

12

3.2 Program dependence graph (PDG):

Definition: A program dependence graph of module M, denoted PDG(M), is agraph
P =<N, E>where N isaset of PDG nodesin PDG(M) and E isaset of PDG edgesin PDG(M).
A PDG edge between n; and n,, denoted n,/[J n,, represents the data or control dependence
between the statements of M. For further details on the exact meaning of PDG dependencies, we
refer the user to [Ottenstein84, Weiser84]. A PDG edge may be one of three types: Data, True or
False. Figure6illustratesthe PDG of Sale_Pay_Profit.

Because the rest of our definitions depends only on the control dependence of aPDG, we
have added a distinct definition to easily refer to such edges.
Definition: A control Edge from n; to n,, denoted n;[1 . n,, isaPDG edge
wherec U {True, False}
Definition: A control path of PDG(M) from PDG node n, to PDG node n,,, denoted n;0J *nn, isa
sequence of PDG nodes that belong to PDG(M) such that Ui, 1<=i < n, n1 ¢ NMis1 isacontrol edge
in PDG(M) where ¢ U { True, False}. A control path isalso reflexive, therefore a PDG node n

belongston O "n,

Definition: A conditional control path in PDG(M) from PDG node n; to PDG node n,, denoted
n,] c*nn, isacontrol path, n,[] *nn such that n;0 ;. n, isaPDG edge in PDG(M).
Thetag c on the edge represent the type (True, or False) of the first edge in the control path. The

type of the other edgesis not relevant in this definition. Therefore, there exists two possible

instantiations for a conditional PDG control path from n; to ny:

(D) MmO qrenpor (2) mO Fasenp.

13

Entry

/
’

-=7
I
[

n2
Neee
data dependence
__________ I~

true control denendence

S

false control dependence

\
pET AN
n7

I
1

1
/

i =

L total_pay :=0
1
1
]
1

1

1

1

]

1

1}

1

N\
\
ol =

B n9
N for j := 0 to days ‘

A

+ sale[j] |
w2 >N

\2
4’«‘—‘

total_pay :=
total_pay + 50

sale[j] > 1000

pay := 100 +
total_pay / days

nl5
\| profit := 0.9 *
A= total_sale - cost \
> A \ nié

sale out

Figure 6: PDG for Sale Pay_Profit program. The shaded nodes represent the slice on node n13

14

3.2.1 Control relationshipsin PDG

This section introduces four definitions that use the notions of control path and conditional control
path. Thefirst definition creates a set of the PDG nodes that have a path to a given PDG node
through only one of their control dependencies. Therefore, if anode p has a control path to another
node g through its True branch then p should not have a control path to q through its False branch.
It isonly possible for a node to reach another node through both of its control path in the presence

of got o statements. The PDG in Figure 7 illustrates such condition.

Definition: A definite control node p of another PDG node n, denoted dc-node(n), is an ordered

pair (c, p) such that (c, p) O de-node(n) iff ¢ 0 { True, False} & if pd ¢ nthen ~(pd - n).

e ~cmeansthe complement of c, thusin our case if ¢ = True then ~c = False and reciprocaly if
c = Fasethen ~c = True.

e pO c*n isused asapredicate. It statesthat there exist a path from p to n through the ¢ control
dependence edge of p

o ~(pO ~c* n) isalso apredicate. It statesthat there should not exist a conditional control path
from p to n through the ~c control dependence edge of p.

An element in dc-node(n) definitely controls nin the following sence: If (¢, p) [dc-node(n) thenin

CFG(M) there does not exist a path plJ ~c*n and there exist a path pJ c*n

Definition: A definite control node p of a set of PDG nodes S, denoted dc-set(S): is an ordered

pair (c, p) such that (c, p) O dc-set(S) iff N dc-node(n).

OnOS

All elements of dc-set(S) definitely control every element of S. It is quite possible for two
elements belonging to dc-set(S) to also definitely control each other. That is (c;, n;) [dc-set(S)

and (c;, np) [de-set(S) and (¢, ny) O de-node(ny) and (c,, nz) [de-node(n;). The following

15

definition restrict this case by removing such definite control nodes. In other word, from the dc-set,
it selects the nodes which have a control path between each other, furthermore, the control path
must exist only in one direction. Therefore, if two nodes n and m belong to agiven dc-set either n
may have control path to m or m may have a control path to n but not both may betrue. Thisis
equivaent to an exclusive OR (XOR) between the control dependencies between n and m. The
PDG in Figure 7 shows an illustration of the definition.

Definition: A single definite control node p of a set of PDG nodes S, denoted sdc(S), isan
ordered pair (c, p) such that (c, p) O sdc(S) iff (¢, p) O de-set(S) &

0 (g, n) O de-set(S), p= nor ((p0 ¢ n) & ~(n ¢'p)) or (~(pL ¢) & (n ¢ p)))-

Definition: The nearest single definite control node p of a set of PDG nodes S, denoted nsdc(S),
isan ordered pair (c, p) [J sdc(S) such that PDG node p does not have a control path to any other

sde(S).

R S
- Cca >
T F

Figure 7: This sample PDG illustrates the different properties defined above.

T

Definite control node: dec-set({S}) = { (False, C1), (True, C3), (False, C4)}. C2isnot a dc-set({S}) because it can reach
Sthrough both of its control path True and False.

Single definite control: sdc({S}) = {(False,C1)}. Inthiscase, C3 and C4 are not sdc({S}) because they do not control
each other even though both reach Sfrom one of their control path.

3.3 Slice

Definition: A dlice, denoted slice(P, n), is the backwards reflexive transitive closure of the PDG
edges with respect to aPDG node n in PDG P. In Figure 6, the shaded nodes represent the slice on

n13.

16

4. Restructuring transformation

This chapter presents the main contribution of this thesis, a context-sensitive transformation for
software restructuring. As stated in Chapter 2, our transformation is composed of two primitive
transformations, TUCK and SPILT. The two transformations are presented in Section 4.1 and
4.2, respectively. Section 4.3 proves that SPLIT transformation does not change the semantics of
the original programs. Since the TUCK transformation does not modify programs, it is
tautologically true that TUCK does not alter the semantics of those programs. Section 4.4 presents
our restructuring transformation by composing TUCK and SPLIT. That our transformation
preserves the program’s semantics follows from the proof of its components.

Our transformation uses control flow graph (CFG) and program dependence graph (PDG)
introduced in Chapter 3. We assume the existence of the CFG and the PDG for the program being

restructured.

4.1 TUCK

The input to TUCK is, (a) a CFG and (b) a set of CFG nodes representing the seed. Its output is a
solution for each restructuring context. The restructuring context is a set of CFG nodes within
which the computations related to a seed are identified. Therefore, the output of TUCK is a set of
ordered pairs where the first element is a set of CFG nodes corresponding to a context and the
second element is a subset of the first element identifying the set of CFG nodes representing an

entire task within that context.

17

Signature®
TUCK: CFG = P(CFG node) - P(P(CFG node), P(CFG node))
Input (1) a CFG to be restructured
(2) aset of CFG Nodes representing theinitial seed.
Output aset of ordered pairs where the first element represents a context and the second element a

task within that context.

4.1.1 Intuitivereasoning behind TUCK

Theinitial work of TUCK isto determine all the different contexts associated to an input seed. For
each context, it identifies only the computations relevant to the seed within that context. Slicing is
a convenient method to extract the computation relevant to specific statements (or a seed), thus we
need to find away to define a context.

A paralle with natural languages can help. As aword might have different meaning
depending on its context, (i.e., as we read a phrase, a paragraph or an entire passage containing a
word, we could attach different meanings to that word depending on each of its contexts), a
computational task may aso have different meanings as we abstract it out to its different contexts
(i.e., withinits block, its module, itsfile, the entire program). Just as natural languages have the
concepts of punctuation, paragraph, section, chapter, volume to delimit aregion from which to
associate a context to aword, we need to define or translate such concepts to the world of
programming.

A 'context'should be a closed region of statementswhich may influence or be influenced
by the input seed. We a so need to keep in mind the goal of the overall restructuring

transformation, which is to identify potential new modules. In procedural languages, modules have

2 We use P to mean power set.

18

a single entry. So, a programmiiegntext'should have a similar property. A single definite

control (sdc) of the input seed S is a node from which it is possible to reach every node in the input
seed along one conditional control path but not the other. Thus we can utilize a sdc to create a
context.

We now need to identify a single entry region for each element of the sdc(S) such that it
contains the seed. To obtain accurate results, the region should be as small as possible. We
formally define the concept of minimal region of a single definite control node, called restructuring
context, in the next section. A restructuring context creates a boundary around the input seed S for
an element of a sdc(S). Each element of sdc(S) provides a different context for the restructuring

and the nsdc(S) determines the smallest restructuring context of an input seed.

4.1.2 Formal definition and propertiesof TUCK

In the following theorem and definitions, we assu(agp) [1 sdc(S) whereSis the input seed.

Theorem: Nodes that are directly control dependent orctbendition ofp in the PDG form a

simple path in the post dominator tree of the CFG [Ferrante87].

Since the nodes directly controlled ppyvith a control dependence of typérm a simple

path in the post-dominator tree, we can create a sequence with these nodes.

Definition: From the above theorem, we can defimerarol sequence of nodes dthrough d,
denoted [d ..., d], where ¢ .., d, form a simple path in the post-dominator tree ahtl.d. We

know that sucle exists sincg belong to sdc(S).

Figure 8 identifies a control sequence in the PDG of Sale_Pay_Profit.

Definition: A minimal control sequence of nodes dthrough gthat controls some node 8f

denoted seq(S), is a sub-sequence of a control sequence for an element in sdc(Shasére d

19

smallesi in the control sequendd, ..., d|] for which there exists a path(d *sfor somes 0 S

and g has the largestin the control sequendd,, ..., d;] for which there exists a path(d "sfor

somes] S

Figure 8 illustrates the minimal control sequence definition in the PDG of Sale_Pay_Profit.

Definition: A restructuring context, rc(c,p), where(c,p) is a single definite control of se&dis

the set of all the nodes that belong to the PDG nodes of PDG(M) such that

m O re(c, p) iff (c,p) O sdc(S) andl (1 seq€, p) andd [*s, wheresJ S

Figure 8 identifies such node in the PDG of Sale_Pay_Profit.

Theimportant propertiesof rc(c, p):

Single Entry:
rc(c, p) defines a flow graph with single entry since there exists only one direct entry point
of rc(c, p), which is the first node in the minimal control sequence (by definition of rc(c, p)

& seq(9)).

Single Exit:
There might be several nodes from which the flow exits rc(c, p) but they all flow to the
immediate post dominator of the last node in the minimal control sequence (by definition of

rc(c, p) & seq(S)).

Closed:
The single entry and single exit properties ensure that rc(c, p) is closed in the following
senseflg O re(c, p) &0O0m O re(c, p)

if m - gis an edge in CFG(M) theqis the entry of rc(c, p) or

20

if g - misan edgein CFG (M) then misthe ipdom of the last node in the minimal control

sequence.

21

— 6
if process = True

.

i=i+1

n4

a1~y

readin

sale[i] in

sale[ilout

00000

input seed S
(belong to rc)

sdc(S) under
consideration

node in the
control sequence

node in min-seq
(belong to rc)

other node in rc

nl

Figure 8: Therestructuring context (rc) of (True, nl) with the seed n5 = {n3, n4, n5}.

22

6

Derived from its properties, rc(c, p) could be extracted as a separate module, afunction-call CFG
node to the new function could be created for rc(c, p) aswell as the necessary CFG edges to
maintain the identical control flow. Extracting rc(c, p) into a new module would not modify the
semantics of the original program since neither the control flow nor the data flow® have changed.
Therefore, the semantics of the inter-procedural PDG would be identical. From this observation,
we can treat rc(c, p) asif it was a separate module without actually creating the new module for
rc(c, p). We use thisfact to avoid dealing with inter-procedural CFG and PDG which add
unnecessary complexity to the proof (for SPLIT).

Lemma: Using the above observation, a dice contained within rc(c, p) preserves all the properties
of aregular dlice sincerc(c, p) can be extracted as a separate module. The equivalent to the slice
on a PDG node n within rc(c, p) is:

dice(PDG(M), n) n rc(c, p)
4.1.3 TUCK: Algorithm

Input: P: CFEM [* CFG for nodule M */
S: P(CFG Nodes)= set of CFG Nodes /* Input seed */

Processing of TUCK:
sol =01
all-sol =01

for every (c, m 0O sdc(S) do
for every n O S do
sol = sol U ((slice(P, n) n B((c,m))
end
all-sols = all-sols U (B((c,m), sol)
end

Output: al | -sol s: P(P(CFG Nodes), P(CFG Nodes)) /* set of ordered
pairs where the first elenent represent a context and the
second identifies a subset of nodes consisting of an
entire task for Swithin the context */

3 Eventually, we also must introduce parameters to the new function to maintain the data flow coming in and out of
the new function equivalent to the data flow of the original module.

23

control dependence to

Sale_Pay_Profit

the seed S

III
1

O Input seed S to TUCK
O sde(S)

né

- if process =
True
’

]
[
1
]
]
]
]
]
]
]
]
]
1
1
]
1
]
]
]
|
]
1
[l
\
]

n9
e [= forj:=0to days
i

N\,
<< 12
sale[j] > 1000

nl3

total_pay :=
total_pay + 50

]
1
]
!
1
]
]
]
]
[}
oo

Figure 9: TUCK first computes the single definite control nodes (sdc) for the initial seed, n13. In this case, the seed isthe
singleton {n13} but generally it can be a set. The resulting set, sdc({n13}) = { n12, n9, n6, nl}.

24

Theresult of sdc({n13}), Figure 9, isthe set of single definite control nodes { (True, n12), (True,
n9), (True, n6), (True, n1)}. Each of the nodes n12, n9, n6 and n1 along with their condition
defines arestructuring context. The result of rc(True, n12) isaset only composed of one PDG
node: n13, theinitial seed. Thus, the result of TUCK within the context defined by n12 would only
identify the statement t ot al _pay: =t ot al _pay+50. Thisresult seems redundant,
nevertheless, it is not incorrect and may even be desirable under certain circumstances. On the
other hand, such an example does not highlight most of the concepts of TUCK aswell asthe next
transformation, SPLIT. Therefore we only show the result of TUCK on context defined by n9in
Figure 10, followed by TUCK on context defined by n6 in Figure 11 and on context defined by nl

in Figure 12.

25

Sale_Pay_Profit
Entry

n7
= total_pay := 0
n8

7 total_sale :=0

pay := 100 +
total_pay / days

nls

\| profit := 0.9 *
total_sale - cost

total_pay :=
total_pay + sale[j]

nl

3\
Input seed S to TUCK
the sdc({n13})
under consideration
o nodes within the
context rc(True,n9)
of the seed S

Ay

nl6

<}
N ~ - AN
\ - @
\ -
N -~

\

sale out

Figure 10: TUCK({n13}) within the restructuring context defined by n9. The result of the slice within this

context is{ n12, n13}.

O Input seed S to TUCK
|:| the sdc({n13})

under consideration

O nodes within the

context rc(True,n6)
of the seed S

n6

if process = True

n9

for j := 0 to days

n10 \\
male::\\ T~

nll

total_pay :=
total_pay + sale[j]

total_pay :=
total_pay + 50

Figure 11: TUCK({n13}) within the restructuring context defined by n6. In this case the slice on n13 within
rc(True, n6) is{n9, n11, n12, n13}

27

Sale_Pay_Profit
Entry

=

Input seed S to TUCK

the sdc({n13})
under consideration

nodes within the
context rc(True,nl)
of the seed S

né

n7

—_
if process =
True
’
/
/
’
/
’
’

S v total_pay :=0

\ /—\nfi
\
\\ total_sale := 0
\

AN

total_sale :=

total_sale + sale[j]

total_pay :=
total_pay + sale[j]

nll

total_pay :=
total_pay + 50

nl4
pay ::D

total_pay / days

nl5

profit := 0.9 *

total_sale - cost

Figure 12: TUCK({n13}) within the restructuring context defined by nl1. The slice on n13 within rc(True, nl) is

{n6. n7. n9, n11, n12, n13}

28

4.2 SPLIT

The SPLIT transformation splits a single-entry, single-exit region into two regions. For our
restructuring transformation to be useful, it is necessary that SPLIT preserves the semantics of the
original module. SPLIT doesthe following, given a CFG(M) and a set of CFG nodes, that
represent atask, it analyzes whether the task may be extracted from its context without affecting
the semantics of the original module. If it can be, SPLIT separates the CFG in two, the first CFG
isatask equivaent to the input task (which becomes a new module) and the second CFG is
equivaent to the remaining tasks computed by of the origina module. Also, to preserve the
semantics of the program, SPLIT introduces a function call to the new CFG in the original
function. We provethat SPLIT does not affect the semantics of the original program in Section
4.3. To avoid dealing with inter-procedural CFG & PDG in our proof, we have broken SPLIT in
two steps. Thefirst step modifies the original CFG but still keepsitsresults into one CFG. The
second step uses the new CFG to extract the task into a new module. In this two-step approach,
we prove that the first step, which changes the CFG does not modify the semantics. Most of the
issues are handled by the first step. From the CFG resulting from step 1, it is easy to create a new
module without affecting the semantics.

Signature:

SPLIT: CFG x P(CFG node) > CFG x CFG
Input: (1) CFG of module M.

(2) aset of CFG Nodes X representing an entire task to be extracted
Output* (1) the original CFG from which X has been extracted

(2) anew CFG which computes the task X

* When the restructuring is not possible then the original CFG is unchanged and the second CFG is undefined

29

In the rest of this chapter we assume the following definition for B:
B =rc(c, p) where(c, p) = nsdc(X)
Definition: IN(X, v). Given a set of PDG nodes X and a variableN(X, v) is true if there exists
at least one definition afoutside X and that reaches a use of the variattiat belongs to X.
OdOX &dis adefinitonov& Duld X &d O u
Definition: OUT(X, v). Given a set of PDG nodes @UT(X, V) is true if there exists at least one
definition ofv that belongs to X and that reaches a use of the vavidiie does not belong X.
OdO X & dis a definition of v &Ju 0 X & d [0 u
Definition: Local. Variablev is ‘Local’ to a set of PDG nodes X if (a) there is no dependence
reaching any uses @fin X from a definition ofv outside X, and (b) there is no dependence
reaching any use efoutside X from a definition of in X.
v O Local(X) iff ~OUT(X, v) and ~IN(X, V)
Definition: Value. Variablev is ‘Valu€ to a set of PDG nodes X if (@) it has only dependencies
reaching uses afin X from a definition ofv outside X and (b) it does not have any definitiong of
within X reaching uses afoutside X.
v O Valug(X) iff ~OUT(X, v) and IN(X, V)
Definition: Outvar. Variablev is ‘Outvar’ to a set of PDG nodes X if it has at least one
definition ofv within X reaching a use afoutside X.

v [J Outvar (X) iff OUT(X, V)
4.2.1 Intuitive explanation of SPLIT

Let us assume that SPLIT tries to extract a set of PDG nodes X which constitutes an entire task.
Let Y denote the tasks remaining in the original CFG. The SPLIT transformation will replace the
subgraph B by the graph equivalent to X; Y or Y; X. SPLIT must ensure that this modification

does not change the semantics of the original CFG. In the event that X and Y are totally

30

independent (X n Y =), SPLIT may choose any order (X; Y or Y; X) without changing the
semantics. The difficulty arissswhen X and Y are not independent (X n Y # [1). This means that
some computations are needed in task X aswell asin the remaining tasks Y. Inthe general case,

X n'Y # [0 wouldimply neither X; Y nor Y; X preserve the behavior of B. However weintend to
convert X to amodule with variablesin Local(X) asitslocal variables, variablesin Value(X) asits
value parameters, and variablesin Outvar(X) asits reference parameters. SPLIT can make use
that fact, and it may duplicate computations modifying the local variables (Local (X)) and the value
parameters (Vaue(X)) of X since these computations will be visible only within the syntactic
scope of X and will not influence Y. The Table below exhaustively enumerates all the conditions
determining the decisions of SPLIT. The conditions are not mutually exclusive. It statesthat if
Outvar(X) n Outvar(Y) is not empty then the tasks X and Y cannot be separated.

If Outvar(X) n Vaue(Y) # [then only the ordering Y; X ispermissible. The casefor

Outvar(X) n Value(Y) # O issymmetric. However that Value(X) n Vaue(Y) # O hasno
significance on the ordering. Since Local (X) identifies variablestotally internal to X, such

variables do not affect the decision taken by SPLIT. Thusthe Loca sets do not appear in the table

AnB#O Outvar(X) Vaue(X)
Outvar(Y) Cannot be split X;Y
Value(Y) Y; X X:YorY; X

The Tablereads asfollow: i.e., Outvar(Y) n Outvar(X) # [1 =» Cannot be split.

As stated earlier, the conditions enumerated in the table are not mutually exclusive. Itis
likely that X and Y may satisfy more than one condition. SPLIT picksthe most stringent
recommendation. The recommendations conflict when Outvar(X) n Vaue(Y) # [0 and

Outvar(X) n Value(Y) # 0. Inthat case, the CFG cannot be split. It isalso possible for all the

31

intersections to be empty. In such case, SPLIT may choose any order between X and Y since none

of the computations needed by X are used by Y, and vice versa.

32

4.2.2 SPLIT: Algorithm

Input: CFG(M): the CFG of module M
a set of CFG Nodes X representing a task to extract

Processing of SPLIT:

C = nsdc(X)

B =rc(C)

~X=B-X

Y = {slice(PDG(M), n) | nin ~X} nB

/* Define ordering of X and Y upon their local, value and outvar
variables */

Case outvar(X) n outvar(Y) £z [0
OR (outvar(X) n (value(Y) O local(Y)) # [0 AND
outvar(Y) n (value(X) O local(X))) £ O

/* Restructuring fails, return same CFG In this situation
the only possible restructuring is to extract the whole B
into a new module. */

Case outvar(X) n (value(Y) O local(Y)) £ O

[* ordering: Y;X */

For all v O outvar(X) n (value(Y) O local(Y))
V'’ = append [Vi=v JtoV
X' = Create a copy of the CFG equivalent to X
Y’ = Create a copy of the CFG equivalent to Y where

each v is substitute by V'

Append Y'to V' -> G
Append X'to G' -> G"
Replace B by G" in CFG(M)

End For
Otherwise
/* outvar(Y) n (value(X) O local(X)) OR
(value(X) O local(X)) n (value(Y) O local(Y)) OR

all intersections are empty */
[* ordering: X;Y */
For all v O (outvar(Y) n (value(X) O local(X))) O
((value(X) O local(X)) n (value(Y) O local(Y)))
V'’ = append [Vi=v]JtoV
X' = Create a copy of a CFG equivalent to X where
each v is substitute by V'
Y’ = Create a copy of the CFG equivalentto Y
Append X'to V' -> G
Append Y'to G' -> G"
Replace B by G" in CFG(M)
End For
End Case
Extract X’ from G” -> (O, T) where O and T are CFG'’s

Output: CFG O: the original CFG from which X has been extracted
CFG T: a new CFG for the task X

33

—= Always flow edge D Node in X'

D Node in Y’

— T Trueflowedge

—F = Falseflow edge

v9
v7 total_pay':= total_pay '+ J

0.1 * salelil
. /

total_pay ' :=0

x v10

(If sale[j'] > 1000

T

é vll

~—

v12

total_pay’:= total_pay '+
50

v16

total_sale :=
total_sale + sale]j]

total_pay := total_pay +
0.1 * sale[j]

v18

vl

v1l7

v15

If sale[j] > 1000

v20

4 A
pay := total_pay / days +
100 h
. J/ v19
¢ total_pay := total_pay +
v21 50
4 A
profit := 0.9 * total_sale -
= cost

N\ J

Figure 13: New CFG created by the first step of SPLIT. Thisisthe solution for SPLIT using the result of TUCK from

Figure 12.

4.2.3 Creating a new module using the new CFG

It is now straightforward to create the new module for the input task X. Since X' is identical to X,
we can replace it by a call to the new module and put all the statement of X' in that new module.
Every Value variable becomes a value parameter, each Local variable becomes a local variable of

the new module and the Outvar variables become reference parameters.

4.3 Proof that SPLIT preserves the semantics of the original

module

The step in our algorithm for which we need to prove that the semantics has not change is where B
is replaced by G” which is either V';X";Y" or by V';Y";X". If we can prove that in the case where
Outvar(X) n (Value(Y)O Local(Y))# O then V';Y';X' has the same semantics as B, then by
symmetry, the result is also valid for the case of

Outvar(Y) n (Value(X) O Local(X)) # I with the reverse ordering V';X";Y".

Also, by their two definitions, W] Outvar(X) iff OUT(X,v) and implicitly (IN(X,v) or ~ IN(X,v))

and vl Value(X) iff ~OUT(X,v) and IN(X,v). This means that semantics of Value does not add
any constraint not taken care of by the semantics of Outvar, since Value only deals with definitions
that reach in and Outvar deals with both, definitions that reach in and out. Therefore, if the
semantics of the original module remains unchanged with Outvar(Yalue(X) 0 Local(X)) and

the reordering V';X";Y' then such reordering will also keep the original semantics unchanged in the
case of (Value(X)I Local(X)) n (Value(Y)O Local(Y)).

We are then left to prove the following case: If OutvarX()Value(Y)O Local(Y))# O then

VY X" has the same semantics as B.

In our proof, we make use of works on the semantics of PDG's and slices. Cartwright and

Felleisen show that a PDG has the same the semantics as the program it represents [Cartwright89].

35

Venkatesh adds to the work of Cartwright and Feleisen and proved that slicing preserves the

semantics of a program for the variable under consideration [Venkatesh91]. Because we use the

semantics of slicing in the proof, we must impose a property on the input nodes X to SPLIT. The

input X must have the following property:

Input property:If X 0 B O PDG(M) thenp O (B-X) &p'OX, 0 ~(pO pY))

There are two very important observations to make on this property:

1. X={slice(n) | nO X} n B. X s the equivalent to a slice on its nodes contained within B. (by
definition of the input property)

2. TUCK creates an output with such property.

Lemma: If Outvar(X) n (Value(Y)O Local(Y))# [0 then V';Y";X' has the same semantics as B.

*« Semantics of the new statements, v’ :=v

V'’ is the introduction of statemert=v (wherev’ is a new variable in each statement) for

each variable in Outvar(X) (Value(Y) Local(Y)). These statement are inserted in the new

CFG before X' and Y’ (see algorithm). They do not affect the semantics of B since v’ are new

variables.

* Semantics of X and Y taken separately

X is equivalent to a slice on its nodes contained within B (imposed by the input property). Since a

slice preserves the semantics of the variables under consideration then the variables used within X

will have the same values after the execution of X whether X is executed by itself or X is executed

in B.

From the algorithm, Y too, is a slice. Therefore, whether Y is executed by itself or Y is executed

in B, for the same input, its variables will have the same resulting values.

36

Thus, since XJ ~X = X [Y = B then separately, X and Y execute all the computations
of B. So, if we can order X and Y and keep the semantics of B then the execution of X and Y or
the execution of B will give the same results.

e Combining X and Y while preserving the semantics. OrderingY; X

O v O Outvar(X) n (Value(Y) O Local(Y)), we know that, If n1 Y & n is a definition of v &

n'00 B then ~(n] n'). In other words, since a variable v is only Value or Local to Y then by
definition, no PDG node defines the variable v within Y and creates a data dependence to a use of
the same variable v outside B. On the other hand, to make sure that tinedoedenot reach any

node pJ X, we can replace every occurrence of the variable v (which is defined by n) by its
corresponding variable v' in Y. Since v' equals v before the execution of Y then v’ has the same
semantics as v. Now, since Y only modifies v’ instead of v, we know that v will reach X with the
same value as in the original function.

Therefore, the ordering V’;Y’; X’ has the same semantics as B where V' is a set of
statement v’ := v, Y’ is a copy of Y where the variable v has been substituted by v’ and X’ is the

identical copy of X.
4.4 Composing TUCK and SPLIT

In this section, we show how TUCK and SPLIT may be composed to create a context-sensitive
formal transformation. The TUCK transformation identifies a set of tasks and the SPLIT
transformation separates a task into a new function. Thus, our transformation should first call
TUCK followed by SPLIT. TUCK creates a set of tasks but SPLIT can only extract one of them.
Therefore, after TUCK, a user or an automated tool must make a decision upon which result of
TUCK creates the best solution for the restructuring. After the decision, SPLIT may be called

with the selected result, and extract it into a new function.

37

Signature:

CSFT: CFG x P(CFG node) = CFG x CFG

Input: (1) aCFG to be restructured
(2) aset of CFG nodes representing the initial seed.
Output®: (1) the original CFG from which the selected task has been extracted

(2) anew CFG which computes the selected task.

4.4.1 Context-sensitive formal transformation: Algorithm

Input :

G CFEM
S: the Initial Seed = P(CFG nodes in CFG M)

Processing of the restructuring algorithm:

TUCK- Sol = TUCK(G, S)

(C, T) O TUCK- Sol /* this step represents the decision
anong the contexts*/
SPLIT-Sol = SPLIT(G T)

Output:

SPLIT-Sol : CFG M fromwhich T has been extracted
a new CFG conputing T

® When the restructuring is not possible then the original CFG is unchanged and the second CFG is undefined

38

5. Examples: Restructuring of Sale Pay Profit

This chapter illustrates the use of the restructuring transformation on the Sale Pay_Profit function

introduced in Figure 1. In Chapter 2, we have proposed two ways of restructuring this function.

We will show how both the solutions can be derived using our transformation. First, we

restructure Sale_Pay_Profit to separate the input parsing from the main processing of the program,

then we show how to achieve the restructuring of Sale_Pay_Profit to recover objects. In the first

example, we present the application of the transformation through threeillustrations. In the second

example, where the transformation is applied several times, we only show the input to the

transformation directly followed by its output. Also, the output of one step automatically becomes

the input of the next step.

5.1 Example 1: Separate input parsing

1 Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit: float;

process: boolean);

4 i:=0;
5 while i < days do beggin

7 readln(saleli]);

Figure 14 : TUCK first identifies all the single definite
control of theseed S

39

1 Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit: float;

process: boolean);

i:=0;
while '<N\qays do begin
i=i+1;

readln(salel

N o oob

Figure 15: The sdc on line 1 is the context chosen to
restructure the function. So the slice stays within the
restructuring context defined by line 1. The highlighted
statements arein slice(S).

Procedure Sale_Pay_Profit (days: integer;

cost: float; var sale: int_array;

var pay: float; var profit: float;

process: boolean);
var i, j: integer; total_sale, total_pay: float;
begin

sale := Read_Input(days, sale);

if process = true then begin

total_sale := 0;

total_pay :=0;
forj:= 1to days do
begin

total_sale :=total_sale + sale[j];

total_pay := total_pay + 0.1 * sale[j];

if sale[j] > 1000 then
total_pay :=total_pay + 50;
end;
pay := total_pay / days + 100;
profit := 0.9 * total_sale - cost;
end;

end;

Function Read_Input(days: integer;
var sale: int_array): int_array;
var i: integer;
begin
i:=0;
while i < days do
begin
=i+l
readin(sale[i])
end;
return (sale);

end;

\

New function

Figure 16: The result of SPLIT to separate the input parsing from the processing of Sale Pay_Profit.

5.2 Example 2: Restructure to have object design

In this example, we will create as many functions as possible to recover objects to movethe
program to an object-oriented design. In each of the figures, we use the same conventions. On the
right side is the new function generated by the restructuring transformation, on the |eft side isthe
origina function which has been modified with afunction call to the new function replacing the
task extracted. Also, the original function automatically becomes the input to the next
restructuring transformations, thus, we identify the new seed and the element of the sdc(S) used to
create the next result. Sincethefirst step of this second exampleisidentical to Example 1, we

start from the output of Example 1.

40

Function Read_Input(days: integer;
var sale: int_array): int_array;
var i: integer;
begin
i:=0;
while i < days do
begin
i=i+1;
readIn(sale[i])
end;
return (sale);

end;

\

New function
& function call

13

New Seed S

sale := Read_Input(i, days, sale);

total_pay :=0;
forj:=1to days do

sdc(S)

total_pay :=total_pay + 0.1 * sale][j];
if sale[j] > 1000 then
total_pay :=total_pay + 50;

Figure 17: Read_Input is extracted from Sale_Pay Profit. Now, lines 7 and 13 become the seed for the next
restructuring. The sdc under consideration ison line 4 and therc is defined by lines 7,8, 9, 10, 11, 12, and 13.

Function Compute_Pay(days: integer;
var sale: int_array): integer;
var total_pay: integer, j:integer;
begin
total_pay :=0;
for j:= 1 to days do begin
total_pay := total_pay + 0.1* sale[j]
if sale[j] > 1000 then
total_pay := total_pay + 50
end;
return (total_pay);

end;

s

7

R

£/

New function
& function call

10

New Seed S

total_pay := Compute_Pay(days, sale); \

total_sale :=0; sdc(S)

forj:=1to days do

total_sale :=total_sale + sale[j];

Figure 18: Total_Pay is extracted from Sale_Pay Profit. Now, lines 7 and 10 become the seed for the next
restructuring. The sdc under consideration ison line5 and therc is defined by lines 7,8, 9, and 10.

41

Function Compute_Sale(days: integer;
var sale: int_array): integer;

var jiinteger;

begin
total_sale := 0;
for j:= 1 to days do begin

total_sale:= total_sale + sale[j]

end;
return (total_sale);

end: 6 total_pay := Compute_Pay(days,

/\ sale); A
total_sale := Compute_Salg¢(days, sale);

8 pay :=total_pay / days + 100;

k sdc(S)

New function New Seed S
& function call

Figure 19: Total_Saleis extracted from Sale_Pay Profit. Now, lines 6 and 8 become the seed for the next
restructuring. The sdc under consideration ison Line 5 and the rc is defined by lines 6, 7, and 8.

Function Compute_Avg_Pay(days: integer;
var sale: int_array): float;

var total_pay: integer, pay: float;

begin
total_pay := Compute_Pay(days, sale);
pay :=total_pay / days + 100;
return (pay);

end,

6 total_sale:=Compute_Sale(days,

/\ S sale);
7 pay := Compute_Avg_Pay[days, sale);

8 profit := 0.9 * total_dale - cost;

sdc(S)

New function

& function call New Seed S

Figure 20: The average Pay is extracted from Sale_Pay_Profit. Now, lines 6 and 8 become the seed for the next
restructuring. The sdc under consideration ison line 5 and therc is defined by lines 6, 7, and 8.

42

Function Compute_Profit (cost :float, 1 Procedure Sale_Pay_Profit (days: integer;
var sale: int_array): float; cost: float; var sale: int_array;
var total_sale: float, profit: float; var pay: float; var profit: float;
begin process: boolean);
total_sale := Compute_Sale(days, sale); 2 var j: integer; total_sale, total_pay: float;
profit := 0.9 * total_sale - cost; 3 begin
return (profit); 4 sale := Read_lInput(days, sale);
end: 5 if process = true then begin
6 pay := Compute_Avg_Pay(days, sale);
’7 profit := Compute_Profit(cost, sale);
8 end;
9 end;

\

New function End Result
& function call

Figure 21: The end result is the function Sale_Pay_Profit semantically unchanged but now calling many smaller
functions. Each of the function can become a method of an object in a object-oriented design.

Our illustrations show how our restructuring transformation can be used to accomplish
two different re-engineering goals. Theresult in Figure 16 isidentical to the one of Figure 2. The
solution proposed in Figure 21 is semantically equivalent to the program of Figure 3. The
differences are, in Figure 21, Compute_Pay and Compute_Sale are respectively called by
Compute_Avg_Pay and Profit whereasin Figure 3, the main procedure Sale Pay Profit calls
Compute_Pay and Compute_Sale. These differences appear in the last two application of our
transformations. In Figure 19 and 20, Compute_Pay and Compute_Sale are parts of the seed.
Therefore, they are extracted and put in the new functions. Resultsidentical to Figure 3, will be
achieved if line 8 is used as the only seed in the last two transformations. Since our transformation
preserves the semantics, all the different results for the Sale_Pay_Profit restructuring are

semantically equivalent, even though they differ in their internal structure.

43

6. Related works

In this chapter, we present acomparison of our research with other effortsin software
restructuring. Most of the efforts, like ours, use dicing to decompose functions. However, they do
not have amechanism for bounding the dlice to aregion! Hence they have alimited application.
Also related to our work is the identification of interleaved computation [Rugaber96, Rugaber95a,
Rugaber95] and the inverse problem to ours, function composition or integration [Horwitz89]. We
do not survey these research because they are complementary to our work.

Sneed and Jandrasics [Sneed87]

Sneed and Jandrasics have presented a technique that uses the control flow of a COBOL program
to identify code segments that can be converted into modules. For instance, they create a module
for aloop or a section containing more than 200 statements. 1n the absence of any cue from
control statements, they propose that the continuous blocks of 800 statements be broken into
separate modules. Since a statement is placed in at most one module, this approach does not
reorder nor duplicate code. Therefore, the semantics of the original program is not changed. On
the other hand, since the modules created contain the same sequence of statements asin the original
program, this technique does not separate intertwined threads of logic. Thusit neither helps
separating reusable code components nor in making the program easier to maodify.

Kim et al. [Kim94] and Kang & Bieman [Kang96]

The restructuring techniques of Kim et a. and Kang and Bieman use the cohesion (though Kim et
al. call it coupling) between output variables (i.e., reference parameters, global variables) of a
function. Using cohesion, they create groups of variables around which afunction can be
restructured. They then use program dlicing to extract the useful statements. Their techniques

differ in (@) how cohesion is measured, (b) how the related variables are grouped, (c) the class of

program for which the technique is safe (i.e., does not produce incorrect result), and (d) the class
for which it produces correct results. For further details, we refer the user to the original works.
These research have focused on the techniques to identify and extract reusable code. They have
not addressed the problem of replacing the extracted code in the original program by call to the
newly created function. Their algorithm for identifying related computation too is limited because
they do not have a mechanism to bound the slice. Once they have identified groups of related
variables, they use a standard slicing algorithm to extract the computations, this implies that they
collect the computations throughout the entire function.

Ward and Bull [Bull94, Ward93]

Ward's work involved semantics preserving transformation for functional languages and Bull
extended that work to wide spectrum languages. They provided an environment with direct
transformation on the AST of a program. Ward proved that the transformations preserved the
semantics of the original AST for functional languages. These primitive transformations are
usually too simple to be useful as such, nevertheless they can be composed to create more powerful
transformations. However, using the transformation in their catalogue, one cannot create our
TUCK and SPLIT transformations. Also, there transformation cannot bound the scope of a slice

and are therefore incapable of creating restructuring alternatives similar to ours.

45

7. Conclusion

Programmers have been re-engineering code manually since the first program was written.
However, as aresearch discipline software re-engineering isfairly new. Most of the research
efforts on automated support for software re-engineering has focused on extracting information
that can be used for re-engineering. For instance, there has been a significant amount of work on
identifying reusable code. There has not been significant, if any, work in automatically, modifying
the code itself.

To the best of our knowledge, this thesis presents the first formal transformation for
restructuring amenable for usein an automated re-engineering environment. Previous
transformations proposed for similar problems are either not proven to be correct, or do not
correspond to steps intuitively used by programmers, or are not general enough to be applicable in
all but afew situations.

In developing our transformation, we have extended work in program dlicing by inventing
amechanism to limit adice to asingle-entry, single-exit region. This bounded dlice, called TUCK,
provides away to identify a meaningful computational thread within a context. We have then
provided atransformation, SPLIT, for extracting such a bounded slice into a separate function by
splitting a single-entry, single-exit region defined by TUCK into two regions.

Our vision isto automate the software re-engineering decisions as much as possible and to
provide tools that require aminimal interaction. The enterprise of such toolswill be to automate
most of the restructuring decisions. To automate our transformation, it would be necessary to
automatically generate the input seed to TUCK. The PDG and the CFG do not provide the
appropriate abstractions for identifying seeds. The smallest unit of computation in these

abstractionsis a statement. These representations are too fine-grained, and contain too much

46

detail. To help identify the initial seed, we need abstractions that summarize computation
performed by several statements. Lakhotia and Nandigam’s variable dependence graph (VDG) and
pair-wise cohesion table are two such abstractions [Lakhotia92, Nandigam95]. Work is in
progress to use these abstractions to generate seeds automatically.

Currently, TUCK proposes several options for restructuring a function. Not all options
are equally good. The problem of choosing the best option is deferred to the user. For the
transformation to be practical in an interactive tool, the number of solutions proposed by TUCK
should be limited to a select few such that the user is not burdened with unnecessary choices. In a
batch tool, the set of options must be reduced to one. This may be important when dealing with
large programs for which time and space usage may grow rapidly with the number of options.

Further research is needed to generate only the useful solutions, and to rank these solutions.

47

8. References

[Aho86]

[Bulloa]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullma&ompilers: Principles,
techniques, and tools. Addison-Wesley, Menlo Park, CA, 1986.
Tim Bull. Software maintenance by program transformation in a wide spectrum

language. PhD Dissertation, Durham University, Durham, England, 1994.

[Cartwright89] R. Cartwright and M. FelleiserThe semantics of program dependence.

[Chikofsky90]

[Dasgupta94]

[Ferrante87]

[Horwitz89]

[Kang96]

SIGPLAN Notices, 24(7):1:27, 1989.

E. Chikofsky and J. H. Cros&e-engineering existing systems. |IEEE Software
7(1):13-17, 1990.

Subrata DasguptaCreativity in invention and design. Cambridge University
Press, New York, 1994.

Jeanne Ferrante, Kall Ottenstein, and Joe D. WarréFhe program dependence
graph and itsuse in optimization. ACM Transactions on Programming
Languages and Systems, 9:3399, 1987.

Susan Horwitz, Jan Prins, and Thomas Reptegrating non-interfering

versions of programs. ACM Transactions on Programming Languages and
Systems, 11:343387, 1989.

B-K Kang and James Biematlsing design cohesion to visualize, quantify, and
restructure software. In C. V. Ramammoorthy, ed., Proceedings of the Eighth
International Conference on Software Engineering and Knowledge Engineering
(SEKE'96), Lake Tahoe, NV, pp 22229, 10-12 June 1996, IEEE Society Press,

Los Alamitos, CA.

48

[Kimo4]

[Lakhotiad2]

[Lehman85]

[Muchnick97]

[Nandigam95]

[Ottenstein84]

[Rugaber96]

[Rugaber95a]

Hyeon Soo Kim, In Sang Chung, and Y ong Rae Kwon. Restructuring programs
through program slicing. International Journal of Software Engineering and
Knowledge Engineering, 4:349-368, 1994.

Arun Lakhotia. Rule-based approach to computing module cohesion. In

Vic Basili, ed., Proceedings of the 15th International Conference on Software
Engineering, Baltimore, MD, pp 35—44, 17-21May 1993, |EEE Society Press,
Los Alamitos, CA.

Lehman, M. M. and L. A. Belady. Program evolution. Academic Press,
London, 1985.

Steven S. Muchnick. Advanced compiler design & implementation. Morgan
Kaufmann Publishers, San Francisco, CA, 1997.

Jagadeesh Nandigam. A measure for module cohesion. PhD dissertation,
University of Southwestern Louisiana, Lafayette, 1995.

Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graphin a
softwar e devel opment environment. ACM SIGPLAN Notices, 19(5):177-184,
1984.

Spencer Rugaber, Kurt Stirewalt, and Linda Wills. Understanding interleaved
code. Automated Software Engineering, 3(1-2):47-76, 1996.

Spencer Rugaber, Kurt Stirewalt, and Linda M. Wills. Detecting interleaving.
In Mari Georges, ed., Proceedings of the International Conference on Software
Maintenance, Nice, France, pp 265-274, 16-20 October 1995, IEEE Computer

Society Press, Los Alamitos, CA.

49

[Rugaber95] Spencer Rugaber, Kurt Stirewalt, and Linda M. Will$e interleaving problem
in program understanding. In Elliot Chikofsky, ed., Proceedings of 2nd Working
Conference on Reverse Engineering, Toronto, Ontario, ppl¥66 14-16 July
1995, IEEE Computer Society Press, Los Alamitos, CA.

[Sneed87] Harry M. Sneed and Gabor JandrasiSsftware recycling. In Wilma Osborne,
ed., Proceedings of the Conference on Software Maintenance, Miami, FLs pp 82
90, 16-19 October 1987, IEEE Society Press, Los Alamitos, CA.

[Tip95] Frank Tip. A survey of program dlicing techniques. Journal of Programming
Languages, 3:121181, 1995.

[Venkatesh91] G. A. Venkatesh.The semantics approach to program dlicing. In Brent
Hailpern, ed., Proceedings of the ACM SIGPLAN'91 Conference on Programming
Language Design and Implementation, Toronto, Ontario, pp1i®] 26-28 June
1991, IEEE Society Press, Los Alamitos, CA.

[Ward93] Martin Ward. Abstracting a specification from code. Journal of Software
Maintenance: Research and Practice, 5:1@2, 1993.

[Weiser84] M. Weiser. Programdlicing. IEEE Transactions on Software Engineering,
10:352-357, 1984.

[Yourdon92] Edward Yourdon.Decline and fall of the American programmer. Prentice-

Hall, Inc., Englewood Cliffs, NJ, 1992.

50

ERROR: undefi ned
OFFENDI NG COVIVAND:

STACK:

