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Abstract

Over time, due to repeated modifications, the structure of a software deteriorates, causing its

logical threads to get intertwined, like noodles in a bowl of spaghetti.  The threads become

entangled to a point where the program can hardly be understood or modified.  We have developed

a transformation that restructures a software − disentangles its logical threads − to reduce its

complexity.  Our transformation is intuitive in that it mimics the activities a programmer may

perform during manual restructuring.  Our transformation is also general in that it is applicable to

any re-engineering need.  We have proven that the transformation does not alter the semantics of

the restructured program.  Our transformation is a composition of two primitive transformations:

TUCK and SPILT.  Given a set of statements specified by a programmer, TUCK identifies the

computational thread related to these statements, and SPLIT separates this thread from the rest of

the entangled computations.

A restructuring transformation such has that presented has not been studied before.

Previous transformations for restructuring programs were either not intuitive, or not general, or did

not preserve the semantics of programs.  Thus, our transformation is better amenable for use in a

re-engineering environment.
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1. Introduction

1.1 Motivation

Software is composed of many small logical threads.  Over time, due to repeated modifications, the

structure of a system deteriorates, causing its logical threads to get intertwined, like noodles in a

bowl of spaghetti.  The threads become entangled to a point where the program can hardly be

understood or modified.

The deterioration of structure is not always an indication of poor programming practices.

It is a law of software evolution  [Lehman85, page 253].  A good design, by definition, optimizes

on several constraints [Dasgupta94].  But a design that is sound for a given set of constraints may

not be sound for another.  Given the changes in the market, customer needs, and computing

environment, the initial version of a software soon gets outdated.  The software, optimally designed

for an initial set of constraints, is modified to satisfy a different set of constrains.  The

modifications are performed under market and schedule pressures that do not leave room for

optimizing the design to the new set of constraints.  Every successive change compromises the

optimality of the system design, and its structure deteriorates.

One wonders:  Why couldn't companies discard the old system and develop a new one

afresh, whose design is sound for the new constraints?

The answer comes from the following list of myths compiled by Yourdon [Yourdon92, pages 239-

240]:

Myth 1: We can always afford to scrap out the old system and replace them with new

systems, as long as we can demonstrate to the users & management that the new system

will be better.
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Myth 2: We can be absolutely, positively, totally confident that a new replacement would

be much, much, much better that the old one.

Myth 3: We can always figure out what the old system is doing and translate it into a

new implementation.

According to Yourdon, world-class organizations have recognized these myths and have abandoned

them.  These myths further substantiate the necessity of software restructuring.  Since we cannot

always recover all of the specifications of an old system and cannot guarantee that it performs

exactly what the users want, we must restructure the old system to enable new modifications.

1.2 Research objectives

To restructure a software is to change its internal structure without affecting its external behavior

[Chikofsky90].  This thesis is directed towards developing a formal transformation for

restructuring software.  This transformation should separate the intertwined logical threads of an

old program to reduce its complexity.  The transformation should be intuitive, general, and

semantics preserving.  A transformation is intuitive if a programmer can anticipate its results.  It is

general if it can be applied to any re-engineering goal desired by a programmer.  It is semantics

preserving if it does not modify the external semantics of the transformed program.

1.3 Impact of the research

Our restructuring transformation when introduced in a software re-engineering environment will

offer the following benefits:

• Reduction of maintenance costs:  In the absence of automated support, programmers

restructure software manually.  The manually restructured programs must be tested to ensure

their behavior is not changed.  This increases the cost of maintenance.  Programs restructured
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using our transformation need not be re-tested since their external semantics is guaranteed to

remain the same.

• Smooth migration of old code to new technology:  Due to the rapid changes in technology,

there is a constant need to migrate software developed using one language or design paradigm

to another.  Our transformation may be used to restructure the old code such that it effectively

uses the advantages offered by a new paradigm.

1.4 Overview of the thesis

After this introduction, in Chapter 2, we discuss the strategy used to develop our transformation.

In Chapter 3, we introduce the background information and terminology used for expressing our

transformation.  Chapter 4 presents the transformation in detail as well as the proof that it is

semantics preserving.  We explore the use of the transformation through two examples in Chapter

5.  Before the conclusion, we review the related research in Chapter 6
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2. Restructuring strategies

In this chapter we provide insight into the issues in restructuring a software and derive strategies

that guide the development of our transformation.

It is our objective that the transformation we develop be intuitive, i.e., its results should be

fairly close to what a programmer may do.  To gain insight into how a programmer may

restructure a program, in Section 2.1, we present a verbal simulation of a programmer

restructuring some code.  A step in this simulation consists of a question asked by a programmer

and the answer to that question.  In Section 2.2, the question/answer sequence is abstracted to

model the restructuring process followed by the programmer.  This process model consists of steps

that a programmer takes during restructuring.  Automated support for restructuring may be

provided by automating one or more of these steps.

Our restructuring transformation automates the last step in the restructuring process.  This

step is further subdivided in two smaller steps, each of which can be mapped to a primitive

transformation.  These transformations are introduced in Section 2.3.
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2.1 Simulated scenarios

Consider the program

Sale_Pay_Profit of Figure 1.

This program − as its name

suggests − computes the sale, the

pay, and the profit for an

organization.  A close inspection

of the program reveals that it by

passes the computation of sale,

pay, and profit if its ‘process’

parameter is not true.  The

computation of pay and sale are

unrelated but for the fact that

they are computed

simultaneously for the same number of days.

We now simulate the steps a programmer may follow to restructure this program.  The

steps are presented as a series of questions the programmer may ask, and the corresponding

answers.

Question: What are the different tasks computed by the procedure?

Answer: The program performs the following tasks: read the sale per day from the input line,

calculate the total sale, the overall pay, the average pay per day, and the company profit.  These

tasks depend on two inputs:  The number of days worked and the cost of production.  For

uniformity, we treat these inputs as tasks too.

1  Procedure Sale_Pay_Profit (days: integer; 
                        cost: float; var sale: int_array; 
                        var pay:  float; var profit: float; 
                        process: boolean); 
2   var i, j: integer;total_sale, total_pay: float; 
3   begin 
4      i:=0; 
5      while i < days do begin 
6           i := i + 1; 
7           readln(sale[i]) 
8      end; 
9      if process = True then begin 
10      total_sale:=0; 
11      total_pay:=0; 
12      for j := 1 to days do begin 
13          total_sale := total_sale + sale[i];  
14          total_pay := total_pay + 0.1 * sale[i]; 
15          if sale[i] > 1000 then 
16              total_pay := total_pay + 50; 
17       end; 
18       pay := total_pay / days + 100; 
19       profit := 0.9 * total_sale - cost; 
20    end; 

21  end; 

Figure 1: Program Sale_Pay_Profit.  Example of a deteriorated function
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Question: How are the tasks dependent on each other?

Answer: The dependencies between tasks is given in the graph below.

Question: How are the results of the procedure being re-engineered used in other procedures?

More specifically are all the results (reference parameters) of each task used outside this

procedure? If so, are all its results used by the procedures calling it?

Answers to these questions, may influence the programmer’s restructuring decisions but are

outside the scope of this thesis. They are left for further research.

Question: What are the goals of the re-engineering tasks?

Answers: Let us assume these two different goals:

• Separate the parsing of input from the core of the program in preparation for modifying the

user interface of the application.  For efficiency reasons, the main part of the code must not be

modified.  Figure 2 contains the result of such restructuring

• Isolate each task in order to identify objects in the new program, as in Figure 3.

Read input
sale per day

total salestotal pay

average pay
per day

company profit

cost (input to
Sale_Pay_Profit)

days (input to
Sale_Pay_Profit)

‘depends on’ relationship
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Procedure Sale_Pay_Profit (days: integer; 
     cost: float; var sale: int_array; 
     var pay:  float; var profit: float; 
      process: boolean); 
var j: integer; total_sale, total_pay: float; 
begin 
     sale := Read_Input(days, sale); 
     if process = True then begin 
        total_sale := 0; 
        total_pay := 0; 
        for j := 1 to days do begin 
            total_sale :=total_sale + sale[j]; 
            total_pay := total_pay + 0.1 * sale[j]; 
            if sale[j] > 1000 then 
                 total_pay  := total_pay + 50; 
       end; 
       pay := total_pay / days + 100; 
       profit := 0.9 * total_sale - cost; 
     end; 
end; 

 

Function Read_Input(days: integer; 
     var sale: int_array): int_array; 
var i:integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]) 
     end; 
     return (sale); 

end; 
 

Figure 2: Sale_Pay_Profit program restructured to separate the parsing of input from the core
application

Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: float; 

                         process: boolean); 
var i, j, total_sales: integer;total_pay: float; 
begin 
     sale := Read_Input(days, sale); 
     if process = True then begin 
        total_pay := Compute_Pay(days, sale); 
        total_sale := Compute_Sale(days, sale); 
        pay := Compute_Avg_Pay(total_pay, 
             days); 
        profit := Compute_Profit(total_sale,  
             cost); 
     end; 
end; 
 
Function Read_Input(days:integer; 
     var sale: int_array): int_array; 
var i: integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]); 
     end; 
     return (sale); 

end;  

Function  Compute_Pay(days: integer; 
     var sale: int_array): float; 
var j: integer; 
begin 
     total_pay := 0; 
     for j := 1 to days do 
     begin 
          total_pay := total_pay + 0.1 * sale[j]; 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50; 
     end; 
     return (total_pay); 
end; 
 
Function Compute_Sale(days: integer; 
     var sale: int_array): floatt; 
var j: integer; 
begin 
     total_sale := 0; 
     for j := 1 to days do 
     begin 
          total_sale := total_sale + sale[j]; 
     end; 
     return (total_sale); 

end; 

Function Compute_Avg_Pay 
     (total_pay: float; days: integer): float; 
var avg_pay:float; 
begin 
     avg_pay := total_pay / days + 100; 
     return (avg_pay); 
end; 
 
Function Compute_Profit 
     (total_pay: float; days: integer): float; 
var profit: float; 
begin 
     profit := 0.9 * total_sale - cost; 
     return (profit); 
end;

Figure 3: Sale_Pay_Profit program restructured to have an object-based design.
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2.2 Restructuring process model

The restructuring process in our simulated scenario may be abstracted as a sequence of the

following steps:

1. Identify each task.

2. Identify the ‘depends on’ relations between each pair of tasks.

3. Determine the order in which the tasks are to be restructured.

4. Restructure each task:

a) Identify the computations that influence the given task.

b) Collect all these computations in a new module and create a function call to the new

function in the appropriate position of the original procedure.

Each step in the above model may be considered to be independent of the other steps.  Thus each

step is a candidate for automated support.

2.3 Transformations for restructuring

In this thesis, we develop a transformation to restructure an individual task (Steps 4.a and 4.b).

We assume that a subset of statements representing a task, the dependencies between the tasks, and

the order in which the tasks should be restructured have already been identified.

The input to the restructuring process is a task, therefore, we must determine how to

represent a task. A programmer identifies a task, by analyzing the statements of a function, so it is

natural to define a task as a set of statements.  Also, we want our transformation to be useful in

interactive tools.  To reduce the overhead of the user of such interactive tools, (s)he should only

have to select a very few crucial statements relevant to a given task and our transformation should

determine the rest of the statements that belong to that task.  We refer to the crucial statements as a

set of 'seed' statements and the word 'task' defines all the statements related to a seed.
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We now have an outline for our transformation: It first collects all the statements related to

an input seed.  This collection of statements identifies a task.  Next, it extracts and creates a new

function for that task. The transformation has two distinct steps, each of which can be defined as a

primitive transformation:

• • TUCK: Identify the entire task from the input seed

Given an initial seed − a set of statements − the transformation TUCK creates a task

containing all the statements related to that seed.

• • SPLIT: Extract the task

The transformation SPLIT extracts a task and generates a new function for it.  In doing so,

this transformation should not change the external behavior of the function.

To generate good solutions, TUCK should take into account the context1 in which the statements of

the seed are placed in the function.  If TUCK determines several contexts for a seed, it should

create a solution for each context.  TUCK must also deal with statement interleaving.  If statements

not related to the seed are interleaved with statements related with the seed then TUCK should not

collect the non-relevant statements.  For example, in Figure 1, the computations of total_pay and

total_sale are interleaved.  They should be separated on restructuring.

                                                       
1 The meaning of ‘context’ will be clarified in Chapter 4 where a precise definition of TUCK is introduced.  For now,

a context can simply be viewed as a region of the function within which TUCK may find the statements related to a
seed.
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3. Background

TUCK and SPLIT both make use of control flow graphs (CFG), program dependence graph

(PDG), and slicing to computes their results.  For this thesis to be self-contained, we only present

the definitions necessary for our discussion and our algorithms.  For more details the reader is

referred to other literature [Aho86, Ferrante87, Muchnick97, Ottenstein84, Tips95, Weiser84].

We define the notion of a conditional path for both the CFG and the PDG.  This notion is

not discussed in previous literature and is necessary to exploit some important properties of both

the graphs.

In this chapter, we merely present the definitions and some explanations to clarify the

definitions.  The intuition behind the definitions are introduced in the next chapter when we

introduce our transformation.   We discuss CFG, PDG, and slicing in Sections 3.1, 3.2, and 3.3,

respectively.

3.1 Control flow graph (CFG)

Definition: A control flow graph of a module M, denoted CFG(M), is a graph G = <V, E> where

V is a set of nodes in CFG(M) and E is a set of edges in CFG(M).  A edge between two CFG

nodes v1 and v2, denoted v1→→v2, represents a control flow from v1 to v2.  A CFG edge may be of

one of three types: Always, True or False.  In addition, a CFG has a unique start node, Start(M),

and a unique end node, End(M), such that there exists a path from the Start(M) to every other node

and there is a path from every other node to End(M).  The CFG of Sale_Pay_Profit is shown in

Figure 4.
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Definition: A path in CFG(M) from CFG node v1 to CFG node vn, denoted v1→→*vn, is a sequence

of zero or more CFG nodes that belong to CFG(M) such that ∀i, 1 <= i < n, vi→ vi+1  is a CFG

edge in CFG(M).

The first node and the last node in the sequence as well as all the intermediate nodes are

said to be in the path.

Definition: A conditional path in CFG(M) from CFG node v1 to CFG node vn, denoted

v1→→*c vn, is a CFG path v1→*vn such that v1→v2 is a CFG edge in CFG(M) and this edge is type c

where c ∈ {True, False}.

Sale_pay_Profit 
Entry

i := 0

for j := 1 to days do

while i < days do

total_sale := 0

i := i + 1

readln(sale[i])

total_pay := 0

total_sale := total_sale + sale[j]

If sale[j] > 1000

total_pay := total_pay + 50

pay := total_pay / days + 
100

profit := 0.9 * total_sale - 
cost

T

TF

T

F

total_pay := total_pay + 0.1 * sale[j]

Sale_pay_Profit 
Exit

T

T

F

Always flow edge

True flow edge

False flow edge

v1

v6

v5

v3

v2

v4

v7

v9

v10

v16

v15

v14

v11

v12

if process = true

v13

T

F

F

v8

F

Figure 4: CFG for Sale_Pay_Profit procedure of Figure 1.
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The tag c on the edge represents the type (True or False) of the first edge in the path. The types of

the subsequent edges in the path do not matter in this definition.  There exist two possible

instantiations for a conditional path in CFG(M) from v1 to vn: (1) v1→
*

True vn or (2) v1→
*

False vn.

3.1.1 Post-dominator relationships in CFG

Definition: Post-dominator & immediate post-dominator in CFG(M): A CFG node w is the post-

dominator of a CFG node v if path from v to End(M) contains w. Furthermore, w is the immediate

post-dominator of v, denoted ipdom(v), if every post-dominator of v, other than v and w, also post-

dominates w.  Figure 5 gives the immediate post dominator relation of CFG in Figure 4.

Sale_pay_Profit 
Entry

i := 0

for j := 1 to days do

while i < days do

total_sale := 0

i := i + 1

readln(sale[i])

total_pay := 0

total_sale := total_sale + sale[j]

If sale[j] > 1000

total_pay := total_pay + 50

pay := total_pay / days + 
100

profit := 0.9 * total_sale - 
cost

total_pay := total_pay + 0.1 * sale[j]

Sale_pay_Profit 
Exit

v1

v6

v5

v3

v2

v4

v7

v9

v10

v16

v15

v14

v11

v12

if process = true

v13

v8

immediate post-dominator 
relationship

Figure 5: Immediate post-dominator relation: From the immediate post-dominator tree it is possible to identify the ipdom of
any CFG node.
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3.2 Program dependence graph (PDG):

Definition: A program dependence graph of module M, denoted PDG(M), is a graph

P = <N, E> where N is a set of PDG nodes in PDG(M) and E is a set of PDG edges in PDG(M).

A PDG edge between n1 and n2, denoted n1⇒⇒ n2, represents the data or control dependence

between the statements of M.  For further details on the exact meaning of PDG dependencies, we

refer the user to [Ottenstein84, Weiser84].  A PDG edge may be one of three types: Data, True or

False.  Figure 6 illustrates the PDG of Sale_Pay_Profit.

Because the rest of our definitions depends only on the control dependence of a PDG, we

have added a distinct definition to easily refer to such edges.

Definition: A control Edge from n1 to n2, denoted n1⇒⇒c n2, is a PDG edge

where c ∈ {True, False}

Definition: A control path of PDG(M)  from PDG node n1 to PDG node nn, denoted n1⇒⇒
*nn, is a

sequence of PDG nodes that belong to PDG(M) such that ∀i, 1<= i < n, ni⇒ci
 ni+1 is a control edge

in PDG(M) where ci ∈ {True, False}.  A control path is also reflexive, therefore a PDG node n

belongs to n ⇒⇒*n.

Definition: A conditional control path in PDG(M) from PDG node n1 to PDG node nn, denoted

n1⇒⇒c
*nn, is a control path , n1⇒⇒

*nn such that n1⇒c
 n2 is a PDG edge in PDG(M).

The tag c on the edge represent the type (True, or False) of the first edge in the control path.  The

type of the other edges is not relevant in this definition.  Therefore, there exists two possible

instantiations for a conditional PDG control path from n1 to nn:

(1) n1⇒
*

True nn or (2) n1⇒
*

False nn.
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i := 0

i < days i := i + 1

total_sale := 
total_sale + sale[j]

total_pay := 
total_pay + sale[j]

for j := 0 to days

total_pay := 0

total_sale := 0

total_pay := 
total_pay + 50

sale[j] > 1000

profit := 0.9 * 
total_sale - cost

pay := 100 + 
total_pay / days

Sale_Pay_Profit 
Entry

readln

sale[i] in

sale[i]out

days sale in profit 
in

sale outprofit out pay out

true control dependence

data dependence

F
false control dependence

n1

n16

n5

n4n3

n2

n10

n9

n8

n7

n6

n11

n12

n13

n14

cost pay in

if process = 
True

process

n15

Figure 6: PDG for Sale_Pay_Profit program.  The shaded nodes represent the slice on node n13.
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3.2.1 Control relationships in PDG

This section introduces four definitions that use the notions of control path and conditional control

path.  The first definition creates a set of the PDG nodes that have a path to a given PDG node

through only one of their control dependencies.  Therefore, if a node p has a control path to another

node q through its True branch then p should not have a control path to q through its False branch.

It is only possible for a node to reach another node through both of its control path in the presence

of goto statements.  The PDG in Figure 7 illustrates such condition.

Definition: A definite control node p of another PDG node n, denoted dc-node(n), is an ordered

pair (c, p) such that (c, p) ∈ dc-node(n) iff c ∈ {True, False} & if p⇒c
*n then ~(p⇒~c

*n).

• ~c means the complement of c, thus in our case if c = True then ~c = False and reciprocally if

c = False then ~c = True.

• p⇒c
*n is used as a predicate.  It states that there exist a path from p to n through the c control

dependence edge of p

• ~(p⇒~c
*n) is also a predicate.  It states that there should not exist a conditional control path

from p to n through the ~c control dependence edge of p.

An element in dc-node(n) definitely controls n in the following sence:  If (c, p) ∈ dc-node(n) then in

CFG(M) there does not exist a path  p⇒~c
*n and there exist a path p⇒c

*n

Definition: A definite control node p of a set of PDG nodes S, denoted dc-set(S): is an ordered

pair (c, p) such that (c, p) ∈ dc-set(S) iff  ∩∀n∈S dc-node(n).

All elements of dc-set(S) definitely control every element of S.  It is quite possible for two

elements belonging to dc-set(S) to also definitely control each other.  That is (c1, n1) ∈ dc-set(S)

and (c2, n2) ∈ dc-set(S) and (c1, n1) ∈ dc-node(n2) and (c2, n2) ∈ dc-node(n1).  The following
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definition restrict this case by removing such definite control nodes.  In other word, from the dc-set,

it selects the nodes which have a control path between each other, furthermore, the control path

must exist only in one direction.  Therefore, if two nodes n and m belong to a given dc-set either n

may have control path to m or m may have a control path to n but not both may be true.  This is

equivalent to an exclusive OR (XOR) between the control dependencies between n and m.  The

PDG in Figure 7 shows an illustration of the definition.

Definition: A single definite control node p of a set of PDG nodes S, denoted sdc(S), is an

ordered pair (c, p) such that (c, p) ∈ sdc(S) iff (c, p) ∈ dc-set(S) &

∀ (q, n) ∈ dc-set(S), p = n or (((p⇒c
*n) & ~(n⇒q

*p)) or (~(p⇒c
*n) & (n⇒q

*p))).

Definition: The nearest single definite control node p of a set of PDG nodes S, denoted nsdc(S),

is an ordered pair (c, p) ∈ sdc(S) such that PDG node p does not have a control path to any other

sdc(S).

3.3 Slice

Definition: A slice , denoted slice(P, n), is the backwards reflexive transitive closure of the PDG

edges with respect to a PDG node n in PDG P.  In Figure 6, the shaded nodes represent the slice on

n13.

C1

C2
C4

C3

N

S
T

F
F

F

F

T

T F

T

Figure 7: This sample PDG illustrates the different properties defined above.

Definite control node: dc-set({S}) = { (False, C1), (True, C3), (False, C4)}.  C2 is not a dc-set({S}) because it can reach
S through both of its control path True and False.

Single definite control: sdc({S}) = {(False,C1)}.  In this case, C3 and C4 are not sdc({S}) because they do not control
each other even though both reach S from one of their control path.



17

4. Restructuring transformation

This chapter presents the main contribution of this thesis, a context-sensitive transformation for

software restructuring.  As stated in Chapter 2, our transformation is composed of two primitive

transformations, TUCK and SPILT.  The two transformations are presented in Section 4.1 and

4.2, respectively.  Section 4.3 proves that SPLIT transformation does not change the semantics of

the original programs.  Since the TUCK transformation does not modify programs, it is

tautologically true that TUCK does not alter the semantics of those programs.  Section 4.4 presents

our restructuring transformation by composing TUCK and SPLIT.  That our transformation

preserves the program’s semantics follows from the proof of its components.

Our transformation uses control flow graph (CFG) and program dependence graph (PDG)

introduced in Chapter 3.  We assume the existence of the CFG and the PDG for the program being

restructured.

4.1 TUCK

The input to TUCK is, (a) a CFG and (b) a set of CFG nodes representing the seed.  Its output is a

solution for each restructuring context.  The restructuring context is a set of CFG nodes within

which the computations related to a seed are identified.  Therefore, the output of TUCK is a set of

ordered pairs where the first element is a set of CFG nodes corresponding to a context and the

second element is a subset of the first element identifying the set of CFG nodes representing an

entire task within that context.
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Signature2:

TUCK: CFG 
�

 P(CFG node) 
�

 P(P(CFG node), P(CFG node))

Input: (1) a CFG to be restructured

(2) a set of CFG Nodes representing the initial seed.

Output: a set of ordered pairs where the first element represents a context and the second element a

task within that context.

4.1.1 Intuitive reasoning behind TUCK

The initial work of TUCK is to determine all the different contexts associated to an input seed.  For

each context, it identifies only the computations relevant to the seed within that context.  Slicing is

a convenient method to extract the computation relevant to specific statements (or a seed), thus we

need to find a way to define a context.

A parallel with natural languages can help. As a word might have different meaning

depending on its context, (i.e., as we read a phrase, a paragraph or an entire passage containing a

word, we could attach different meanings to that word depending on each of its contexts), a

computational task may also have different meanings as we abstract it out to its different contexts

(i.e., within its block, its module, its file, the entire program).  Just as natural languages have the

concepts of punctuation, paragraph, section, chapter, volume to delimit a region from which to

associate a context to a word, we need to define or translate such concepts to the world of

programming.

A 'context' should be a closed region of statements which may influence or be influenced

by the input seed. We also need to keep in mind the goal of the overall restructuring

transformation, which is to identify potential new modules. In procedural languages, modules have

                                                       
2 We use P to mean power set.
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a single entry. So, a programming 'context' should have a similar property.  A single definite

control (sdc) of the input seed S is a node from which it is possible to reach every node in the input

seed along one conditional control path but not the other.  Thus we can utilize a sdc to create a

context.

We now need to identify a single entry region for each element of the sdc(S) such that it

contains the seed.  To obtain accurate results, the region should be as small as possible.  We

formally define the concept of minimal region of a single definite control node, called restructuring

context, in the next section.  A restructuring context creates a boundary around the input seed S for

an element of a sdc(S).  Each element of sdc(S) provides a different context for the restructuring

and the nsdc(S) determines the smallest restructuring context of an input seed.

4.1.2 Formal definition and properties of TUCK

In the following theorem and definitions, we assume: (c, p) ∈∈ sdc(S) where S is the input seed.

Theorem: Nodes that are directly control dependent on the c condition of p in the PDG form a

simple path in the post dominator tree of the CFG [Ferrante87].

Since the nodes directly controlled by p with a control dependence of type c form a simple

path in the post-dominator tree, we can create a sequence with these nodes.

Definition: From the above theorem, we can define a control sequence of nodes d1 through dn,

denoted [d1, …, dn], where di, .., dn form a simple path in the post-dominator tree and  p⇒⇒c di.  We

know that such c exists since p belong to sdc(S).

Figure 8 identifies a control sequence in the PDG of Sale_Pay_Profit.

Definition: A minimal control sequence of nodes di through dj that controls some node of S,

denoted seq(S),  is a sub-sequence of a control sequence for an element in sdc(S) where di has the
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smallest i in the control sequence [d1, …, dn] for which there exists a path di ⇒
*s for some s ∈ S,

and dj has the largest j in the control sequence [d1, …, dn] for which there exists a path dj ⇒
*s for

some s ∈ S.

Figure 8 illustrates the minimal control sequence definition in the PDG of Sale_Pay_Profit.

Definition: A restructuring context, rc(c,p), where (c,p) is a single definite control of seed S, is

the set of all the nodes m that belong to the PDG nodes of PDG(M) such that

m ∈ rc(c, p) iff (c,p) ∈ sdc(S) and d ∈ seq(c, p) and d ⇒*s, where s ∈ S.

Figure 8 identifies such node in the PDG of Sale_Pay_Profit.

The important properties of rc(c, p):

• Single Entry:

rc(c, p) defines a flow graph with single entry since there exists only one direct entry point

of rc(c, p), which is the first node in the minimal control sequence (by definition of rc(c, p)

& seq(S)).

• Single Exit:

There might be several nodes from which the flow exits rc(c, p) but  they all flow to the

immediate post dominator of the last node in the minimal control sequence (by definition of

rc(c, p) & seq(S)).

• Closed:

The single entry and single exit properties ensure that rc(c, p) is closed in the following

sense: ∀q ∈ rc(c, p) & ∀m ∉ rc(c, p)

if m → q is an edge in CFG(M) then q is the entry of rc(c, p) or
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if q → m is an edge in CFG (M) then m is the ipdom of the last node in the minimal control

sequence.
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i := 0

i < days i := i + 1

total_sale := 
total_sale + sale[j]

total_pay := 
total_pay + sale[j]

for j := 0 to days

total_pay := 0

total_sale := 0

total_pay := 
total_pay + 50

sale[j] > 1000

profit := 0.9 * 
total_sale - cost

pay := 100 + 
total_pay / days

Sale_Pay_Profit 
Entry

readln

sale[i] in

sale[i]out

days sale in profit 
in

sale outprofit out pay out

n1

n16

n5

n4n3

n2

n10

n9

n8

n7

n6

n11

n12

n13

n14

cost pay in

if process = True

process

n15

sdc(S) under 
consideration

node  in the 
control sequence

node in min-seq 
(belong to rc)

input seed S 
(belong to rc)

other node in rc

Figure 8: The restructuring context (rc) of (True, n1) with the seed n5 = {n3, n4, n5}.
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Derived from its properties, rc(c, p) could be extracted as a separate module, a function-call CFG

node to the new function could be created for rc(c, p) as well as the necessary CFG edges to

maintain the identical control flow.  Extracting rc(c, p) into a new module would not modify the

semantics of the original program since neither the control flow nor the data flow3 have changed.

Therefore, the semantics of the inter-procedural PDG would be identical. From this observation,

we can treat rc(c, p) as if it was a separate module without actually creating the new module for

rc(c, p). We use this fact to avoid dealing with inter-procedural CFG and PDG which add

unnecessary complexity to the proof (for SPLIT).

Lemma: Using the above observation, a slice contained within rc(c, p) preserves all the properties

of a regular slice since rc(c, p) can be extracted as a separate module.  The equivalent to the slice

on a PDG node n within rc(c, p) is:

slice(PDG(M), n) ∩∩ rc(c, p)

4.1.3 TUCK: Algorithm

Input: P: CFG(M)   /* CFG for module M */
S: P(CFG-Nodes)= set of CFG-Nodes  /* Input seed */

Processing of TUCK:

sol = ∅
all-sol = ∅
for every (c, m) ∈ sdc(S) do

for every n ∈ S do
sol = sol U (slice(P, n) ∩ B((c,m)))

end
all-sols = all-sols U (B((c,m)),sol)

end

Output: all-sols: P(P(CFG-Nodes),P(CFG-Nodes))  /*  set of ordered
pairs where the first element represent a context and the
second identifies a subset of nodes consisting of an
entire task for S within the context */

                                                       
3 Eventually, we also must introduce parameters to the new function to maintain the data flow coming in and out of

the new function equivalent to the data flow of the original module.
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i := 0

i < days i := i + 1

total_sale := 
total_sale + sale[j]

total_pay := 
total_pay + sale[j]

for j := 0 to days

total_pay := 0

total_sale := 0

total_pay := 
total_pay + 50

sale[j] > 1000

profit := 0.9 * 
total_sale - cost

pay := 100 + 
total_pay / days

Sale_Pay_Profit 
Entry
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sale[i] in
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n16

n5

n4n3

n2

n10

n9

n8

n7

n6

n11

n12

n13

n14

cost pay in

if process = 
True

process

n15

Input seed S to TUCK

sdc(S)

control dependence to 
the seed S

Figure 9: TUCK first computes the single definite control nodes (sdc) for the initial seed, n13.  In this case, the seed is the
singleton {n13} but generally it can be a set.  The resulting set, sdc({n13}) = { n12, n9, n6,  n1}.
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The result of sdc({n13}), Figure 9,  is the set of single definite control nodes {(True, n12), (True,

n9), (True, n6), (True, n1)}.  Each of the nodes n12, n9, n6 and n1 along with their condition

defines a restructuring context.  The result of rc(True, n12) is a set only composed of one PDG

node: n13, the initial seed.  Thus, the result of TUCK within the context defined by n12 would only

identify the statement total_pay:=total_pay+50.  This result seems redundant,

nevertheless, it is not incorrect and may even be desirable under certain circumstances.  On the

other hand, such an example does not highlight most of the concepts of TUCK as well as the next

transformation, SPLIT.  Therefore we only show the result of TUCK on context defined by n9 in

Figure 10, followed by TUCK on context defined by n6 in Figure 11 and on context defined by n1

in Figure 12.
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i := 0

i < days i := i + 1
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the sdc({n13})  
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context rc(True,n9) 
of the seed S

Figure 10: TUCK({n13}) within the restructuring context defined by n9.  The result of the slice within this
context is{ n12, n13}.
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i := 0
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if process = True
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n15

Input seed S to TUCK 
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nodes within the 
context rc(True,n6) 
of the seed S

Figure 11: TUCK({n13}) within the restructuring context defined by n6.  In this case the slice on n13 within
rc(True, n6) is {n9, n11, n12, n13}
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i := 0

i < days i := i + 1

total_sale := 
total_sale + sale[j]
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of the seed S

Figure 12: TUCK({n13}) within the restructuring context defined by n1.  The slice on n13 within rc(True, n1) is
{n6, n7, n9, n11, n12, n13}
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4.2 SPLIT

The SPLIT transformation splits a single-entry, single-exit region into two regions.  For our

restructuring transformation to be useful, it is necessary that SPLIT preserves the semantics of the

original module.  SPLIT does the following, given a CFG(M) and a set of CFG nodes, that

represent a task, it analyzes whether the task may be extracted from its context without affecting

the semantics of the original module.  If it can be, SPLIT separates the CFG in two, the first CFG

is a task equivalent to the input task (which becomes a new module) and the second CFG is

equivalent to the remaining tasks computed by of the original module.  Also, to preserve the

semantics of the program, SPLIT introduces a function call to the new CFG in the original

function.  We prove that SPLIT does not affect the semantics of the original program in Section

4.3.  To avoid dealing with inter-procedural CFG & PDG in our proof, we have broken SPLIT in

two steps.  The first step modifies the original CFG but still keeps its results into one CFG.  The

second step uses the new CFG to extract the task into a new module.  In this two-step approach,

we prove that the first step, which changes the CFG does not modify the semantics.  Most of the

issues are handled by the first step.  From the CFG resulting from step 1, it is easy to create a new

module without affecting the semantics.

Signature:

SPLIT: CFG × P(CFG node) 
�

 CFG × CFG

Input:  (1) CFG of module M.

 (2) a set of CFG Nodes X representing an entire task to be extracted

Output4 (1) the original CFG from which X has been extracted

 (2) a new CFG which computes the task X

                                                       
4 When the restructuring is not possible then  the original CFG is unchanged and the second CFG is undefined



30

In the rest of this chapter we assume the following definition for B:

B = rc(c, p) where (c, p) = nsdc(X)

Definition: IN(X, v).  Given a set of PDG nodes X and a variable v, IN(X, v) is true if there exists

at least one definition of v outside X and that reaches a use of the variable v that belongs to X.

∃ d ∉ X & d is a definition of v & ∃ u ∈ X & d ⇒ u

Definition: OUT(X, v).  Given a set of PDG nodes X, OUT(X, v) is true if there exists at least one

definition of v that belongs to X and that reaches a use of the variable v that does not belong X.

∃ d ∈ X & d is a definition of v & ∃ u ∉ X & d ⇒ u

Definition: Local.  Variable v is ‘Local’ to a set of PDG nodes X if (a) there is no dependence

reaching any uses of v in X from a definition of v outside X, and (b) there is no dependence

reaching any use of v outside X from a definition of v in X.

v ∈ Local(X) iff  ~OUT(X, v) and ~IN(X, v)

Definition: Value.  Variable v is ‘Value’ to a set of PDG nodes X if (a) it has only dependencies

reaching uses of v in X from a definition of v outside X and (b) it does not have any definitions of v

within X reaching uses of v outside X.

v ∈ Value(X) iff ~OUT(X, v) and IN(X, v)

Definition: Outvar.  Variable v is ‘Outvar’ to a set of PDG nodes X if it has at least one

definition of v within X reaching a use of v outside X.

v ∈ Outvar(X) iff OUT(X, v)

4.2.1 Intuitive explanation of SPLIT

Let us assume that SPLIT tries to extract a set of PDG nodes X which constitutes an entire task.

Let Y denote the tasks remaining in the original CFG.  The SPLIT transformation will replace the

subgraph B by the graph equivalent to X; Y or Y; X.  SPLIT must ensure that this modification

does not change the semantics of the original CFG.  In the event that X and Y are totally
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independent (X ∩ Y = ∅), SPLIT may choose any order (X; Y or Y; X) without changing the

semantics.  The difficulty arises when X and Y are not independent (X ∩ Y ≠ ∅).  This means that

some computations are needed in task X as well as in the remaining tasks Y.  In the general case,

X ∩ Y ≠ ∅ would imply neither X; Y nor Y; X preserve the behavior of B.  However we intend to

convert X to a module with variables in Local(X) as its local variables, variables in Value(X) as its

value parameters, and variables in Outvar(X) as its reference parameters.  SPLIT can make use

that fact, and it may duplicate computations modifying the local variables (Local(X)) and the value

parameters (Value(X)) of  X since these computations will be visible only within the syntactic

scope of X and will not influence Y.  The Table below exhaustively enumerates all the conditions

determining the decisions of SPLIT.  The conditions are not mutually exclusive.  It states that if

Outvar(X) ∩ Outvar(Y) is not empty then the tasks X and Y cannot be separated.

If Outvar(X) ∩ Value(Y) ≠ ∅ then only the ordering Y; X is permissible.  The case for

Outvar(X) ∩ Value(Y) ≠ ∅ is symmetric.  However that Value(X) ∩ Value(Y) ≠ ∅ has no

significance on the ordering.  Since Local(X) identifies variables totally internal to X, such

variables do not affect the decision taken by SPLIT.  Thus the Local sets do not appear in the table

A ∩ B ≠ ∅ Outvar(X) Value(X)

Outvar(Y) Cannot be split X; Y

Value(Y) Y; X X; Y or Y; X

The Table reads as follow: i.e., Outvar(Y) ∩ Outvar(X) ≠ ∅ 
�

 Cannot be split.

As stated earlier, the conditions enumerated in the table are not mutually exclusive.  It is

likely that X and Y may satisfy more than one condition.  SPLIT picks the most stringent

recommendation.  The recommendations conflict when Outvar(X) ∩ Value(Y) ≠ ∅ and

Outvar(X) ∩ Value(Y) ≠ ∅.  In that case, the CFG cannot be split.  It is also possible for all the
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intersections to be empty.  In such case, SPLIT may choose any order between X and Y since none

of the computations needed by X are used by Y, and vice versa.
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4.2.2 SPLIT: Algorithm

Input: CFG(M): the CFG of module M
a set of CFG Nodes X representing a task to extract

Processing of SPLIT:

C = nsdc(X)
B = rc(C)
~X = B - X
Y = {slice(PDG(M), n) | n in ~X} ∩ B

/* Define ordering of X and Y upon their local, value and outvar
   variables */
Case outvar(X) ∩ outvar(Y) ≠ ∅

OR (outvar(X) ∩ (value(Y) ∪ local(Y)) ≠ ∅ AND
    outvar(Y) ∩ (value(X) ∪ local(X))) ≠ ∅
/* Restructuring fails, return same CFG In this situation
the only possible restructuring is to extract the whole B
into a new module. */

Case outvar(X) ∩ (value(Y) ∪ local(Y)) ≠ ∅
/* ordering: Y;X */
For all v ∈ outvar(X) ∩ (value(Y) ∪ local(Y))

V’ = append [v’ := v ] to V’
X’ = Create a copy of the CFG equivalent to X
Y’ = Create a copy of the CFG equivalent to Y where

each v is substitute by v'
Append Y' to V' -> G'
Append X' to G' -> G''
Replace B by G'' in CFG(M)

End For
Otherwise

/* outvar(Y) ∩ (value(X) ∪ local(X)) OR
   (value(X) ∪ local(X)) ∩ (value(Y) ∪ local(Y)) OR
   all intersections are empty */
/* ordering: X;Y */
For all v ∈ (outvar(Y) ∩ (value(X) ∪ local(X))) ∪
          ((value(X) ∪ local(X)) ∩ (value(Y) ∪ local(Y)))

V’ = append [v’ := v ] to V’
X’ = Create a copy of a CFG equivalent to X where

each v is substitute by v'
Y’ = Create a copy of the CFG equivalent to Y
Append X' to V' -> G'
Append Y' to G' -> G''
Replace B by G'' in CFG(M)

End For
End Case
Extract X’ from G’’ -> (O, T) where O and T are CFG’s

Output: CFG O: the original CFG from which X has been extracted
CFG T: a new CFG for the task X
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Figure 13: New CFG created by the first step of SPLIT.  This is the solution for SPLIT using the result of TUCK from
Figure 12.
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4.2.3 Creating a new module using the new CFG

It is now straightforward to create the new module for the input task X.  Since X' is identical to X,

we can replace it by a call to the new module and put all the statement of X' in that new module.

Every Value variable becomes a value parameter, each Local variable becomes a local variable of

the new module and the Outvar variables become reference parameters.

4.3 Proof that SPLIT preserves the semantics of the original

module

The step in our algorithm for which we need to prove that the semantics has not change is where B

is replaced by G’’ which is either V';X';Y' or by V';Y';X'. If we can prove that in the case where

Outvar(X) ∩ (Value(Y) ∪ Local(Y)) ≠ ∅ then  V';Y';X' has the same semantics as B, then by

symmetry, the result is also valid for the case of

Outvar(Y) ∩ (Value(X) ∪ Local(X)) ≠ ∅ with the reverse ordering V';X';Y'.

Also, by their two definitions, v ∈ Outvar(X) iff OUT(X,v) and implicitly (IN(X,v) or ~ IN(X,v))

and  v ∈ Value(X) iff ~OUT(X,v) and IN(X,v).  This means that semantics of Value does not add

any constraint not taken care of by the semantics of Outvar, since Value only deals with definitions

that reach in and Outvar deals with both, definitions that reach in and out. Therefore, if the

semantics of the original module remains unchanged with Outvar(Y) ∩ (Value(X) ∪ Local(X)) and

the reordering V';X';Y' then such reordering will also keep the original semantics unchanged in the

case of (Value(X) ∪ Local(X)) ∩ (Value(Y) ∪ Local(Y)).

We are then left to prove the following case: If Outvar(X) ∩ (Value(Y) ∪ Local(Y)) ≠ ∅ then

V';Y';X' has the same semantics as B.

In our proof, we make use of works on the semantics of PDG's and slices.  Cartwright and

Felleisen show that a PDG has the same the semantics as the program it represents [Cartwright89].
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Venkatesh adds to the work of Cartwright and Feleisen and proved that slicing preserves the

semantics of a program for the variable under consideration [Venkatesh91].  Because we use the

semantics of slicing in the proof, we must impose a property on the input nodes X to SPLIT.  The

input X must have the following property:

Input property: If X ⊆ B ⊆ PDG(M) then (∀p ∈ (B - X)  & p' ∈ X, ∃  ~(p ⇒ p'))

There are two very important observations to make on this property:

1. X = {slice(n) | n ∈ X} ∩ B.  X is the equivalent to a slice on its nodes contained within B. (by

definition of the input property)

2. TUCK creates an output with such property.

Lemma: If Outvar(X) ∩ (Value(Y) ∪ Local(Y)) ≠ ∅ then V';Y';X' has the same semantics as B.

• Semantics of the new statements, v’ := v

V’ is the introduction of statement v’:= v  (where v’ is a new variable in each statement) for

each variable in Outvar(X) ∩ (Value(Y) ∪ Local(Y)).  These statement are inserted in the new

CFG before X’ and Y’ (see algorithm).  They do not affect the semantics of B since v’ are new

variables.

• Semantics of X and Y taken separately

X is equivalent to a slice on its nodes contained within B (imposed by the input property).  Since a

slice preserves the semantics of the variables under consideration then the variables used within X

will have the same values after the execution of X whether X is executed by itself or X is executed

in B.

From the algorithm, Y too, is a slice.  Therefore, whether Y is executed by itself or Y is executed

in B, for the same input, its variables will have the same resulting values.
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Thus, since X ∪ ~X = X ∪ Y = B then separately, X and Y execute all the computations

of B.  So, if we can order X and Y and keep the semantics of B then the execution of X and Y or

the execution of B will give the same results.

• Combining X and Y while preserving the semantics:  Ordering Y; X

∀ v ∈ Outvar(X) ∩ (Value(Y) ∪ Local(Y)), we know that, If n ∈ Y & n is a definition of v &

n' ∉ B then ~(n ⇒ n').  In other words, since a variable v is only Value or Local to Y then by

definition, no PDG node defines the variable v within Y and creates a data dependence to a use of

the same variable v outside B.  On the other hand, to make sure that the node n does not reach any

node p ∈ X, we can replace every occurrence of the variable v  (which is defined by n) by its

corresponding variable v' in Y.  Since v' equals v before the execution of Y then v’ has the same

semantics as v.  Now, since Y only modifies v’ instead of v, we know that v will reach X with the

same value as in the original function.

Therefore, the ordering V’;Y’;X’ has the same semantics as B where V’ is a set of

statement v’ := v, Y’ is a copy of Y where the variable v has been substituted by v’ and X’ is the

identical copy of X.

4.4 Composing TUCK and SPLIT

In this section, we show how TUCK and SPLIT may be composed to create a context-sensitive

formal transformation.  The TUCK transformation identifies a set of tasks and the SPLIT

transformation separates a task into a new function.  Thus, our transformation should first call

TUCK followed by SPLIT.  TUCK creates a set of tasks but SPLIT can only extract one of them.

Therefore, after TUCK, a user or an automated tool must make a decision upon which result of

TUCK creates the best solution for the restructuring.  After the decision, SPLIT may be called

with the selected result, and extract it into a new function.
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Signature:

CSFT: CFG × P(CFG node) 
�

 CFG × CFG

Input:  (1) a CFG to be restructured

 (2) a set of CFG nodes representing the initial seed.

Output5: (1) the original CFG from which the selected task has been extracted

 (2) a new CFG which computes the selected task.

4.4.1 Context-sensitive formal transformation: Algorithm

Input :

G: CFG(M)
S: the Initial Seed = P(CFG nodes in CFG(M))

Processing of the restructuring algorithm:

TUCK-Sol = TUCK(G, S)
(C, T) ∈ TUCK-Sol      /* this step represents the decision

among the contexts*/
SPLIT-Sol = SPLIT(G,T)

Output:

SPLIT-Sol: CFG(M) from which T has been extracted
a new CFG computing T

                                                       
5 When the restructuring is not possible then the original CFG is unchanged and the second CFG is undefined
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5. Examples: Restructuring of Sale_Pay_Profit

This chapter illustrates the use of the restructuring transformation on the Sale_Pay_Profit function

introduced in Figure 1.  In Chapter 2, we have proposed two ways of restructuring this function.

We will show how both the solutions can be derived using our transformation.  First, we

restructure Sale_Pay_Profit to separate the input parsing from the main processing of the program,

then we show how to achieve the restructuring of Sale_Pay_Profit to recover objects.  In the first

example, we present the application of the transformation through three illustrations.  In the second

example, where the transformation is applied several times, we only show the input to the

transformation directly followed by its output.  Also, the output of one step automatically becomes

the input of the next step.

5.1 Example 1: Separate input parsing

1  Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: float; 

                         process: boolean); 
2   var i, j: integer;total_sale, total_pay: float; 
3   begin 

4    i:=0; 
5      while i < days do begin 

6           i := i + 1; 
7       readln(sale[i]); 
8      end; 
9      if process = True then begin 
10      total_sale:=0; 
11      total_pay:=0; 
12      for j := 1 to days do begin 
13          total_sale := total_sale + sale[i];  
14          total_pay := total_pay + 0.1 * sale[i]; 
15          if sale[i] > 1000 then 
16              total_pay := total_pay + 50; 
17      end; 
18      pay := total_pay / days + 100; 
19      profit := 0.9 * total_sale - cost; 
20    end; 

21  end; 
 

sdc(S)

Seed S

Figure 14  : TUCK first identifies all the single definite
control of the seed S.

1  Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: float; 

                         process: boolean); 
2   var i, j: integer;total_sale, total_pay: float; 
3   begin 
4    i:=0; 
5      while i < days do begin 
6          i := i + 1; 
7       readln(sale[i]); 
8     end; 
9     if process = True then begin 
10      total_sale:=0; 
11      total_pay:=0; 
12      for j := 1 to days do begin 
13          total_sale := total_sale + sale[i];  
14          total_pay := total_pay + 0.1 * sale[i]; 
15          if sale[i] > 1000 then 
16              total_pay := total_pay + 50; 
17      end; 
18      pay := total_pay / days + 100; 
19      profit := 0.9 * total_sale - cost; 
20   end; 

21  end; 

Seed S

Figure 15: The sdc on line 1 is the context chosen to
restructure the function.  So the slice stays within the
restructuring context defined by line 1.  The highlighted
statements are in slice(S).
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5.2 Example 2: Restructure to have object design

In this example, we will create as many functions as possible to recover objects to move the

program to an object-oriented design.  In each of the figures, we use the same conventions.  On the

right side is the new function generated by the restructuring transformation, on the left side is the

original function which has been modified with a function call to the new function replacing the

task extracted.  Also, the original function automatically becomes the input to the next

restructuring transformations, thus, we identify the new seed and the element of the sdc(S) used to

create the next result.  Since the first step of this second example is identical to Example 1, we

start from the output of Example 1.

Procedure Sale_Pay_Profit (days: integer; 
     cost: float; var sale: int_array; 
     var pay:  float; var profit: float; 
     process: boolean); 
var i, j: integer; total_sale, total_pay: float; 
begin 
     sale := Read_Input(days, sale); 
     if process = true then begin 
        total_sale := 0; 
        total_pay := 0; 
        for j := 1 to days do 
        begin 
           total_sale :=total_sale + sale[j]; 
           total_pay := total_pay + 0.1 * sale[j]; 
           if sale[j] > 1000 then 
                total_pay  := total_pay + 50; 
        end; 
        pay := total_pay / days + 100; 
        profit := 0.9 * total_sale - cost; 
     end; 

end; 
 

Function Read_Input(days: integer; 
     var sale: int_array): int_array; 
var i: integer; 
begin 
     i := 0; 
     while i < days do 
     begin 
          i := i + 1; 
          readln(sale[i]) 
     end; 
     return (sale); 

end; 
 
 

New function

Figure 16: The result of SPLIT to separate the input parsing from the processing of Sale_Pay_Profit.
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1  Procedure Sale_Pay_Profit (days: integer; 
      cost: float; var sale: int_array; 
      var pay:  float; var profit: float; 
      process: boolean); 
2  var j: integer; total_sale, total_pay: float; 

3   begin 
4      sale := Read_Input(i, days, sale); 
5      if process = true then begin 

6           total_sale := 0; 
7       total_pay := 0; 
8          for j := 1 to days do 
9          begin 

10             total_sale :=total_sale + sale[j]; 
11             total_pay := total_pay + 0.1 * sale[j]; 

12             if sale[j] > 1000 then 
13                total_pay  := total_pay + 50; 
14         end; 
15         pay := total_pay / days + 100; 
16         profit := 0.9 * total_sale - cost; 
17     end; 

18 end; 
 

Function Read_Input(days: integer; 
     var sale: int_array): int_array; 
var i: integer; 
begin 
     i := 0; 
     while i < days do 
     begin 
          i := i + 1; 
          readln(sale[i]) 
     end; 
     return (sale); 

end; sdc(S)

New function 
& function call

New Seed S

Figure 17: Read_Input is extracted from Sale_Pay_Profit.  Now, lines 7 and 13 become the seed for the next
restructuring.  The sdc under consideration is on line 4 and the rc is defined by lines 7,8, 9, 10, 11, 12, and 13.

1  Procedure Sale_Pay_Profit (days: integer; 
       cost: float; var sale: int_array; 
       var pay:  float; var profit: float; 
       process: boolean); 
2   var j: integer; total_sale, total_pay: float; 

3   begin 
4      sale := Read_Input(days, sale); 

5      if process = true then begin 
6         total_pay := Compute_Pay(days, sale); 
7      total_sale := 0; 
8        for j := 1 to days do 

9         begin 
10        total_sale :=total_sale + sale[j]; 
11       end; 
12       pay := total_pay / days + 100; 
13       profit := 0.9 * total_sale - cost; 
14    end; 

15 end; 
 

Function Compute_Pay(days: integer; 
     var sale: int_array): integer; 
var total_pay: integer, j:integer; 
begin 
     total_pay := 0; 
     for j:= 1 to days do begin 
          total_pay := total_pay + 0.1* sale[j] 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50 
     end; 
     return (total_pay); 

end; sdc(S)

New function 
& function call

New Seed S

Figure 18: Total_Pay is extracted from Sale_Pay_Profit.  Now, lines 7 and 10 become the seed for the next
restructuring.  The sdc under consideration is on line 5 and the rc is defined by lines 7,8, 9, and 10.



42

1 Procedure Sale_Pay_Profit (days: integer; 
       cost: float; var sale: int_array; 
       var pay:  float; var profit: float; 
       process: boolean); 
2   var j: integer; total_sale, total_pay: float; 

3   begin 
4        sale := Read_Input(days, sale); 

5        if process = true then begin 
6         total_pay := Compute_Pay(days,  
                 sale); 
7            total_sale := Compute_Sale(days, sale); 
8         pay := total_pay / days + 100; 
9            profit := 0.9 * total_sale - cost; 
10     end; 

11 end; 
 
 
 

Function Compute_Sale(days: integer; 
     var sale: int_array): integer; 
var j:integer; 
begin 
     total_sale := 0; 
     for j:= 1 to days do begin 
          total_sale:= total_sale + sale[j] 
     end; 
     return (total_sale); 

end; 
 

New Seed SNew function 
& function call

sdc(S)

Figure 19: Total_Sale is extracted from Sale_Pay_Profit.  Now, lines 6 and 8 become the seed for the next
restructuring.  The sdc under consideration is on Line 5 and the rc is defined by lines 6, 7, and 8.

1   Procedure Sale_Pay_Profit (days: integer; 
      cost: float; var sale: int_array; 
      var pay:  float; var profit: float; 
      process: boolean); 
2   var j: integer; total_sale, total_pay: float; 

3   begin 
4      sale := Read_Input(days, sale); 

5      if process = true then begin 
6        total_sale:=Compute_Sale(days, 
               sale); 
7           pay := Compute_Avg_Pay(days, sale); 
8        profit := 0.9 * total_sale - cost; 
9      end; 

10 end; 
 
 
 
 

Function Compute_Avg_Pay(days: integer; 
     var sale: int_array): float; 
var total_pay: integer, pay: float; 
begin 
     total_pay := Compute_Pay(days, sale); 
     pay := total_pay / days + 100; 
     return (pay); 

end; 
 

New Seed S

sdc(S)

New function 
& function call

Figure 20: The average Pay is extracted from Sale_Pay_Profit.  Now, lines 6 and 8 become the seed for the next
restructuring.  The sdc under consideration is on line 5 and the rc is defined by lines 6, 7, and 8.
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Our illustrations show how our restructuring transformation can be used to accomplish

two different re-engineering goals.  The result in Figure 16 is identical to the one of Figure 2.  The

solution proposed in Figure 21 is semantically equivalent to the program of Figure 3.  The

differences are, in Figure 21, Compute_Pay  and Compute_Sale are respectively called by

Compute_Avg_Pay and Profit whereas in Figure 3, the main procedure Sale_Pay_Profit calls

Compute_Pay and Compute_Sale.  These differences appear in the last two application of our

transformations.  In Figure 19 and 20, Compute_Pay and Compute_Sale are parts of the seed.

Therefore, they are extracted and put in the new functions.  Results identical to Figure 3, will be

achieved if line 8 is used as the only seed in the last two transformations.  Since our transformation

preserves the semantics, all the different results for the Sale_Pay_Profit restructuring are

semantically equivalent, even though they differ in their internal structure.

1 Procedure Sale_Pay_Profit (days: integer; 
     cost: float; var sale: int_array; 
     var pay:  float; var profit: float; 
     process: boolean); 
2 var j: integer; total_sale, total_pay: float; 
3 begin 
4      sale := Read_Input(days, sale); 
5      if process = true then begin 
6          pay := Compute_Avg_Pay(days, sale); 
7          profit := Compute_Profit(cost, sale); 
8     end; 
9 end; 

 
 
 
 
 

Function Compute_Profit (cost :float, 
          var sale: int_array): float; 
var total_sale: float, profit: float; 
begin 
     total_sale := Compute_Sale(days, sale); 
     profit := 0.9 * total_sale - cost; 
     return (profit); 

end; 
 

End ResultNew function 
& function call

Figure 21: The end result is the function Sale_Pay_Profit semantically unchanged but now calling many smaller
functions.  Each of the function can become a method of an object in a object-oriented design.



44

6. Related works

In this chapter, we present a comparison of our research with other efforts in software

restructuring.  Most of the efforts, like ours, use slicing to decompose functions.  However, they do

not have a mechanism for bounding the slice to a region!  Hence they have a limited application.

Also related to our work is the identification of interleaved computation [Rugaber96, Rugaber95a,

Rugaber95] and the inverse problem to ours, function composition or integration [Horwitz89].  We

do not survey these research because they are complementary to our work.

Sneed and Jandrasics [Sneed87]

Sneed and Jandrasics have presented a technique that uses the control flow of a COBOL program

to identify code segments that can be converted into modules.  For instance, they create a module

for a loop or a section containing more than 200 statements.  In the absence of any cue from

control statements, they propose that the continuous blocks of 800 statements be broken into

separate modules.  Since a statement is placed in at most one module, this approach does not

reorder nor duplicate code.  Therefore, the semantics of the original program is not changed.  On

the other hand, since the modules created contain the same sequence of statements as in the original

program, this technique does not separate intertwined threads of logic.  Thus it neither helps

separating reusable code components nor in making the program easier to modify.

Kim et al. [Kim94] and Kang & Bieman [Kang96]

The restructuring techniques of Kim et al. and Kang and Bieman use the cohesion (though Kim et

al. call it coupling) between output variables (i.e., reference parameters, global variables) of a

function.  Using cohesion, they create groups of variables around which a function can be

restructured.  They then use program slicing to extract the useful statements.  Their techniques

differ in (a) how cohesion is measured, (b) how the related variables are grouped, (c) the class of
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program for which the technique is safe (i.e., does not produce incorrect result), and (d) the class

for which it produces correct results.  For further details, we refer the user to the original works.

These research have focused on the techniques to identify and extract reusable code.  They have

not addressed the problem of replacing the extracted code in the original program by call to the

newly created function.  Their algorithm for identifying related computation too is limited because

they do not have a mechanism to bound the slice.  Once they have identified groups of related

variables, they use a standard slicing algorithm to extract the computations, this implies that they

collect the computations throughout the entire function.

Ward and Bull [Bull94, Ward93]

Ward's work involved semantics preserving transformation for functional languages and Bull

extended that work to wide spectrum languages. They provided an environment with direct

transformation on the AST of a program. Ward proved that the transformations preserved the

semantics of the original AST for functional languages. These primitive transformations are

usually too simple to be useful as such, nevertheless they can be composed to create more powerful

transformations.  However, using the transformation in their catalogue, one cannot create our

TUCK and SPLIT transformations.  Also, there transformation cannot bound the scope of a slice

and are therefore incapable of creating restructuring alternatives similar to ours.
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7. Conclusion

Programmers have been re-engineering code manually since the first program was written.

However, as a research discipline software re-engineering is fairly new.  Most of the research

efforts on automated support for software re-engineering has focused on extracting information

that can be used for re-engineering.  For instance, there has been a significant amount of work on

identifying reusable code.  There has not been significant, if any, work in automatically, modifying

the code itself.

To the best of our knowledge, this thesis presents the first formal transformation for

restructuring amenable for use in an automated re-engineering environment.  Previous

transformations proposed for similar problems are either not proven to be correct, or do not

correspond to steps intuitively used by programmers, or are not general enough to be applicable in

all but a few situations.

In developing our transformation, we have extended work in program slicing by inventing

a mechanism to limit a slice to a single-entry, single-exit region.  This bounded slice, called TUCK,

provides a way to identify a meaningful computational thread within a context.  We have then

provided a transformation, SPLIT, for extracting such a bounded slice into a separate function by

splitting a single-entry, single-exit region defined by TUCK into two regions.

Our vision is to automate the software re-engineering decisions as much as possible and to

provide tools that require a minimal interaction.  The enterprise of such tools will be to automate

most of the restructuring decisions.  To automate our transformation, it would be necessary to

automatically generate the input seed to TUCK.  The PDG and the CFG do not provide the

appropriate abstractions for identifying seeds.  The smallest unit of computation in these

abstractions is a statement.  These representations are too fine-grained, and contain too much
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detail.  To help identify the initial seed, we need abstractions that summarize computation

performed by several statements.  Lakhotia and Nandigam’s variable dependence graph (VDG) and

pair-wise cohesion table are two such abstractions [Lakhotia92, Nandigam95].  Work is in

progress to use these abstractions to generate seeds automatically.

Currently, TUCK proposes several options for  restructuring a function.  Not all options

are equally good.  The problem of choosing the best option is deferred to the user.  For the

transformation to be practical in an interactive tool, the number of solutions proposed by TUCK

should be limited to a select few such that the user is not burdened with unnecessary choices.  In a

batch tool, the set of options must be reduced to one.  This may be important when dealing with

large programs for which time and space usage may grow rapidly with the number of options.

Further research is needed to generate only the useful solutions, and to rank these solutions.
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