

Detecting Ripple Effects of Program Modifications
on a Software System’s Functionality

A Dissertation

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Jean-Christophe Deprez

Spring 2003

© Jean-Christophe Deprez

2003

All rights reserved

Detecting Ripple Effects of Program Modifications
on a Software System’s Functionality

Jean-Christophe Deprez

APPROVED:

Arun Lakhotia, Chair
Associate Professor of
Computer Science

Vijay V. Raghavan
Distinguished Professor of
Computer Science

William E. Edwards Jr.
Associate Professor of
Computer Science

C. E. Palmer
Dean of the Graduate School

Dedicated to my daughter, Emma

Acknowledgements

Deepest thanks to my advisor, Dr. Arun Lakhotia. Since the beginning of my

graduate studies in 1995, Dr. Lakhotia has been a very influential person. He has made

me a research scientist, and that is invaluable. I also want to give my greatest gratitude to

my other committee members, Dr. William R. Edwards Jr. and Dr. Vijay V. Raghavan.

Their comments significantly improved this dissertation.

I am also grateful to Dr. Hira Agrawal from Telecordia Technologies for giving

me free access to the χSuds™ toolsuite. This greatly helped in the implementation of

Sonar. My thanks to Elisha Trombley for her editing work.

Je ne pourrai jamais assez remercier ma femme, Fabienne, et ma mère, Nadine. Je

n’y serai jamais arriver sans vous deux. Vos encouragements, vos conseils et votre

patience ont fait toute la différence.

Table of Content

LIST OF TABLES ..viii

LIST OF FIGURES ... ix

1 INTRODUCTION... 1

1.1 Motivations.. 2

1.2 Relating source code to software functions... 3

1.3 Measuring the quality of a prediction ... 6

1.4 Objectives and Challenges .. 6

1.5 Contributions... 8

1.6 Impacts .. 9

1.7 Outline of this dissertation .. 11

2 PREDICTING POTENTIALLY AFFECTED SOFTWARE FUNCTIONS USING SYSTEM
TESTS.. 12

2.1 Source code components and software functions ... 13
2.1.1 Source code components... 13
2.1.2 Software functions... 14

2.2 Activate and Exercise: the basic relationships .. 20
2.2.1 System tests exercise source code components... 21
2.2.2 System tests activate software functions... 27

2.2.2.1 System tests .. 29
2.2.2.2 Recovery techniques... 30
2.2.2.3 Applicability and limitation of our recovery technique 36
2.2.2.4 Works related to our recovery technique ... 38

2.3 Potentially Affect .. 39

2.4 Implementing our method: Sonar.. 43
2.4.1 Implementing our method ... 44
2.4.2 Demonstration of Sonar .. 47

2.4.2.1 Preparing our bank ATM .. 47
2.4.2.2 Using Sonar during a maintenance.. 49
2.4.2.3 Before implementing the software function fast-cash withdrawal.... 51

3 COMPUTING SAFE PREDICTIONS.. 57

3.1 Expressing safe predictions with coverage conditions.................................. 57

3.2 Predictions based on coverage conditions: unsafe .. 59

3.3 Expressing safe predictions with restriction.. 62

 vii

3.4 Computing safe predictions with restriction ... 63
3.4.1 Restrictions on software functions: a first attempt.................................... 63
3.4.2 Our solution for computing safe predictions with restriction 65
3.4.3 Restriction on software functions and criterion of source code coverage. 74

3.4.3.1 Restriction Z on software functions .. 74
3.4.3.2 Criterion X of source code coverage... 78

3.4.3.2.1 M-R paths coverage.. 79
3.4.3.2.2 Coverage of sets of M-R paths ... 83

3.4.4 Reaching our new goal.. 85
3.4.4.1 Satisfying the first point of our new goal.. 86
3.4.4.2 Satisfying the second point of our new goal 88

3.5 Assessment of our solution ... 90

4 A PRACTICAL APPLICATION OF OUR METHOD ... 93

4.1 Criteria for system test selection ... 93

4.2 Assessing our test selection criteria through case study 95
4.2.1 Objectives of the study.. 95
4.2.2 Protocol used in the study ... 96
4.2.3 The two software systems studied: scalc and bool 98

4.2.3.1 scalc... 98
4.2.3.2 bool.. 101

4.2.4 Result of the study on scalc and on bool... 104
4.2.4.1 Results for scalc .. 105
4.2.4.2 Results for bool ... 109

4.2.5 Conclusion of study... 112

5 RELATED WORKS... 115

6 CONCLUSION AND FUTURE DIRECTIONS ... 119

7 REFERENCES .. 123

ABSTRACT.. 129

BIOGRAPHY.. 131

 viii

List of Tables

Table 1: A list of functional requirements of our bank ATM ... 16

Table 2: A list of software functions created from requirements of our bank ATM 16

Table 3: Software functions organized in function-oriented, object-oriented, and

state-oriented hierarchies... 19

Table 4: List of system tests used for computing Exercise and Activate relationships for

our bank ATM system... 48

Table 5: M-R paths of ICFG of Figure 16 .. 73

Table 6: Exercise and Activate relationships sampled during the system tests tis 82

Table 7: List of software functions of the scalc software ... 99

Table 8: List of software functions of the bool software .. 102

Table 9: List of spots in the source code used for our case study................................... 105

Table 10: Comparison of the results of a manual analysis and of Sonar for scalc 105

Table 11: Estimation of Sonar’s results for scalc ... 107

Table 12: Comparison of the results of a manual analysis and of Sonar for bool 109

Table 13: Estimation of Sonar’s results for bool... 110

 ix

List of Figures

Figure 1: E-R diagram of software.. 3

Figure 2: Exercised trace of system test t.. 24

Figure 3: Test script named Withdraw_Checking_success.1 .. 30

Figure 4: BNF grammar for parsing test scripts of our bank ATM 32

Figure 5: Derivation trees for two features based on the grammar of Figure 8 33

Figure 6: Regular expression patterns of software functions of our bank ATM............... 35

Figure 7: (A) illustrates a partial software function specification file (B) displays three

software function application files .. 48

Figure 8: Exercise trace of system test that activates the software functions withdrawal

from checking and withdrawal from savings... 50

Figure 9: Software functions potentially affected by a change at the position shown in

Figure 8 ... 52

Figure 10: Sonar analyzing scalc .. 54

Figure 11: Source code involved in the implementation of software function

Recalculate .. 55

Figure 12: calculator.cpp at line 169 and column 20 were modified..................... 56

Figure 13: Projection computed by Sonar. Potentially affected software functions are

highlighted... 56

Figure 14: Sample source code and CFG of system used for illustration of unsafe

predictions ... 60

Figure 15: Control flow graph transformed for computing B-L paths.............................. 67

Figure 16: Interprocedural control flow graph transformed for computing M-R paths.... 70

 x

Figure 17: Sample implementation of another bank ATM ... 80

Figure 18: E-R diagram of software components and their relations 115

1 Introduction

When designing a change to a software system, a programmer reviews the source

code and often wonders if changing the source code at a particular spot might lead to an

unanticipated ripple effect on the end-user functionality of the system. This concern is

warranted because a segment of source code often participates in the implementation of

many software functions.1 In most cases, the sharing of source code between various

software functions is neither documented nor evident from the source code. This dissertation

addresses such concerns of a programmer by answering the following question:

If the source code at a given spot were modified, which software

functions would be potentially affected?

Our work assumes that this question is raised when a change to the source code is

being designed and before the change is applied. When designing a change, a programmer

may have multiple alternatives. The programmer may ask the above question for each

alternative in order to discover the area of the source code with the least ripple effect. As a

corollary, our answer to the question above is only a prediction since it does not take into

account exactly how the source code will be modified but only where the change might take

place. The notion of prediction is emphasized by the term potentially in our question. We

define potentially affected with the following statement.

A software function f is potentially affected by a change at a selected

spot of the source code if the segment of source code at that spot

participates in the implementation of software function f.

1 A software function is a task performed by a software system described from an end-user’s viewpoint.

 2

1.1 Motivations

If software change requests were not frequent, our research would have limited

impact. However, a useful software system rarely stays unchanged. It undergoes continuous

modifications to adapt to changes in the needs of the end user, changes in the business

environment, and changes in technology. It has been acknowledged that a maintenance

programmer spends a significant amount of effort understanding the program being modified

[Sommerville 1992]. Furthermore, a software maintenance process such as that of Parikh and

Zvegintzov points to the importance of identifying the software functions affected by a

particular maintenance before modifying the system [Parikh and Zvegintzov 1983].

Likewise, in the newer incremental software development model used by many companies

such as Microsoft and by Extreme Programming techniques, an entire system is developed in

iteration [Cusumano and Selby 1995, Beck 1999]. In this development model, an entire

system is built in layers where the implementation of software functions is added one

software function at a time until the whole system is built. At each iteration cycle, the

programmer modifies the existing source code to insert a new software function. Therefore,

the programmer must already identify the ripple effect that the source code changes have on

software functions during the initial development of a software application.

Currently, programmers identify the software functions affected by a change in an ad

hoc manner. This often leads to overlooking some of the affected software functions. In turn,

the resulting errors, if caught on time, lead to reworking the source code and more testing,

resulting in lost time. When the errors are not caught before deployment, these errors impact

the system’s behavior unpredictably, resulting in poor quality. Our technique will enable

programmers to identify the potentially affected functionality before changing the source

 3

code. Hence, they will have the direct opportunity to adapt their source code modifications to

eliminate undesired side effects. This is expected to improve the quality of modifications

made to source code and to reduce the overall time and effort involved in making source

code modifications.

1.2 Relating source code to software functions

To answer our opening question, a relation between the software functions of a

system and the system’s source code must be created. Figure 1 calls this relation X. For our

purpose, one must be able to use the X relationships between source code and software

functions to identify the software functions potentially affected by a change at a selected spot

of the source code.

Figure 1 shows that there are three possibilities to create X relationships: (1) directly,

(2) transitively using constraints and design, or (3) using system tests. Below, we briefly

Design &
Constraint

Source Code

System Test

Software Function
(related to

Functional Requirements)

ExerciseActivate

Satisfy Implement

X

Figure 1: E-R diagram of software.

 4

describe the previous works that have used X relationships, and we mention which of the

three approaches was used.

Antoniol et al. developed a technique to compute X relationships directly [Antoniol et

al. 2000]. Their technique computes the probability for a segment of source code to relate to

a particular functional requirement based on the similarity of vocabulary used in the

requirements documents and in the source code. In other words, a process similar to that used

in search engines attempts to match identifiers of the source code to words in the functional

requirements document. This technique is highly dependent on how programmers name

variables and procedures in a program. As reported in a case study by Antoniol et al., this

approach only provides mediocre results when applied on real world systems [Antoniol et al.

2000].

The second way for inferring X relationships is by joining information from the

Implement and Satisfy relationships. Commercial companies such as Rational™ and

TogetherSoft™ push this approach using design components to infer X relationships. Gates et

al. also developed a similar approach. Instead of using design components, their approach

relates constraints (logic rules) created from the requirements to the source code. In turn, this

allows inferring X relationships transitively [Gates and Della-Piana 1997, Gates and Li 1998,

Gates and Teller 2000]. This approach through design and constraints provides a well-

founded framework; however, it requires manual intensive tasks. In fact, not only must the

design and constraints be manually created but the Satisfy relationships must also be

manually created. Moreover, any change to the design, constraints, or requirements

document often requires an update of the Satisfy relationships. Over time, such an intensive

manual effort is likely to introduce errors where the requirements, Satisfy relationships, and

 5

design become out-of-sync. Hence, the X relationships inferred from Satisfy relationships

may not be reliable. One solution is to automate the current manual maintenance of Satisfy

relationships. However, this would require very advanced natural language processors and

currently may prove too challenging.

A third approach relates software functions to source code by joining information

from the Exercise and Activate relationships. This approach works by observing that the

execution of a system test activates software functions and exercises source code. Various

efforts have used this approach to locate where requirements are satisfied in the source code

implementation [Reps et al. 1997, Wilde and Scully 1995, Wong et al. 1999]. Until the mid-

nineties, programmers read the entire traces of source code created by executing system tests,

and then they determined what source code segments related to the functional requirement of

interest. Thanks to the methods developed by Reps et al., Wilde and Scully, Wong et al., one

can directly zoom in to the area of the source code likely to be related to a selected functional

requirement. So far, the methods that use Exercise and Activate relationships provide good

information when navigating from software functions to source code. However, nobody has

investigated whether Exercise and Activate relationships enable the inverse navigation from

source code position to software functions.

When using Exercise and Activate relationships for inferring X relationships, the main

part of the job is to identify a set of system tests needed to achieve the particular goal. All

previous works propose techniques to navigate from software functions to source code. In

contrast, our goal is to provide a technique for navigating from source code to software

functions. Hence, the set of system tests used to achieve the previous goal differs from ours.

 6

In fact, they only require a few system tests to be executed. In contrast, for our purpose, we

need to execute many more system tests in order to provide reliable results.

1.3 Measuring the quality of a prediction

Before presenting our objectives, we specify the factors that determine the quality of

a prediction: safety and precision. This will simplify the task of stating our objectives. The

two attributes safety and precision, which determine the quality of a prediction, are

independent of the method used to obtain that prediction.

Definition: • A prediction is safe if and only if it identifies all the software functions

potentially affected by a change at a selected source code location.

• A prediction is precise if and only if all the software functions it identifies

are potentially affected by a change at a selected source code location.

In other words, safety answers the question “has our prediction identified all

potentially affected software functions?”, and precision answers “Are all potentially affected

software functions identified by our prediction?”

When using the system tests to predict the ripple effect of a source code change on

software functions, we know that the set of system tests used for sampling Exercise and

Activate relationships will strongly influence the safety and precision of a prediction.

1.4 Objectives and Challenges

The main objective of our work is to determine criteria for selecting system tests

where the resulting Exercise and Activate relationships predict the software functions

potentially affected by a change at a particular source code location with the best possible

 7

level of safety and of precision. Secondly, we also want to automate our method for

computing predictions as much as possible.

To achieve these goals, we address the following:

1. We must find the adequate techniques for automating the sampling of Exercise and

Activate relationships. Challenge: Program profiling helps sample Exercise relationships,

but we have to develop our own technique for sampling Activate relationships. Moreover,

several program profiling methods exist; therefore, we must determine the most adequate

one for our purpose.

2. We want to identify a set of criteria for system test selection such that the Exercise

and Activate relationships sampled from the execution of these system tests guarantee

safe predictions. Moreover, the number of system tests that satisfy these criteria must be

finite. Challenge: Most software systems accept infinitely many system tests, and the

source code implementation of a system often contains infinitely many execution paths.

Hence, we must make sure that all needed execution paths in relation to the safety of

predictions have been exercised by the execution of a system test. We know that

satisfying our criteria for test selection will require a huge set of system tests. Obtaining

such set of system tests may not be feasible in practice. Moreover, to guarantee safe

predictions, our theory currently does not guarantee the level of precision. These last

points lead to our next objective.

3. We want to find criteria for test selection that are satisfied by an acceptable number

of system tests. In particular, the number of system tests must be different from the

number of software functions of a system by at most a small constant factor. Moreover,

the Exercise and Activate relationships sampled from system tests that satisfy our criteria

 8

must predict the ripple effect of a source code change on software functions with an

acceptable, well-determined degree of safety and precision.

1.5 Contributions

Our research makes the following contributions:

1. A technique for identifying the software functions activated by a system test. The

technique works as follows: Step a) Build a grammar describing the input space of the

system; Step b) Annotate each production rule of the grammar with the software

functions activated by strings parsed by those rules; Step c) Parse a system test to

determine the software functions activated by it.

2. Sonar, a prototype tool that predicts the ripple effect on software functions by a

change at a spot in the source code.

3. A system test selection criterion that guarantees safe predictions for a large class

of software functions. This system test selection criterion is based on the notion of

interprocedural paths as defined by Melski and Reps. Since an exponential number of

tests may be needed to satisfy the criterion, the criterion is not practical. Furthermore,

there is no guarantee as to the level of precision of the predictions made using this

criterion. In many cases, the resulting precision may be very low. Thus, this criterion is of

theoretical significance only.

4. A second test selection criteria that is practical in the size of system tests needed

and the safety and precision of the predictions. These test selection criteria are

satisfied by a number of system tests with a constant relation to the number of software

functions. Our case studies on the safety and precision of the predictions based on

system tests satisfying this second criterion found that Sonar computed safe predictions

 9

70% of the time and also computed safe and precise predictions between 60–70% of the

time for the two systems studied.

1.6 Impacts

Our third contribution states that we found conditions to guarantee safe predictions

for a large class of software functions from finite samples of Exercise and Activate

relationships. Currently, it is unpractical to create a set of system tests whose Exercise and

Activate relationships satisfy our condition. However, our finding provides a finite upper

bound to the problem of relating a large class of software functions to source code in order to

obtain a safe prediction on the ripple effect of a source code change on the software

functions. Future efforts may use this bound as a stopping criterion for their algorithms. For

example, a small set of system tests would be used to create a few seed Exercise and Activate

relationships. A mechanism would then be used to propagate the seed information to the rest

of source code until our bound is reached. Since the bound is finite, we know the propagation

algorithm will be tractable.

Part of our fourth contribution is a new set of test selection criteria. These criteria are

always satisfied by small sets of system tests. More importantly, the Exercise and Activate

relationships sampled from the execution of these small sets of system tests show an

improvement over the automated method proposed by Antoniol et al. However, these new

criteria must be refined if they are to be used to create seed Exercise and Activate

relationships. Currently, 70% of the predictions are safe. For good seeds, we would want the

percentage of safe prediction in the high nineties.

Currently, our approach to predict potentially affected software functions should not

supersede a programmer’s manual analysis. Nevertheless, programmers should definitely

 10

complement their results with predictions computed by our method. A side effect of our case

study illustrates that our predictions are likely to provide new information to a programmer

when his/her manual analysis is likely to be wrong.

Tools that help the software development process, such as those of Rational™ and

TogetherSoft™, may benefit from our approach. Currently, these tools predict the software

functions potentially affected by a source code change using the relationships design

components have with software functions and source code, respectively, called Satisfy and

Implements in Figure 1. Satisfy relationships between software functions and design elements

are maintained manually; thus, over time errors are likely to occur. Using our approach

provides another means to compute the software functions potentially affected by a source

code change. Hence, the prediction of the ripple effect of a source code change on software

function could be computed both ways, using Implements and Satisfy relationships and using

Exercise and Activate relationships. A difference in predictions may show that some Satisfy

relationships are not up-to-date.

On a more general note, the software industry is moving toward object-oriented,

component-based software architecture. Programmers using these programming techniques

may benefit from our research more than ever. Unlike programs with procedural/functional

architecture whose skeletons usually follow the description of the system’s software

functions they implement, new architectures put the emphasis on objects and relations

between objects. This is done by encapsulating all the code related to an object in the same

area of a program. In these new architectures, it is very common for one type of object and its

methods to be used in the implementation of several software functions of a system.

Therefore, modifications to a shared object can possibly affect all the software functions that

 11

share it. In a large system, programmers are not always aware of this code sharing. Lack of

this kind of awareness may lead to changes in the source code with disastrous effects on the

functionality of a system. Our technique communicates this sharing of code to programmers.

Thus, our research is potentially more helpful for systems developed using newer

programming technologies such as object-oriented programming.

1.7 Outline of this dissertation

In Chapter 2, we describe our method that uses system tests in order to infer

relationships between software functions and source code. We first define the three entities of

the model: source code, software function, and program input. Then, we explain how

program profiling helps sampling Exercise relationships, and we present our technique based

on annotated grammar for sampling Activate relationships. Chapter 2 then explains how our

method combined Exercise and Activate relationships to predict the ripple effect of a change

at a selected source code position on software functions. We conclude Chapter 2 with a

presentation of Sonar, a prototype tool that implements our method. In Chapter 3, we identify

the conditions needed in order to compute safe predictions. In Chapter 4, we present our case

studies that determine how well Sonar compute predictions when the sampled Exercise and

Apply relationships are small. Chapter 5 reviews in more detail the related works presented in

this introduction. Chapter 6 presents conclusions and plans for our future works.

2 Predicting Potentially Affected software functions

using system tests

We present a method to predict the software functions potentially affected by a

change introduced at a selected position of source code. Before addressing the particularities

of our method, we first describe the domains of inputs (source code components) and of

outputs (software functions) in Section 2.1.

We then break down the presentation of our method into two steps. Section 2.2

explains how to sample Exercise relationships between system tests and source code

components and how to sample Activate relationships between system tests and software

functions. In Section 2.3, we explain how to combine Exercise and Activate relationships to

infer Potentially Affect relationships. Our method uses these latter relationships to compute

its predictions.

Here are some definitions and notations used throughout this dissertation.

Definition: • A set of elements contains zero or more elements in no particular order and

no element is repeated. A Singleton is a set with one element.

• ℘ (S) denotes the power set of set S. It is the set of all subsets of S including

S.

• A sequence of elements contains zero or more elements in a specific order,

and an element may appear several times within the sequence.

• An ordered pair of two elements a and b denoted ba, is a sequence of two

elements, where a is the first element and b is the second element.

 13

• A collection of elements is a set or a sequence of elements.

• R: A ∝ B defines a relation R between two spaces, namely, A and B. R

specifies the relationships between elements of A and B. A relation may be

one-to-one, one-to-many, many-to-one, or many-to-many. Set-theoretic

notation can be used to define the domain of a relation R. Every element of R

is an ordered pair ',' BA , where A'⊆ A and B'⊆ B.

2.1 Source code components and software functions

2.1.1 Source code components

Our method is to help during a program understanding exercise. Thus, the source

code implementation of a system exists. Below, our definitions explain how the source code

is divided into components.

Definition: • Source code of a system consists of all files that implement a system and

that a programmer is allowed to change.

• A source code component is a partition of source code. A source code

component may be a file, a procedure, a basic block, a statement, or an

expression.

• A basic block is “a sequence of consecutive statements in which flow of

control enters at the beginning and leaves at the end without halt or

possibility of branching except at the end” [Aho et al. 1986, page 528].

Usually, source code components do not share pieces of source code with other

source code components. In our work, we have partitioned source code into basic blocks. In

the case of basic block, source code is not shared between source code components. Given

 14

that in our research we only use source code components at the level of basic blocks, we

interchangeably use these two terms.

To enable interprocedural source code analysis, the above definition of basic block is

adapted as follows:

• Two basic blocks are added to every procedure definition. The first basic block

corresponds to the start of a procedure. This first basic block is sometimes associated to

the syntax that specifies the signature of the procedure. The second basic block

corresponds to the end of the procedure. It may be associated to the symbol (or reserved

word) that indicates the end of a procedure.

• Every procedure call c in a procedure p generates two basic blocks, one representing the

entry from p to the target procedure c and the other representing the exit back from the

target procedure c to p.

These adaptations enable a precise recording of the basic blocks exercised during the

execution of a software system.

2.1.2 Software functions

Software functions are short names given to the functional behaviors of a system. On

the same level, we may also describe a software function as a name given to a set of

references to portions of the software documents that document a particular functional

behavior.

Definition: • A software function f of a software system is the name given to a task

performed by a software system expressed from the end-user’s viewpoint.

This definition is general, as it does not specify the granularity a task must have in

order to be considered a software function. The only specificity of the definition is that a task

 15

must be specified from an end-user’s viewpoint. Thus, when listing the software functions

offered by a system, one is free to enumerate the functional behavior of a system no matter

how generic or specific they may be. For example, a software function of a bank automated

teller machine (ATM) may be as generic as perform monetary transaction or as specific as

that expressed in a test scenario such as attempt to overdraw cash from checking.

Our definition of software function, however, excludes the internal behaviors of the

system transparent to the end-user, as well as the nonfunctional behaviors. For example, the

behavior perform lexical analysis performed by a compiler is transparent to the compiler

user; therefore, it is not considered a software function. Our future efforts will work on

including these behaviors as a part of our method.

We prefer introducing the new term software function rather than using functional

behavior or functionality because the term function naturally combines with the verb activate,

which we later use to refer to the relationships between software functions and system tests.

We also rule out the term feature since it is used to refer to nonfunctional characteristics of a

system, which our definition currently excludes.

The remainder of this section uses a bank ATM example to show how to materialize

and organize software functions in a tree. In this particular example, we extract the list of

software functions shown in Table 2 from the textual description of the functional

requirements of the bank ATM given in Table 1.

 16

Table 2 is a flat list. However, some software functions are not totally different from

each other; hence, it is more convenient to classify them in a hierarchy built using a

generalization/specialization relationship between software functions. By definition of the

Table 1: A list of functional requirements of our bank ATM.

Functional requirements of our bank ATM

1. The ATM must first authenticate the customer by matching the card number and PIN.
2. If the PIN validation fails three straight times the ATM ejects the card.
3. Once the PIN is validated, the ATM must allow the customer to perform one or more

of the following operations:
• Check balance of checking or savings account tied to current bank card.
• Withdraw cash from the checking or savings account tied to current bank card by

specifying a sum that is a multiple of $10.
• Deposit a check in the checking or savings account tied to current bank card.
• Transfer money from an account associated with the bank card to any other

account.
4. After a successful operation, the customer must be able to request a receipt.
5. The customer must be able to cancel an operation at any time before it has started

being processed.
6. Failure of any operation, beside a failed PIN validation, must generate an error

message on the screen that requires the customer’s acknowledgement. Once
acknowledged, a receipt detailing the failure is printed. Hence, on failure a receipt is
always printed.

Table 2: A list of software functions created from requirements of our bank ATM.
f1 Enter PIN f11 Abort withdrawal from

savings
f21 Process transfer from savings
to checking

f2 Abort PIN f12 Process deposit operation f22 Abort transfer from savings
to checking

f3 Process a balance operation f13 Process deposit in checking f23 Process transfer from savings
to other

f4 Process balance from
checking

f14 Abort deposit in checking f24 Abort transfer from savings
to other

f5 Process balance from savings f15 Process deposit in savings f25 Process receipt operation

f6 Abort balance operation f16 Abort deposit in savings f26 Start another transaction
f7 Process withdrawal operation f17 Process transfer from

checking to savings
f27 Process operation on
checking

f8 Process withdrawal from
checking

f18 Abort transfer from checking
to savings

f28 Process operation on savings

f9 Abort withdrawal from
checking

f19 Process transfer from
checking to other

f29 Process a money transaction

f10 Process withdrawal from
savings

f20 Abort transfer from checking
to other

 17

generalization/specialization relation, a hierarchy of software functions always holds the

following properties:

Property: • If a software function f is a generalization of f' then

• f is an ancestor of f' in the hierarchy and

• The activation of f' automatically means that f (and all other ancestors

of f') is also activated.

• A hierarchy of software functions is either a tree or an acyclic graph

because a specialization cannot be more general than its ancestors.

Such hierarchical organization facilitates the assessment of a prediction computed by

our method. In particular, one can directly know that an entire subtree of software functions

is unaffected by simply viewing that the root software function of that subtree is not affected.

For example, in our ATM bank, if a prediction shows that a change does not affect the

process withdrawal software function, then we automatically know that the specialized

versions of that software function process withdrawal from checking and process withdrawal

from savings are not affected. When structuring software functions in a hierarchy, this

information is directly visible as compared to presenting them in a flat list such as Table 2.

The generalization/specialization relationship between software functions is the basic

concept of our classifications; however, there exist different techniques to specify such an

organization. In particular, one may use object-oriented, function-oriented, and state-oriented

viewpoints to determine whether two software functions are related. In the object-oriented

model, one specializes the hierarchy of software functions according to the objects and their

attributes. In the case of the function-oriented classification, the focus is on the action

performed by software functions. In state-oriented classification, the system functionality is

 18

partitioned according to the different states that the system can be in. Some software

functions can only be activated when the system is in one particular state and not any other.

These three classification techniques are also the most prominent ways of determining

suitable organizations of the requirements of a system [Davis 1993, page 21].

Table 3 shows the three types of hierarchies for the list of software functions given in

Table 2. Each hierarchy provides a different point of view on the world of the bank ATM’s

software functions. One may also construct a hybrid hierarchy where more than one of the

three classification techniques is used to organize a group of software functions. A resulting

hierarchy of software function often has a tree structure, but it may also be an acyclic graph;

this is usually the case when organizing software functions using a hybrid hierarchy.

Finally, we define the concept of complete specialization. We later use that concept to

express an interesting property between software functions and their source code

implementation.

Definition: A set F of software functions is a complete specialization of a software

function f if the activation of f also implies the activation of at least one fi∈ F.

 19

Table 3: Software functions organized in function-oriented, object-oriented, and state-
oriented hierarchies.

Function-oriented hierarchy Object-oriented hierarchy State-oriented hierarchy

Enter PIN (f1)

from checking (f4)

from savings (f5)

Request Balance (f3)

From Checking (f8)
From Savings (f10)

Withdraw (f7)

From Checking (f13)
From Savings (f15)

Deposit (f12)

From Checking
 to savings (f17)
From Checking
 to others (f19)
From Savings
 to checking (f21)
From Savings
 to others (f23)

Transfer

Print receipt (f25)

Start another transaction (f26)

Process

Same as subtree
 as Process except
 in this subtree actions
 are aborted.

Abort

Bank ATM

Enter PIN (f1)
Abort PIN (f2)

PIN

Process balance enquiry (f4)
Process withdraw from (f8)
Process deposit on (f13)
Process transfer from (f17/f19)
Process transfer to (f21)
Abort withdraw from (f9)
Abort deposit on (f14)
Abort transfer from (f18/f20)
Abort transfer to (f22)

Checking

Same subtree as Checking
 Except here action are
 performed on savings.

Savings

Account

Print (f25)

Receipt

Start another (f26)

Transaction

Bank ATM

Enter PIN (f1)
Abort PIN (f2)

PIN validation

Balance from checking (f4)
Balance from savings (f5)
Abort balance enquiry (f6)

Enquiry transacation mode

Process withdraw from checking (f8)
Abort withdraw from checking (f9)
Process withdraw from savings (f10)
Abort withdraw from savings (f11)
Process deposit in checking (f13)
Aborted deposit in checking (f14)
Processed deposit in savings (f15)
Aborted deposit in savings (f16)

One account transaction

Processed transfer from
 checking to savings (f17)
Aborted transfer from
 checking to savings (f18)
Process transfer from
 checking to other (f19)
Aborted transfer from
 checking to other (f20)
Processed transfer from
 savings to checking (f21)
Aborted transfer from
 savings to checking (f22)
Process transfer from
 savings to other (f23)
Aborted transfer from
 savings to other (f24)

Two account transaction

Print receipt (f25)

Print receipt mode

Money transaction mode (f29)

Transaction mode

Start another transaction (f26)

Next transaction mode

Bank ATM

 20

As a final note, we observe that there is no direct relationship between software

functions and function points. Function points estimate the effort needed to implement a

system [Albrecht and Gaffney 1983]. They do so by categorizing and counting the inputs and

the outputs of a future system. On the other hand, in our case, software functions are not

addressing a future yet unimplemented system, but they are a nomenclature of the functional

behaviors of an exiting system. Eventually, we may say that by estimating the effort to

implement a system, function points also gauge the effort needed to implement the software

functions of a system. However, there is not a quantitative correlation between a chunk of

function points and a software function.

2.2 Activate and Exercise: the basic relationships

Our method proposes using system tests to relate source code components to software

functions. System testing verifies whether a completely integrated software system conforms

to the requirements. Therefore, a system test corresponds to the execution of a particular

system test scenario. System testing activity implies two things:

1. Software functions are being tested by system tests. We say that a system test

activates the software functions being tested; therefore, there exists Activate relationships

between system tests and software functions.

2. A system test requires the execution of the system. During a test run, it is possible to

record the source code components exercised. We say that there exist Exercise

relationships between software tests and source code components.

In section 2.2.1, we explain how program profiling helps in sampling Exercise

relationships. In Section 2.2.2, we describe a technique to compute some Activate

relationships.

 21

2.2.1 System tests exercise source code components

We first define the Exercise relation that exists between system tests and source code

components. We then explore how program profiling helps automate the sampling of

Exercise relationships between system tests and source code components.

Definition: CTExercise ∝: defines a set of relationships between system tests and source

code components. T is the space of all potential system tests for a system, and C is

the set of all the source code components that implement a system.

For most systems, there exist an infinite number of potential system tests; in turn,

there exist infinitely many potential Exercise relationships. The program profiling technique

presented below enables the sampling of a finite number of Exercise relationships.

Program profiling consists of recording information about the execution of a software

system with a particular test phrase. The information recorded is called an execution profile.

An execution profile collects information such as the source code components exercised

during a run, the memory usage, the CPU time spent in a particular procedure, etc. For our

method, we are only interested in profiling the source code components exercised during an

execution. We refer to a collection of the source code components exercised during a

particular run as an exercise trace.

Different profiling techniques record exercise traces in different formats. The

following are the most common profiling techniques and their corresponding exercised trace

format:

• Node profiling records an exercised trace as a set of source code components.

• Branch profiling (or edge profiling) records an exercised trace as a set of ordered pairs

21 ,cc where the flow of execution has gone from c1 to c2.

 22

• Path profiling records an exercise trace as a sequence of source code components. There

exist several path-profiling techniques such as intraprocedural or interprocedural path

profiling.

An important observation must be made at this time. The current definition of

Exercise states that every Exercise relationship relates a system test to a source code

component, not to an exercised trace. Hence, given a set of Exercise relationships sampled by

profiling the execution of system tests, it is possible to find all the source code components

related to a particular system test. However, the sequencing in which source code

components were exercised is lost. In other words, given the current definition of the

Exercise relation, the information available in Exercise relationships is as if they were

collected using node profiling. The extra sequencing information that branch and path

profiling techniques save would actually be lost. The next important fact is that, as we will

see in Section 2.3, our method to predict the software function potentially affected does not

make use of sequencing between source code components. Thus, no harm is done to the

applicability of our method when simply using node profiling.

However, as we will see in Chapter 3, if we want the resulting predictions made by

our method to have certain properties, system tests will have to achieve a source code

coverage expressed in terms of path. We will present more detail on path profiling in Chapter 3.

We further observe the following about program profiling and its use for sampling

Exercise relationships. Program profiling collects an exercise trace, but an exercise trace by

itself is not an Exercise relationship. To sample Exercise relationships, a link between a

system test and each source code components of an exercised trace must be saved. Thus, we

must have a unique way to refer to a system test. This is achieved by assigning a unique

 23

name to every system test. Normally, system tests are given unique names as they are

executed or as they are specified in the test documentation. Using system test’s unique names

and their corresponding exercise traces, it is then possible to save Exercise relationships.

Let us now illustrate how Exercise relationships are created between a system test and

the source code components of our bank ATM. First, we present the system test

specification. We then show the exercise trace created when the system test is executed.

Finally, we list the Exercise relationships sampled between the system test and the source

code components.

System test with unique name t consists of the following interaction: The customer

1. Enters a valid PIN,

2. Withdraws $100 from checking successfully (this implies the customer has more than

$100 in his/her account),

3. Requests no receipt, and

4. Does not start another transaction.

Figure 2 shows the exercise trace created when executing system test t. When listing

the Exercise relationships below, we use the notation Xi..Xj to delimit a source code

component (or basic block) that starts on line i and terminates on line j of procedure X. When

the source code component starts and ends on the same line i, we simply denoted it Xi. Using

set notation to enumerate the Exercise relationship created using the process above, we get

 24
Figure 2: Highlighted lines of source code are the exercised trace of system test t.

Main process of bank ATM
Begin of main process

M1 card_info = readCard();
M2 success = validateProcess(card_info);
M3 if (success = False) then
M4 sendCard();
M5 exit;
M6 endif
M7 cust_rec =
M8 bank_db.getCustomerRecord(card_info);
M9
M10 repeat {
M11
M12 op = doOperationMenu();
M13 // abort then goto next op.
M14 if (op = ABORT) then
M15 goto NextOp;
M16 else // valid op then as for account
M17 acnt = getAccount(SIMPLE_MENU,
M18 cust_rec);
M19 if (acnt = null) then
M20 goto NextOp;
M21 endif
M22 endif
M23 // Withdraw op.
M24 if (op = WITHDRAW) then
M25 from_acnt = acnt;
M26 to_acnt = null;
M27 // Deposit op.
M28 else if (op = DEPOSIT) then
M29 from_acnt = null
M30 to_acnt = acnt
M31 // Balance op.
M32 else if (op = BALANCE) then
M33 from_acnt = acnt;
M34 // Transfer op.
M35 else if (op = TRANSFER) then
M36 from_acnt = acnt;
M37 // for transfer need target account
M38 to_acnt = getAccount(COMPLEX_MENU,
M39 cust_rec);
M40 if (to_acnt = null) then
M41 goto NextOp;
M42 endif
M43 endif
M44 if (op != BALANCE) then // money op.
M45 amount = doAmountMenu();
M46 if (amount = ABORT) then
M47 goto NextOp;
M48 else if (op = WITHDRAW) and
M49 (amount%10 != 0) then
M50 doAmountError();
M51 goto NextOp;
M52 endif
M53 performMoneyTransaction(from_acnt,
M54 to_acnt, op, amount);
M55 else // balance op.
M56 bal_str = from_acnt.getInfoStr();
M57 printReceipt(bal_str);
M58 endif
M59
M60 // jump here in case of failure
M61 NextOp:
M62 next = doNextOpMenu();
M63 until (next = False) // end of repeat loop
M64 sendCard();
End // of the main process

Boolean validationProcess(CardInfo c info)
Begin
P1 success = False;
P2 attempt = 0
P3 repeat {
P4 pin = doPINMenu();
P5 attempt = attempt + 1;
P6 if (pin = ABORT) then
P7 break;
P8 endif
P9 success = c_info.validateCustomer(pin);
P10 if (success = False) then
P11 doPINErrorMenu();
P12 endif
P13 until (success) or (attempt = 3)
P14 return success;
End

Account getAccount(int menu_type,
CustomerRecord cust_rec)

Begin
A1 acnt_no = doAcntMenu(menu_type);
A2 the_acnt = null; //Assume failure or abort
A3 if (acnt_no = CHECKING) then
A4 msg = cust_rec.getChecking(the_acnt);
A5 else if (acnt_no = SAVINGS) then
A6 msg = cust_rec.getSavings(the_acnt);
A7 else if (acnt_no = OTHER) then
A8 other = doAccountNoMenu();
A9 the_acnt =
A10 bank_bd.getAccountByNumber(other);
A11 endif
A12
A13 // print error message
A14 if (the_acnt = null) then
A15 str = msg.getFormatedString();
A16 printReceipt(str);
A17 endif
A18 return the_acnt;
End

void preformMoneyTransaction(Account from acnt,
Account to_acnt, int op, int amount)
Begin
T1 if (op = WITHDRAW) then
T2 msg = from_acnt.withdraw(amount);
T3 if (msg.noError()) then
T4 sendCash(amount);
T5 endif
T6 else if (op = DEPOSIT) then
T7 msg = to_acnt.deposit(amount);
T8 else if (op = TRANSFER) then
T9 msg = from_acnt.transfertTo
T10 (to_acnt, amount);
T11 endif
T12 if (msg != null) and (msg.error()) then
T13 str = msg.getFormatedStr();
T14 printReceipt(str);
T15 else
T16 // Ask if customer wants receipt
T17 receipt = doReceiptMenu();
T18 if (receipt = YES) then
T19 str = msg.getFormatedStr();
T20 printReceipt(str);
T21 endif
T22 endif
End

 25

{ (t, M1), (t,M2), (t,M3), (t,M7..M8), (t,M12), (t,M14), (t,M17..M18), (t,M19,

M24), (t,M25..M26), (t,M44, M45), (t,M46), (t,M53..M54), (t,M61), (t,M62),

(t,M63), (t,M64), (t,P1..P2), (t,P4), (t,P5..P6), (t,P9), (t,P10), (t,P13), (t,P14),

(t,A1), (t,A2..A3), (t,A4), (t,A14), (t,A18), (t,T1), (t,T2..T3), (t,T4), (t,T12),

(t,T17, (t,T18) }

The enumeration above only specifies the Exercise relationships sampled by the

execution of system test t. When executing many system tests, many more Exercise

relationships can be collected in the same fashion. However, that sample is never complete

since there exist infinitely many potential Exercise relationships in an Exercise relation. In

other words, for any practical purpose, only a finite number of system tests are executed;

thus. the Exercise relationships sampled never constitute a complete Exercise relation.

The Exercise relation is many-to-many. In other words, a system test relates to many

source code components. Inversely, many system tests may exercise the same source code

component.

In the above explanation, we have only considered the case where a system test is a

complete execution of the system. Indeed, in our example, system test t specifies a list of

interactions that corresponds to a complete customer session from entry to exit of the ATM.

In other words, a system test is an indivisible unit. Each first element of Exercise

relationships refers to the unique name of a complete system test. In certain circumstances, it

may be desirable to partition a system test into several sequences of interactions, for example

when some sequences of interaction are totally unrelated to each other.

Sampling Exercise relationships between partial system tests and their corresponding

source code components only require a simple adaptation to the profiling technique if a

 26

system is not distributed and runs in a single process/thread. In fact, for such a system, the

exercise sequence of source code components respects the order of system test interactions.

However, in the case of multi-threaded and distributed systems, the change to the profiling

technique is nontrivial. For such systems, the exercise sequence of source code components

does not automatically follow the order of user interactions. A first and a second series of

interactions specified by a system test may exercise source code components concurrently in

different processes or different threads. Adding interprocess communication to this scenario

makes sampling Exercise relationships for a partial system test even more complex. Our

intent is to study the applicability of our method with complete system tests. So, we leave

changes to the profiling technique for the future.

Let us now briefly mention two techniques that enable performing program profiling.

We refer to the first method as source code instrumentation profiling and the second as

interpreted profiling. Source code instrumentation consists of adding code to the source code

of a system at compile time. This extra source code assigns a unique identification to each

source code component. Subsequently, when the system is executed, the unique identification

number of the source code components exercised during a particular run is saved into a file

(or database). Source code instrumentation techniques were pioneered by research in source

code debugging [Balzer 1969, Hanson 1978, Tolmach and Appel 1990, Agrawal, et al.

1993]. They later found applications in testing, namely test case coverage and regression test

selection [Fischer 1977, Fischer, et al. 1981, Harrold and Soffa 1989, Binkley 1995,

Rothermel and Harrold 1997, Wong, et al. 1997, Ball 1998, Agrawal 1999]

The interpreted profiling technique only applies to a system that interpreted. An

interpreter executes the source code of the system by interpreting it at run time. When

 27

instructed to profile execution, the interpreter can additionally collect execution profiles. For

example, the java virtual machine (JVM) has a built-in capability for performing profiling.

The interface between the profiler and the JVM is defined in the profiling interface JVMPI.

This enables a third party to write a profiler that is connected to the JVM at run time.

2.2.2 System tests activate software functions

We say that a system test activates the software functions being tested.

Definition: FTActivate ∝: defines the relationships between t elements of T and of F, where

T is the space of all potential system tests for the software system, and F is the

space of software functions of the software system.

As for the Exercise relation, the Activate relation also contains infinitely many

relationships between software functions and input phrases. This is derived from the fact that

there often exist infinitely many potential system tests for a system.

The Activate relation is many-to-many. That is, a system test may, and often does,

activate many software functions. Inversely, a particular software function may be activated

by many system tests.

Unlike Exercise relationships whose sampling must be automated due to the large

number of source code components, Activate relationships may be collected manually.

Indeed, a well-engineered project that follows IEEE 829-1983 Software Documentation

Standards directly or indirectly specifies Activate relationships [IEEE 1983]. The IEEE 829

standard suggests that test documentation start by the creation of a system test plan at the

same time as the requirements analysis phase. The next step is to create a test design

specification from which a test case specification is then built. Each test design specifies the

features—or software function in our case—of the system the test is addressing. Test cases

 28

are then generated for each test design. Hence, when respecting the IEEE 829 standard,

relationships between software functions and test cases can easily be extracted from test

documentation. When performing a system test, a tester follows the explanations provided by

a test case specification; hence, there exists a direct relationship between the actual test and

the test case.

Independent of a project respecting the IEEE 829 standard, actual tests will frequently

be coded as scripts. A test engine enables running these scripts; as a result, the actual test

may be executed automatically. Coding test in scripts is possible irrespective of a system’s

interface. Test scripts can be created whether the system is command line driven, interactive

with text menus, or interactive with a graphical user interface (GUI). Several commercial

testing tools such as Rational®Robot by Rational or WinRunner™ by Mercury Interactive

Corporation enables the recording of interactions between a tester and a GUI system into

scripts.

Over time, companies have accumulated large regression test suites for each of their

software applications. In the cases where a large quantity of such test scripts is available for a

particular application but where the IEEE 829 standards have not be followed, it is necessary

to recover the Activate relationships between the test scripts and the software functions of a

system in an automated manner. Below we present such a technique.

Recovery of Activate relationships

The recovery method assumes the existence of a series of system tests and of a set of

software functions. It analyzes each system test and then determines the software functions it

activates. In order to explain our recovery technique, we first specify the information found

in a system test.

 29

2.2.2.1 System tests

When IEEE 829 standards are respected, system test documentation found in the test

design specification and the test case specification contains all necessary information to

determine the software functions activated by a system test. Among others, the pieces of

information found in the system test documentation are the following:

• A series of interactions with the system and information on data to be used by the

tester.

• A set of input files.

• A set of preconditions that must be satisfied in order to execute the test. These

preconditions define what state the system must be in before performing the test.

They are specified either in textual descriptions or in formal specifications.

• A list of the expected outputs.

• A set of post-conditions that the state of the system must satisfy after the test.

However, when the IEEE 829 standards on software test documentation are not

respected, that information is not available. In many cases, the only system test information

available is test scripts and the information needed to run the test script, such as input files

referred to by the test scripts or the names of the databases to connect to when running the

test scripts.

The fact that only a limited amount of information is available seems limiting. Then

again, we have found that many Activate relationships can be recovered by only referring to

test scripts and their associated input files.

 30

The following example illustrates the system test information available to a recovery

technique. We use our bank ATM system for this illustration. As a side note, we imagine

there exists a test engine with the ability to run the system test script in Figure 3.

First, the caption shows that the system test has the name

Withdraw_checking_success1. The inside of the system test script contains two lines. The

first line specifies the database needed to conduct the system test: bank1.db. The second line

contains the following list of information: “1234 enter” specifies a PIN number needed for

authentication, “withdraw” that the transaction is a withdrawal, “checking” that the

transaction is to be performed on the customer’s checking account, and “40 enter” that the

sum of the transaction is $40. The first “no” specifies that no other transaction is to be

started, and the second “no” specifies that the customer requested no receipt.

2.2.2.2 Recovery techniques

We actually developed two recovery techniques. The first technique has more power

but requires the creation of a grammar that expresses the full property of the syntax of test

scripts. A grammar is defined by a set of production rules made of terminals and

nonterminals from which one is the start non-terminal. We illustrate a grammar for our bank

ATM later. The second recovery technique does not require such grammar and, for most

software application, retains enough power for the recovery of Activate relationships. A

description of the first technique appeared in the proceedings of the international workshop

on program comprehension 2000 [Deprez and Lakhotia 2000].

Database: “bank1.db”
TestScript: “1234 enter withdraw checking 40 enter no no”

Figure 3: Test script named Withdraw_Checking_success.1.

 31

For the moment, we focus our attention on recovering Activate relationships found in

test scripts, and we ignore the information specified next to the test script part of a system

test such as the first line of Figure 3, which indicates the name of the database to use when

running the script. Afterward, we address the cases where our technique can sometimes use

the information found besides the test scripts.

In short, our first technique works in two steps.

1. A grammar able to parse a test script is built.

2. Software functions are specified as parse tree patterns where a parse tree pattern is

directly associated to the rules of the grammar.

Thereafter, the software functions activated by a system test can be determined by

checking if the parse tree pattern associated with the software function is present in the parse

tree of a particular test script. If true, executing the test script activates the particular software

function.

Figure 4 illustrates the first step of our technique by giving a grammar that parses the

test script of our bank ATM. The grammar is given in Backus Naur Form (BNF). BNF has

the power to express context free languages; however, the actual ATM language is regular.

We utilize BNF because it is a convenient notation, clearer than its regular expression

counterpart. In Figure 4, regular black font represents nonterminals, bold font represents

terminals, | means or, * means zero or more occurrences, + means one or more occurrences,

and ε means empty string.

 32

Parse tree patterns enable parsing to detect the syntactic features of a test script;

therefore, we call the association of a grammar to a partial parse tree featured grammar. One

can then create a featured grammar for our bank ATM by associating parse tree patterns to

the ATM software functions.

In Figure 5, we illustrate parse tree patterns associated with two software functions,

namely, get balance from checking, and process withdrawal operation. The software

function get balance from checking is represented by the following partial derivation:

Transaction ⇒ Balance Account ⇒ Balance Checking. The software function processed

withdrawal operation is represented by the following partial derivation: MoneyTrans ⇒

Grammar for analysis of input space coverage of the ATM:

Session ::= Pin Ops

Pin ::= D D D D Enter | D* Abort

Ops ::= Transaction No| Transaction Yes Ops | Abort | εεεε

Transaction ::= Balance Account | MoneyTrans Ticket | Abort

MoneyTrans ::= Transfer Account TransAcnt Amount |
Withdraw Account Amount |
Deposit Account Amount |
Abort

TransAcnt ::= Account | Others AccNum | Abort | εεεε

Account ::= Checking | Savings | Abort

AccNum ::= D+ Enter | D* Abort

Amount ::= D+ Enter | D* Abort | εεεε

Ticket ::= Yes | No | εεεε

D ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Figure 4: BNF grammar for parsing test scripts of our bank ATM.

 33

Withdraw Account Amount ⇒ Withdraw (Checking | Savings) Amount ⇒ Withdraw

(Checking | Savings) D+ Enter.

We now give a formal definition of featured grammar.

Definition: FS = (G, F, ϕ) is a feature syntax of a system where

• G denotes a regular or context free grammar that describes the syntax of a

particular software application test script,

• F denotes the set of software function of the software application, and

• ϕ:T∝ F is a relation that maps a partial derivation tree to a software function.

The ϕ relation is a many-to-many for the following reasons. In certain cases, a

software application implements several ways for the user to activate a particular software

function, for example, through menu interaction or using shortcut keys. Therefore, the ϕ

function sometimes maps different partial derivation trees to a software function. Inversely, it

is possible that ϕ maps one partial derivation tree to several software functions. This situation

arises when our recovery technique cannot differentiate between two or more software

functions. This happens when the difference between software functions is not at the syntax

level but at the semantic level. We illustrate such a scenario below.

f1: get balance from checking

Transaction

Balance Account

Checking

f2: processed withdrawal operation

MoneyTrans

Account Amount Withdraw

Checking | Savings Enter D+

Figure 5: Derivation trees for two features based on the grammar of Figure 8.

 34

Let us assume that the list of our bank ATM software functions contains the two

software functions process withdraw from checking and overdraw when withdrawing from

checking. The test script given in Figure 3 could activate either one of these two software

functions. Unfortunately, our technique cannot determine which software function is

activated since it depends on the amount of money in the customer’s checking account before

running the test script. Of course, the information on the sum of money in an account is

available in the bank database, but currently our technique does not make use of data stored

in database records. The fact that our technique cannot differentiate between the two software

functions is reflected in the many-to-one correspondence from the two software functions to

the same parse tree pattern.

Constructing a featured grammar for a particular application is not necessarily a

challenging task. However, it introduces work not currently practiced during software

development. For real size systems, constructing a complete featured grammar and the

relation ϕ may take significant time. Moreover, adding to the application’s user interface

requires updating the featured grammar to keep it in-sync with its corresponding software

application. Consequently, the software industry will not likely adapt its software

development cycle for a technique that requires additional tedious work.

Practitioners are more likely to adopt an approach that builds structures incrementally

on-demand. Thus, we propose an alternative method where the construction of a grammar for

the complete syntax of test scripts is not needed. Such an approach can be developed by

observing the following. The presence of a specific pattern of tokens in the test script of a

system test is often sufficient for determining the activated software functions. For instance,

if a test script of our bank ATM has the tokens Balance and Checking in sequence, then the

 35

system test activates the software function get balance from checking. In such case, simple

text matching is sufficient to determine that the software function get balance from checking

is activated.

In this new technique, one associates software functions with regular expression

patterns. These patterns only need to specify a partial regular expression with the few tokens

to match in script in order to determine the activation of a software function. That is, the

patterns only need to specify regular expressions that parse a part of the test script.

Implementing this second technique is straightforward with engines such as UNIX

egrep. That is, a programmer associates regular expression patterns to software functions,

then, for each pattern, egrep identifies the test scripts that match the pattern.

Figure 6 presents some correspondence of function ϕ between the bank ATM

software functions and some partial regular expressions. In our notation of Figure 6, words in

single quotes are tokens found in the test script. The other symbols follow the notation of

regular expression understood by the UNIX function regexp.

Certain software functions need more careful analysis than others. For example,

verifying whether a test script activates the withdraw function only requires checking for the

‘Withdraw’ token. In contrast, verifying if an input phrase applies the software function print

 Partial Regular Expressions Software Functions Selected
(a) ‘Checking’ f24
(b) ‘Deposit’ ‘Savings’ [0-9]* ‘Enter’ f12

(c) ‘Withdraw’ (‘Savings’|’Checking’) [0-9]* ‘Enter’ f27
(d) ‘Deposit’ (‘Savings’|’Checking’) [0-9]* ‘Enter’ f28

(e) ‘No’ ‘Yes’ f23

Figure 6: Regular expression patterns of software functions of our bank ATM.

 36

a receipt is more intricate. In this case, we cannot merely specify the ‘Yes’ token because the

same token is also used to specify the start of another transaction. Thus, in this case, we must

specify a partial regular expression that ensures the ‘Yes’ token matches the function request

receipt and not that of initiate another transaction. The partial regular expression

corresponding to the software function request receipt is shown on line (e) of Figure 6.

Partial regular expressions can be developed incrementally on-demand; therefore,

they are more likely to be adopted by the software industry. While most scripting languages

support regular expressions, writing complex regular expressions is not always easy. For a

complex but highly structured input phrase, one may use tree-based regular expressions, such

as those provided by tawk [Griswold et al. 1996]. Such regular expressions have been

successfully used in lightweight techniques for reverse engineering information from

programs [Griswold et al. 1996, Ernst et al. 1997].

2.2.2.3 Applicability and limitation of our recovery technique

The language of the ATM is regular; however, the language of other applications, as

per the Chomsky hierarchy of languages, may be regular, context-free, context-sensitive, or

Turing enumerable. Turing enumerable languages form the largest class. They subsume

context-sensitive languages, which subsume context-free languages, which in turn subsume

regular languages.

In theory, the language accepted by a software system may be Turing enumerable or

context-sensitive. However, the syntax of test script languages for most software application

can usually be described using context-free or regular grammar. There exist tools for

automatically generating parsers for regular and context-sensitive grammars. These tools

may easily be adapted for our purpose. For example, using a platform such as Software

 37

Refinery, one can easily specify a context-free grammar that describes the language of a

particular software application’s test script. Moreover, the Refine language has the

capabilities to specify parse tree pattern using the rule construct. Thus, software refinery

would be a practical tool for implementing our recovery technique. Other parser generators

that allow specifying attribute grammars can also be used for implementing our recovery

technique. As mentioned previously, implementing our second technique is straightforward

with regular expression matching tools such as UNIX egrep.

So far, we have shown how both of our techniques recover the Activate relationships

between software functions and the test script portion of system tests. However, we have

ignored the rest of the information found in a system test, such as input files referred to by a

test script or the names and locations of databases used by a test script. That extra

information may sometime reveal the activation of additional software functions. Below, we

explain how and when our recovery technique can be extended to determine the software

functions of information found outside test scripts.

We first give a description of the extension to our technique, and then we give a brief

example. The extension associates additional featured grammars to input files requested by

test scripts. The content of an input file must be in a known format so a grammar can be

created for the particular format. Once the featured grammar for a given format is created,

our technique works exactly as for test scripts. In other words, parsing the content of an input

file with the associated featured grammar determines the software functions activated by that

input file. We illustrate this scenario below.

Let us assume that

• The software application of interest is an HTML viewer;

 38

• A test script specifies the following operation: Open the input file test.html in the viewer;

and

• The content of test.html sets the title of the page in the html header section and specifies a

header of level 1 in the body section.

Referring only to the test script, our technique would only identify the activation of

software function open html file. However, when our technique also uses the appropriate

featured grammar associated to the HTML format, it can also determine that the content of

test.html activates the software function set title and the software function display heading 1.

In this illustration, our second technique, which uses regular expression pattern, can also

recover many software functions associated to the HTML syntax.

Unfortunately, creating a featured grammar or regular expression patterns is not

always possible for the simple reason that the application programmer does not always know

the input file’s formats. For example, a programmer does not know the format used by a

database management system (DBMS) for storing data. To interact with data in a database,

the programmer only needs to know the SQL language. In such cases, our technique cannot

analyze the data of the database to determine if they activate software functions.

2.2.2.4 Works related to our recovery technique

Prior efforts used grammars related to the input space of a software application.

However, their purpose was not to recover Activate relationships but instead to generate input

phrases, which could later be used to test the application. In particular, the grammar of a

programming language was used to generate programs that were later used to test the

compiler [Purdom 1972, Celentano, et al. 1980, Spadafora and Bazzichi 1982, Camuffo, et

 39

al. 1990]. These test-generating techniques do not connect grammar to software functions;

thus, they are unable to recover Activate relationships.

Incidentally, our technique requires much simpler grammars than those used for test

phrase generation since we are not worried about the validity of the system test’s syntax. In

our case, we assume that system tests already exist and are valid. Thus, for our purpose,

grammars may overlook certain complexity in the syntax of test scripts (or other input files).

It may specify a grammar that parses a superset of the language of test scripts. In contrast, the

grammars for test case generation must be precise so as to generate phrases with a perfect

syntax structure. Moreover, test generation techniques often require additional methods to

validate the semantic of a generated test phrase.

2.3 Potentially Affect

In this section, we explain the term potentially affect. In other words, what does it

mean for a software function to be potentially affected? We then show that combining

Exercise and Activate relationships infer relationships between source code components and

software functions. In turn, these inferred relationships help identify the software functions

potentially affected by a change at a specified spot in the source code.

A software function f is potentially affected by a change at spot s of

the source code if the source code component that contains s

participates to the implementation of software function f.

The terminology participates to the implementation of is ambiguous. We clarify it by

the following assumption.

 40

Implementation
participation
assumption:

If a source code component c participates to the implementation of

software function f, then there must be a system execution that activates f

and exercises c.

Hence, from the assumption above, we know that

There cannot exist a system test t that activates a software function f

and exercises a source code component c where c does not participate

to the implementation of f.

The implementation participation assumption shows that Exercise and Activate

relationships can be combined to determine the software functions potentially affected by a

change at a selected spot of the source code. This will require joining Exercise and Activate

relationships.

The combination of these two types of relationships is done using the standard select

and project operators from relational calculus defined below.

Definition: • ()RX 'σ defines the select operator. It selects X' from R where X'⊆ X and

R:X∝ Y. It returns a set of ordered pairs ',' YX where Y'⊆ Y.

• ()RXπ defines the project operator. It projects R on X where R is a

relation between domain X and some other domain Y. It returns a set with

the first elements of R if R is a set of ',' YX or the second elements of R

if R is a set of ',' XY .

Applying these operators on the Exercise and Activate relationships sampled from

system test allows inferring relationships between exercise traces and software functions. We

specify how to infer such relationships below.

 41

Let us assume the following:

1. T is a set of system tests, C is a set of source code components, and F is a set of

software functions.

2. The sampling of Exercise relationships between system tests in T and source code

components in C has been performed. Similarly, the sampling of Activate relationships

between system tests in T and software functions in F has also be performed.

The Potentially Affect relationships between source code components and software

function are created as follows:

Definition: ()() ()(){ }CcExercisetcActivateyAffectPotentiall cTtF ∈∈= & , σπσπ

We can now extract the software functions potentially affected by a change to a spot s

in the source code.

1. By finding the source code component c that contains spot s. Spot s in the source

code is identified by a directory/filename, a line, and a column. With these pieces of

information, it is straightforward to find the corresponding source code component c that

contains a particular spot.

2. By computing the set F' of potentially affected software function as follows:

()(){ }CcyAffectPotentiallF cT ∈= ' σπ .

A word about the quality of predictions is now in order. Let us first assume that there

exists an oracle that always gives a safe and precise prediction as to the set of software

functions that will be affected by a change at a specified spot in the source code. Second, let

us also assume that for a given spot s, the oracle finds that the set Fpa is the resulting

predictions of the set of software functions potentially affected. We can now define the

notion of safety and of precision of a prediction:

 42

1. Safety of a prediction: A set F' of software functions is a safe prediction if Fpa ⊆ F'.

The ratio of safety of a prediction can then be measured as follows. Let A=Fpa− F' where

− is set subtraction; i.e., it removes all elements of F' from Fpa. If an element is in F' but

no in Fpa, then the element is dumped.

Ratio of Safety = |A| / |Fpa|.

2. Precision of a prediction: A set F' of a software function is precise if F' ⊆ Fpa.

Alternatively, the ratio of precision of a prediction can be measure as follows. Let

A=F'−Fpa; i.e., remove all elements of Fpa from F'. If an element is in Fpa but not in F',

then the element is dumped.

Ratio of precision = (|Fpa|−|A|) / |Fpa|.

Thus, safety measures how many of the potentially affected software functions are

part of a prediction. In contrast, the precision measures how many software functions of a

prediction are potentially affected. When a prediction is both safe and precise, we say that the

prediction is exact or correct.

Definition: A prediction is exact (or correct) if it is safe and precise. Alternatively, we

may say that a precision is exact if its ratios of safety and of precision are

100%.

When using our method, a prediction is computed from Potentially Affect

relationships, which are computed by combining a sample of Exercise and Activate

relationships. In turn, Exercise and Activate relationships are sampled by a set of system

tests. Consequently, the safety and precision of predictions depends on the set of system tests

used for sampling the Exercise and Activate relations.

 43

In Chapter 3, our goal is to find a set of conditions that guarantee safety; however, we

do not care about precision. In Chapter 4, we define a set of criteria that a set of system tests

must satisfy in order to be used to sample Exercise and Activate relationships. These criteria

do not guarantee safe predictions; however, they improve the precision of predictions.

Besides the level of safety and precision, there is also a practicality factor. In our

context, practicality characterizes the properties of the set of system tests needed for

sampling the Exercise and Activate relations. If satisfying the properties requires a large

number of system tests or if it requires system tests not likely to be in a test suite, then the

properties are unpractical. In this research, we do not attempt to measure practicality. We

simply state whether a set of specified properties are practical or not. As we will see in our

future analysis, the answer on the practicality issue will be obvious.

Before studying our methods, in the next chapters, we present Sonar, a prototype tool

that uses our method for detecting ripple effects caused by modifying a specified spot of the

source code.

2.4 Implementing our method: Sonar

First, we present our design decisions for Sonar and how to prepare the required

inputs to use Sonar with a software system. Second, we illustrate applying Sonar with our

bank ATM. Then, for demonstrating Sonar at work with our bank ATM, we specify a

maintenance task to implement in the ATM, and then we show how Sonar helps during that

maintenance task. Finally, we present actual screen shots of Sonar.

 44

2.4.1 Implementing our method

In order to compute predictions, Sonar must refer to Exercise and Activate

relationships. In other words, a preparatory step that samples Exercise and Activate

relationships from system tests is performed before predictions can be computed. In this

section, we explain this preparatory step.

Prior to computing and storing Exercise and Activate relationships, a set of software

functions and a set of system tests must be available. We assume that there exists a set T of

system tests. As indicated in Section 2.2, each system test is held in a file with a unique

name, and the file contains the test script plus other information needed to execute the system

test. To facilitate the preparatory step, we require a file to list all the unique filenames of the

system tests.

Software functions are listed in a software function definition file. In addition to the

list of software functions, the software function definition file also stores the

generalization/specialization relationships between the software functions. This allows the

software functions to be listed in a tree. Each software function defined in the software

function definition file also maintains a reference to a software function activation file. The

software function activation file associated to a software function f contains a list of the

system tests that activate f. In other words, the software function activation files hold the

Activate relationships.

The information in a software function definition file is as follows:

1. A unique name for the software function being defined,

2. A short and a long description of the software function,

3. The name of the corresponding software function activation file, and

 45

4. Two lists of software functions. They enumerate software functions that are

specialization and generalization of this software function. These two lists allow

structuring software functions into a tree.

In the following, we first address the Activate relationships then the Exercise

relationships.

We know that software function activation files hold the Activate relationships. The

software function activation file associated with a software function f lists the unique names

of the system tests that activate f. The two techniques based on featured grammar and on

regular expression pattern could be used to compute the software function activation file of

each software functions. However, we have left our implementation of Sonar independent of

the method used to compute the Activate relationships. Sonar requires each software function

activation file to be associated to a software function in the software function definition file.

It also requires each software function activation file to correctly list the names of the system

test that activate the corresponding software function.

Our sampling of Exercise relationships uses χAtac, a tool developed by Telcordia that

performs node profiling of system runs [χAtac]. χAtac uses source code instrumentation in

order to collect exercise traces. It has the ability to instrument source code of the C and C++

languages. By default, χAtac holds all exercise traces profiled in a single trace file. However,

χAtac allows different names to be given to each exercise trace profiled. This capability

gives χAtac the necessary power to hold the Exercise relationships needed by Sonar. To

obtain a sample of Exercise relationships for a set T of system tests, the following is done:

1. Compile a software system S with χAtac.

2. For each system test t in T do

 46

a. Let n be the unique name of t

b. Execute S with t. Thanks to the special compilation, the profile exercised by t is

saved in the file S.trace.

c. Name n the exercise trace just created in S.trace

After this step, the file S.trace contains the Exercise relationships sampled using the

set T of system tests. χAtac formats S.trace so that, given the name of system test, it is simple

to extract the set of source code components exercised. However, χAtac does not provide the

inverse function, which computes the set of names of system tests that exercised a particular

source code component. Sonar needs the latter function to compute predictions. Hence, in our

preparatory step, we use the S.trace file created by χAtac to precompute the inverse relation

and then to cache it.

Sonar is merely a prototype tool. In real life, the capacity of Sonar would likely be

integrated in a tool for managing the software development process such as those of

Rational™ and Together Software™.

The following is a summary of the list of information needed for preparing Sonar

with a particular software system S:

• A file that lists a set T of system tests with unique names.

• A trace file obtained by executing an instrumented version of the system S (instrumented

using χAtac) with each system test in T.

• A software function specification file that defines the software functions and the

relationships between them.

• A software function application file for each software function defined in the software

function definition file.

 47

Our preparatory step precomputes and caches information so that Sonar efficiently

computes its predictions for system S. After the preparation step, Sonar is ready to compute

predictions. To obtain a prediction, the user specifies a filename, a line, and a column. Then

Sonar highlights its prediction in the tree of software functions. In the next section, we

demonstrate the usefulness of Sonar with an example.

2.4.2 Demonstration of Sonar

First, we illustrate the file needed to prepare our bank ATM system for Sonar. We

then demonstrate how a maintenance task on our bank ATM system benefits from the

prediction computed by Sonar. Our bank ATM is imaginary so we cannot truly apply Sonar

to it. Our demonstration manually computes its prediction exactly as Sonar would.

Nevertheless, we conclude this section with actual screen shots of Sonar computing

predictions for the software functions of a small spreadsheet application.

2.4.2.1 Preparing our bank ATM

For the purpose of this demonstration, we assume that the ATM is implemented by

the source code shown in Figure 2 of Section 2.2.1. The first file required for preparing the

bank ATM for Sonar is a file that lists all the system test names (ti’s). Table 4 gives these

unique names in the left column. In the right column, we find the test script portion of the

system tests.

Now assume that the source code was instrumented with χAtac and that the

instrumented system of the ATM was executed with these system tests. This activity creates

the second file needed: the trace file. Finally, Figure 7 illustrates portions of the software

Table 4: List of system tests used for computing Exercise and Activate relationships
for our bank ATM system.
System test
names

Test script

t1 12 Abort
t2 1234 Enter Balance Abort
t3 1234 Enter Balance Checking No
t4 1234 Enter Balance Savings No
t5 1234 Enter Withdraw Checking Abort
t6 1234 Enter Withdraw Checking 100 Enter No No
t7 1234 Enter Withdraw Savings 200 Enter Yes No
t8 1234 Enter Deposit Checking 500 Enter Yes No
t9 1234 Enter Deposit Savings 1000 Enter No No
t10 1234 Enter Transfer Checking Savings 500 Enter Yes No
t11 1234 Enter Transfer Checking Other 11122334 123.42 Enter Yes No
t12 1234 Enter Transfer Savings Checking 200 Enter Yes No
t13 1234 Enter Transfer Savings Other 11122334 296.67 Enter No No

hec

t14 1234 Enter Transfer Savings C

Process_Mtrans
Process a money transaction
ProcMtrans.html
ProcMtrans.sfa
{ Process }
{ Withdraw, Deposit, Transfer, Checking, Savings }

PWithdraw
Process a withdrawal
PWithdraw.html
PWithdraw.sfa
{ Money_trans }
{ WCheck }

PWChecking
Process Withdraw from checking
PWCheck.html
PWCheck.sfa
{ Withdraw, Checking }
{ }

(A)
 48

function definition file and the software function

information needed for Sonar is now prepared.

Figure 7: (A) illustrates a partial software fun
software functions are defined). (B) displays th
for each of the three software functions listed
king 100 Abort No ProcMtrans.sfa:
t6
t7
t8
t9
t10
t11
t12
t13
__
PWithdraw.sfa

t6
t7

__
PWCheck.sfa

t6

__

(B)
 activation files of the ATM. All the ATM

ction specification file (only three of many
ree software function application files. One

in Figure 7(A).

 49

2.4.2.2 Using Sonar during a maintenance

The best method to show the appropriate use of a tool such as Sonar is to propose a

maintenance task and then demonstrate when and how the computed predictions assist during

maintenance.

Let us assume that the current version of the ATM satisfies the functional

requirements given in Section 2.1.2. The team responsible for the ATM realizes that

historically most withdrawal transactions are for $20, $40, or $60. Thus, instead of requiring

a customer to enter an amount every time a withdrawal operation is selected, the new menu

will enable a customer to select a fast cash withdrawal option with the different amounts

specified above. The ATM analysts ask a programmer to implement fast cash withdrawal

where a customer does not need to enter the amount to withdraw when that amount is $20,

$40, or $60. Thus, the functional specification 3 (Table 1) of the current functional

specifications changes. It is now:

3. Once the PIN is validated, The ATM must allow the customer to perform one
or more of the following operations:
• Withdraw cash from the checking or savings account tied to current bank

card. The withdrawal function must allow a customer:
• To select the amount $20, $40, $60 directly without actually typing the

amount.
• To enter an amount.

From this new specification, the programmer knows to study the implementation of

the withdraw software function and find where the customer is asked to specify an amount.

Research by Erdem and Johonson illustrates that to understand a particular behavior,

programmers often refer to the exercised traces of input phrases that apply the behavior of

interest [Erdem et al. 1998]. In our case, the programmer would refer to the exercise traces of

system test that activate the withdraw software function.

 50

Figure 8: Exercise trace of system test that activates the software functions withdrawal from
checking and withdrawal from savings.

Main process of bank ATM
Begin of main process

card_info = readCard();
success = validateProcess(card_info);
if (success = False) then

sendCard();
exit;

endif
cust_rec =
bank_db.getCustomerRecord(card_info);

repeat {

op = doOperationMenu();
// abort then goto next op.
if (op = ABORT) then

goto NextOp;
else // valid op then as for account

acnt = getAccount(SIMPLE_MENU,
cust_rec);

if (acnt = null) then
goto NextOp;

endif
endif
// Withdraw op.
if (op = WITHDRAW) then

from_acnt = acnt;
to_acnt = null;

// Deposit op.
else if (op = DEPOSIT) then

from_acnt = null
to_acnt = acnt

// Balance op.
else if (op = BALANCE) then

from_acnt = acnt;
// Transfer op.
else if (op = TRANSFER) then

from_acnt = acnt;
// for transfer need target account
to_acnt = getAccount(COMPLEX_MENU,
cust_rec);

if (to_acnt = null) then
goto NextOp;

endif
endif
if (op != BALANCE) then // money op.

amount = doAmountMenu();
if (amount = ABORT) then

goto NextOp;
else if (op = WITHDRAW) and

(amount%10 != 0) then
doAmountError();
goto NextOp;

endif
performMoneyTransaction(from_acnt,
to_acnt, op, amount);

else // balance op.
bal_str = from_acnt.getInfoStr();
printReceipt(bal_str);

endif

// jump here in case of failure
NextOp:
next = doNextOpMenu();

until (next = False) // end of repeat loop
sendCard();

End // of the main process

Boolean validationProcess(CardInfo c_info)
Begin

success = False;
attempt = 0
repeat {

pin = doPINMenu();
attempt = attempt + 1;
if (pin = ABORT) then

break;
endif
success = c_info.validateCustomer(pin);
if (success = False) then

doPINErrorMenu();
endif

until (success) or (attempt = 3)
return success;

End

Account getAccount(int menu_type,
CustomerRecord cust_rec)

Begin
acnt_no = doAcntMenu(menu_type);
the_acnt = null; //Assume failure or abort
if (acnt_no = CHECKING) then

msg = cust_rec.getChecking(the_acnt);
else if (acnt_no = SAVINGS) then

msg = cust_rec.getSavings(the_acnt);
else if (acnt_no = OTHER) then

other = doAccountNoMenu();
the_acnt =
bank_bd.getAccountByNumber(other);

endif

// print error message
if (the_acnt = null) then

str = msg.getFormatedString();
printReceipt(str);

endif
return the_acnt;

End

void preformMoneyTransaction(Account from_acnt,
Account to_acnt, int op, int amount)
Begin

if (op = WITHDRAW) then
msg = from_acnt.withdraw(amount);
if (msg.noError()) then

sendCash(amount);
endif

else if (op = DEPOSIT) then
msg = to_acnt.deposit(amount);

else if (op = TRANSFER) then
msg = from_acnt.transfertTo
(to_acnt, amount);

endif
if (msg != null) and (msg.error()) then

str = msg.getFormatedStr();
printReceipt(str);

else
// Ask if customer wants receipt
receipt = doReceiptMenu();
if (receipt = YES) then

str = msg.getFormatedStr();
printReceipt(str);

endif
endif

End

New code
could go there

 51

Figure 8 shows in regular black font the source code components exercised when

activating the software function perform withdrawal from checking and perform withdrawal

from savings. In other words, the grayed out code is not exercised by the system tests that

activate the two types of withdrawal.

2.4.2.3 Before implementing the software function fast-cash withdrawal

When studying the source code components highlighted in Figure 8, a programmer

focuses on understanding the implementation of the withdraw software function. During that

investigation, the programmer realizes that the line of code ”amt=doAmountMenu()”

calls the menu where the customer is asked to enter the amount to withdraw. Thus, a

potential solution for implementing fast-cash withdrawal is to change this function call. The

box ‘New code’ in Figure 8 indicates the spot in the source code where a change could take

place in order to implement fast-cash withdrawal.

This is the moment that predictions computed by Sonar are useful. Before designing

the source code change, the programmer must know if the solution proposed for

implementing fast-cash withdrawal affects software functions other than the withdraw

transactions. In other words, when changing the source code at line

”amt=doAmountMenu()”, what are all the software functions potentially affected?

The programmer does not necessarily have the answer to the question above because

during the initial review of the source code, the programmer studied the exercise traces with

attention focused on the understanding the withdraw software function. During this

investigation of the code, the programmer did not necessarily pay attention to finding out the

other software functions that could also reach the line of source code of interest.

 52

Using Sonar, the programmer can get an instantaneous prediction that answers the

question. Figure 9 shows the software functions of the ATM that would be affected by a

change to the line of code “amt=doAmountMenu()”. The prediction shows that the other

monetary transactions, namely, deposit and transfer, could be affected. With that information,

the programmer can now design the source code change that modifies the withdrawal

Processed
Failed 3 times
Aborted

Authenticate PIN

From checking
From savings
Aborted

Balance operation

Processed
Aborted

From checking

Processed
Aborted

From savings

Aborted

Withdraw

Processed
Aborted

From checking

Processed
Aborted

From savings

Aborted

Deposit

Processed
Aborted

To savings

To other
Aborted

From checking

From savings ...
 (same as
 Transfer ... From checking)
Aborted

Transfer

Money Transaction

Perform operation

Print receipt

Bank ATM

Figure 9: Software functions
potentially affected by a change
at the position shown in Figure 8.

 53

software function but does not affect the deposit and transfer transaction. Without the

predictions, the programmer might have made a change to the source code that also affected

the deposit and the transfer software function.

We note that the results computed by Sonar also include the PIN authentication and

the print receipt software functions. These two software functions are not directly affected;

thus, they could be considered imprecision. Such imprecision is sometimes unavoidable. For

example, it is not possible to reach the withdraw software function without a positive

authentication of a PIN. Thus, Sonar will often predict that the software function Process

PIN Authentication is potentially affected even when it might not be. On the other hand,

other types of imprecision can be avoided. For instance, in our example, the prediction

includes the software function Print receipt because input phrase t7 applies Withdraw in

combination with Print receipt. If t7 did not request a receipt, then the prediction would have

been more precise. In Chapter 4, we define criteria for system tests to reduce imprecision.

Finally, one may wonder why the programmer only used the exercise traces of a few

withdraw operations instead of simply studying the entire code of the ATM. This deeper

analysis would have shown the programmer that the deposit and transfer transactions could

be affected by a change to the proposed line of source code. In fact, when modifying a small

program, studying its entire implementation is the best method. However, when the source

code implementation is larger than just a few thousand lines of source code, studying the

entire source code is often not a practical option.

We now present a few actual screen shots of Sonar. These screen shots come from the

study of the software application scalc, a small spreadsheet program used later in our case

study. Although Sonar is mainly built to predict the software functions affected, we have

 54

built it in such a way that it can also project the inverse information, i.e., Sonar can also

identify the source code components related to a particular software function. The capacity to

project information from software functions to source code components is also found in

χSuds from Telcordia.

Figure 10 shows the tree of software functions of scalc. This tree is generated from a

software function specification file. This figure shows that the software function Recalculate

is selected to identify the source code components that implement the software functions.

Sonar highlights the relevant source code using html tags that color the relevant source code.

The answer can then be displayed in a web browser such as the Netscape™ web browser

(Figure 11).

Figure 10: Sonar analyzing scalc.

 55

We will now illustrate the true function of Sonar: the ability to predict the software

functions affected by a change at a particular spot in the source code. In this example

illustrated in Figure 12, the spot at line 169 and column 20 of file calculator.cpp points

to the source code statement evaluate(y,x) highlighted in orange in Figure 11. Figure

12 illustrates how a programmer asks Sonar for a predication, and Figure 13 shows the

method used by Sonar for presenting its prediction.

Figure 11: Highlighted source code is involved in the implementation of software function
Recalculate.

 56

Figure 12:A programmer wants Sonar to project the software functions affected if
source code of calculator.cpp at line 169 and column 20 were modified.

Figure 13: Projection computed by Sonar.
Potentiallyaffected software functions are
highlighted.

3 Computing safe predictions

In this chapter, our goal is to identify conditions under which our method safely

predicts the software functions potentially affected by a change at a selected spot of the

source code. In Section 3.1, we show how computing safe predictions relates to the method

presented in the previous chapter. In turn, this allows our goal to be expressed in terms of

coverage of software functions and coverage of source code that a set of system tests must

achieve. Section 3.2 shows that using only coverage information is not sufficient to guarantee

safe predictions. Therefore, we slightly redefine our goal in Section 3.3. We then propose in

Section 3.4 a solution to this new goal where safe predictions are guaranteed for a well-

defined, broad category of software functions. Finally, in Section 3.5, we assess our solution.

3.1 Expressing safe predictions with coverage conditions

In the following, we use our definitions and assumptions to connect the notion of safe

predictions to our method that computes predictions. This allows us to express our goal

precisely. We start from the definition of safe prediction:

A set F' of software functions is a safe prediction if Fpa ⊆ F'

where Fpa is the correct prediction of the software functions potentially

affected.

In other words, a prediction is safe if it contains all the software functions potentially

affected by a change at a specified spot of the source code. To further our analysis, we need

the definition of potentially affected. We refer to the definition of potentially affected given

in Chapter 1; however, we replace the phrase segment of source code by source code

component since we have defined the latter.

 58

A software function f is potentially affected by a change at a selected

spot of the source code if the source code component that contains the

spot participates to the implementation of software function f.

Finally, our method relies on our implementation participation assumption. Thanks to

this assumption, we can connect the notion of safety to the predictions computed by our

method. The assumption states

If a source code component c participates in the implementation of

software function f, there must be a system execution that activates f

and exercises c.

On the one hand, the implementation participation assumption relates safety of

predictions to the activation of software functions and the exercise of source code

components, and on the other hand, our method uses system tests to sample Exercise and

Activate relationships. So, we initially state our goal as follows.

We want to identify conditions needed by a set of system tests such that

• There always exists a finite set T of system tests that satisfies the condition below.

• When a set T is used to sample Exercise and Activate relationships, our method computes

safe predictions.

Conditions on a set of system tests are specified in terms of coverage of software

functions and coverage of source code. Thus, we can further refine the way we express our

goal:

We want to identify a criterion X of source code coverage and a criterion Y of

software function coverage such that

 59

• There exists a finite set T of system tests whose execution satisfies coverage criteria X

and Y.

• When set T is used to sample Exercise and Activate relationships, our method computes

safe predictions.

3.2 Predictions based on coverage conditions: unsafe

Unfortunately, when only using information about software function coverage and

source code coverage, it is impossible to guarantee safe predictions. No coverage of source

code and of software functions is sufficient for guaranteeing that our method always

computes safe predictions.

Before illustrating our problem with an example, we first present the two factors that

cause the problem:

• Factor 1. A software function is completely re-implemented in several areas of the source

code. This happens when the implementation of a new software function cannot easily fit

in the current source code of a system. In such cases, the software function is

implemented several times in different areas of the source code that relate to that new

software functions.

• Factor 2. The activation of different software functions results in the same path of source

code being exercised. This situation can occur when the complete source code

implementation of a system is not accessible, for example, when third party libraries in a

compiled form are used to implement a system.

A system that combines these two factors in a certain way makes it impossible to

guarantee safe predictions. Our example is based on a very simple calculator. In particular,

the calculator has only two software functions, namely, add two numbers and subtract two

 60

numbers. The source code implementation of our calculator and its corresponding control

flow graph are shown in Figure 14. For the purpose of our example, let us assume that the

procedure eval in Figure 14 belongs to a third library and its source code is not accessible.

The control flow graph (CFG) of Figure 14 contains three complete paths from start

to end:

• p1 = v1, v2, v3, v7

• p2 = v1, v2, v4, v5, v7

• p3 = v1, v2, v4, v6, v7

Let us now point out the presence of the two factors. Factor 1 is present since both

add and subtract have their implementation duplicated in the source code. Add is

implemented by paths p1 and p2, and subtract by path p1 and p3. Factor 2 is also present since

v2

v1

v3

v5 v6

v4

v7

main ()
{

read(operand1);
read(operand2);
read(operator);

if (operand1%2 == 0) then
eval(operand1, operand2,

operator);
else

if (operator == '+') then
print(operator1 +

operator2);

else // operator is -
print(operator1 -

operator2);
}

read(operand1);
read(operand2);
read(operator);

if (operand1%2 == 0) then

eval (operand1,
operand2, operator);

T

if (operator == '+')
then

F

print (operator1 +
operator2);

print (operator1 -
operator2);

FT

Start

End

Figure 14: Sample source code and CFG of system used for illustration of unsafe
predictions.

 61

path p1 implements several software function, in this case the two software functions add and

subtract.

We now present three system tests that respectively exercise the paths p1, p2, and p3.

Moreover, the set of these three system tests activates the two software functions add and

subtract.

• t1 = 2 3 + activate software function add

• t2 = 3 2 + activate software function add

• t3 = 3 2 - activate software function subtract

We now show that despite the full coverage of software functions and of the full path

of source code achieved by these three system tests, our method still computes unsafe

predictions. In particular, let our method compute a prediction for a spot in source code

component v3. Our method finds that

1. t1 is the only system test that exercised v3, and

2. t1 activates the software function add.

Our method predicts that a modification to a spot of v3 potentially affects the software

function add. This prediction is unsafe since the execution of the following system test

t4 = 2 3 - activates software function subtract.

Moreover, t4 also exercises path p1, which contains vertex v3. Thus, a safe predictions

must include both the software functions add and subtract. However, referring only to

coverage of software function and of source code, we have no way to know that the system

test t4 is needed to guarantee safe predictions. In fact, the execution of the three system tests,

t1, t2, and t3, already achieves a full coverage of software functions and of paths of source

code.

 62

In conclusion, in the general case, it is not possible to guarantee safe predictions only

referring to the coverage of software function and the coverage of path of source code.

There are two ways to remedy this problem. A first solution is broadening our

analysis by incorporating semantic checks whose role would be to discover that, for example,

the three system tests t1, t2, and t3 of our calculator example are not enough to guarantee safe

predictions. Building the required semantic checks would render the application of our

method very tedious, given that this problem does not occur frequently in practice.

Thus, for the moment, we prefer a second strategy where we impose a restriction on

software functions.

3.3 Expressing safe predictions with restriction

We accept the fact that safe predictions for all software functions cannot always be

computed from coverage information only. Instead, we slightly shift our goal by wondering

whether there is a well-defined category of software functions for which we can guarantee

safe predictions only using coverage information. Obviously, we want this well-defined

category of software functions to be as broad as possible.

From this strategy, we can reformulate our new goal as follows.

NEW GOAL:

We want to identify a restriction Z on software functions, a criterion X of source code

coverage, and a criterion Y of software function coverage such that

1. There always exists a finite set T of system tests whose execution
satisfies criterion X and criterion Y where criterion Y applies to all
software functions that respect restriction Z.

 63

2. IF (Exercise and Activate relationships are sampled with set T of
 system tests that satisfies
 criterion X of source code coverage AND
 criteria Y of software functions coverage)
 THEN our method computes safe predictions
 for all software functions that respect restriction Z.
In the next section, we propose a solution to this new goal and show that the proposed

solution does in fact fulfill our new goal.

3.4 Computing safe predictions with restriction

In Section 3.4.1, we propose a first attempt where we specify a restriction Z on

software functions. This trial fails. However, it teaches important lessons for our next

attempt. In Section 3.4.2, we then develop our new solution and prove that this second trial

fulfills our goal.

3.4.1 Restrictions on software functions: a first attempt

In this first attempt, we start by proposing a restriction Z on software functions.

However, this restriction is not good enough to guarantee safe predictions. For this first

effort, we construct restriction Z to avoid the problem mentioned in Factor 2 of Section 3.2,

which points out that different system tests can activate different software functions but

exercise the same path of source code.

Restriction Z (Attempt 1): System tests that activate different software

functions never exercise the same path of source code.

Although this restriction solves the problem raised in Factor 2, it still does not allow

guaranteeing safe predictions. In fact, for most software systems, there are infinitely many

paths in the source code, and restriction Z does not allow determining the finite set of these

 64

paths that must be covered for guaranteeing safe predictions. To clearly point out the

problem, we examine a particular case.

Let us assume that a change is to take place at a spot of source code component c.

Because of loop and recursion, the source code implementation of most systems has

infinitely many paths that contain c. Currently, restriction Z does not allow determining the

finite set of paths needed to obtain a safe prediction for c. Randomly selecting a finite

number of paths that contains c jeopardize the safety of predictions, and exercising all these

paths requires an infinite number of system tests.

Consequently, our first attempt fails. However, we draw lessons from it.

Lesson 1. Restriction Z restricts software functions in terms of path of source code.

Doing so makes restriction Z have an effect on criteria X and Y. In particular, let us define

criterion X as every path of source code to be exercised by at least one system test, and let us

define criterion Y as every software function to be activated by at least one system test. We

know that if a set T of system tests satisfies criterion X then T also satisfies criterion Y for all

software functions that respect Z. Specifying a restriction Z with such a property is useful

because we then only need to focus our attention on finding an adequate criterion X.

Lesson 2. Currently, our restriction Z on software functions is not restrictive enough.

In fact, to guarantee a safe prediction for a set of software functions that respect restriction Z,

an infinite number of paths must be exercised. One strategy for solving this problem is to

find a way of connecting restriction Z to a criterion X that is reachable by a finite number of

system tests.

In conclusion, from lesson 1, we decide that our restriction Z on software function

must guarantee that when criterion X of source code coverage is satisfied, criterion Y of

 65

software function coverage is also satisfied for all software functions that respect restriction

Z. From lesson 2, we know that restriction Z on software functions must be connected to a

criterion X that is reachable by a finite number of system tests.

3.4.2 Our solution for computing safe predictions with restriction

Our lessons learned make a crucial point: restriction Z on software function and

criterion X of source code coverage must relate in some way. To achieve a connection

between X and Z, we find it practical to first search for units of source code used for

measuring source code coverage. Second, we determine how these units of source code can

be used to specify a restriction Z on software functions. Third, we use these units of source

code to specify a criterion X of source code coverage reachable by a finite set of system tests.

Criterion X and restriction Z will be connected since they are specified in terms of the same

units of source code. Moreover, these units of source code also allow a restriction Z on

software functions to be specified such that when criterion X of source code coverage is

satisfied, criterion Y of software function coverage is also satisfied for all software functions

that respect restriction Z.

Consequently, to reach our goal, we perform the following steps:

1. Let criterion Y of software functions coverage be:

Every software function must be activated by at least one system test.

2. Identify different units of source code used for measuring source code coverage in the

remaining of Section 3.4.2.

3. First, find how the units of source code help specify a restriction Z on software

functions. Then, determine a criterion X of source code coverage that is reachable by a

finite set of system tests (Section 3.4.3).

 66

4. Show that we have identified criteria X and Y, and a restriction Z that fulfill the two

points of our goal (Section 3.4.4).

Units of source code

Chapter 2 showed how program profiling helps record the source code exercised.

Moreover, it presented node and branch profiling. These two types of profiling define two

units of source code, namely, nodes (source code components) and branch (ordered pair of

source code components). In this section, we go one step further by presenting units of

source code that represent paths of source code. Units of source code paths will enable

specifying a weaker restriction Z. Since our goal is to find a restriction Z that allows for a

broad category of software functions, paths will define better units of source code than node

and branches.

First, we propose to define a unit of source code as a full path.

Definition: A full path is a single sequence of source code components that corresponds to

a possible chronological order of exercise during a system test.

Full paths are not convenient because often there are infinitely many full paths in the

source code. Hence, it will be the job of restriction Z to determine the finite set of full paths

that must be covered in order to guarantee safety. However, all full paths are different, and

there are no clear good criteria for determining whether a full path must be selected. In turn,

we look at other alternatives.

Next, we present the notion of intraprocedural acyclic path and interprocedural path.

Research by Ball and Larus and by Melski and Reps have respectively defined intra- and

interprocedural paths and methods for profiling these paths efficiently [Ball and Larus 1996,

 67

Melski and reps 1998]. Both types of paths are defined on the control flow graph of the

source code.

Definition: A control flow graph G= (V, E) is defined by a set V of vertices where each

vertex v∈ V represent a basic block of the source code, and a set E of edges.

An edge e∈ E is represented by an ordered pair <v1, v2> where v1, v2∈ V. It

indicates that there exists a flow of control from basic block v1 to basic block

v2. In addition, V is augmented with a Start vertex and an End vertex, and E is

augmented with an edge <Start, v> where v corresponds to the basic blocks of

that is exercised first, and a set of edges <v, Exit> where each v corresponds to

a basic block that may be executed last.

Ball-Larus intraprocedural paths

When a procedure contains a loop, there are infinitely many intraprocedural paths in a

control flow graph. Ball and Larus propose to summarize the infinite number of paths with a

finite number of acyclic intraprocedural paths (B-L paths). Every intraprocedural path can be

expressed as a composition of B-L paths.

The definition of B-L path uses the notion of back edges in the control flow graph.

a z

e

dc

b

F T

Figure 15: Control flow graph transformed for computing B-L paths.

 68

Definition: Back edge in a directed graph is an edge from basic block a to basic block b

where b is always executed before a.

In Figure 15, a and z respectively represent the Start and the End vertices of the CFG.

The gray edge <e,b> is a back edge; it is part of the CFG. However, we observe that the dash

edges are not. Their use is explained later.

There exist four types of B-L paths:

• Acyclic paths from Start to Exit, for example, abz.

• Acyclic paths from Start to a CFG vertex x finishing by the execution of hx, where h is

the target of a back edge. For example, the sequence made of the single vertex a finishing

by the execution of ba, .

• Acyclic paths from a CFG vertex h that is the target of a back edge to Exit, for example,

bz.

• Acyclic paths from a CFG vertex v that is the target of a back edge to a CFG vertex x

such that acyclic paths finish by executing hx, where h is the target of a back edge. We

note that v and h may be the same node in the case where there are several paths within a

single loop, for example, bce and bde. Both finish by executing be,

Ball and Larus give a method that computes B-L paths by substituting each back edge

(gray edge of Figure 15), with two surrogate edges (dash edges of Figure 15). The first

surrogate edge goes from the CFG Start vertex to the target of the back edges, and the second

edge goes from the source of a back edge to the CFG End vertex. Since this transformation

removes the intraprocedural cycle, the transformed CFG is acyclic. In turn, there exist a finite

number of B-L paths within a procedure. In addition to the transformations, Ball and Larus

 69

also provide an algorithm to instrument source code so it records the B-L paths exercised

during an execution.

Melski-Reps interprocedural paths

Influenced by Ball and Larus, Melski and Reps defined the notion of interprocedural

path. We refer to such interprocedural paths as M-R paths. M-R paths are defined on the

interprocedural control flow graph (ICFG). We first expand our definition of CFG to define

ICFG.

An interprocedural control flow graph (ICFG) consists of a Global Start vertex, a

Global End vertex, and a set of control flow graphs (CFGs), one for each procedure of the

source code. As specified in the next section, each CFG has a unique Start vertex and a

unique End vertex. Each vertex in a CFG represents a source code component at the basic

block level, except for procedure calls where each call defines two vertices, an Entry vertex

and an Exit vertex. In the ICFG, for every call to a procedure p, there is an entry edge labeled

(i from the call Entry vertex to the Start vertex of p, and an exit edge labeled)i from the End

vertex of p to the Exit vertex of the call to p. The label (i and)i are used to maintain the

calling context when computing a valid interprocedural path. In addition, an ICFG contains

an edge from the Global Start vertex to the Start vertex of the main procedure—the

procedure that is always executed first (start node in the call graph)—and an edge from the

Exit vertex of the main procedure to the Global Exit vertex.

As for B-L paths, defining M-R paths requires some transformation on the ICFG.

Figure 16 displays the transformed ICFG used to compute M-R paths. An original ICFG

includes the gray edges but does not include the dashed edges. In Figure 16, the three

 70

transformations that must be performed on an ICFG to compute the set of M-R paths are the

following:

• An extra loop End vertex is added to each procedure. An edge from each loop End vertex

to the Global Exit vertex is added.

m10

f4

f9

f8

f7

f6

f5

f3

f2

m7

m3

m1

while(i<n)

i++;

F

T

Entry
r = r + f(n/2);

Start
main ()

main

Global Start

End

return f;

while (i < n)

Entry
t = t + f(i-1);

Exit
t = t + f(i-1);

F

T

)2

)1

(1

Global End

loop End

loop End

r=0;
i=0;

i++

int f(int n)

(2

m8

m6

m5

m4

m2

Exit
r = r + f(n/2);

Exit
r = r + f(n/2);

r=0;
i=0;
read(n);

Entry
r = r + f(n/2);

m9

End

f1
Start
int f(int n)

(f

)f

Figure 16: Interprocedural control flow graph transformed for computing M-R paths.

 71

• Every back edge (the gray edge in Figure 16) is discarded and replaced by two edges

(dashed edges in Figure 16) respectively from Start to the source of the back edge and

from the target of the back edge to loop End. We refer to the new dashed edges as

surrogate edges. Creating these surrogate edges is the same operation required by Ball-

Larus; it removes intraprocedural cycles. In terms of execution, traversing the dashed

edge from Start vertex to the target of a back edge represents the beginning of a new

iteration of a loop, and traversing the dashed edge from the source of the back edge to the

End vertex represents the end of a loop iteration.

• Edges generated by a recursive call to procedure p, also shown as gray edges in

Figure 16, are discarded. In the ICFG, a recursive call to a procedure p is responsible for

two control flow edges: an edge going from the Entry of p in a procedure m to Start of p,

and an edge going from the End of p to the Exit of p in procedure m. These two edges are

replaced by a summary edge going from the Entry of p in m directly to the Exit of p in m

(long dash edge in Figure 16). We note that this new edge is referred to as a summary

edge, not a surrogate edge. In addition, two interprocedural edges are created: a first one

from Global Start vertex to the Start vertex of procedure p, labeled (p, and another one

from the End vertexof p to Global End, labeled)p. Edges mark (p or)p are called

recursive edges.

Definition: • The following BNF grammar helps specify the M-R paths in the

transformed ICFG. To each M-R path, there corresponds a string of left

unbalanced (or balanced) parentheses.

 72

• Let us assign a label e to every edge without a parenthesis label:

Unbalanced Left ::= Unbalanced Left (i Unbalanced Left
Unbalanced Left ::= Unbalanced Left (p Unbalanced Left
Unbalanced Left ::= Balanced
Balanced ::= (i Balanced)i Balanced (for 1 ≤ i ≤ number of call site in

 the program)
Balanced ::= (p Balanced)p (for a procedure p called recursively)
Balanced ::= e
Balanced ::= ε (where ε means empty string)

• Referring to the grammar above, we define an M-R path as a path from

Global Start to Global End in the transformed ICFG, which corresponds to

a string of balanced or left unbalanced parentheses.

In addition to the above transformations needed to define M-R paths, Melski and

Reps developed an algorithm to assign a unique number to each M-R path. Moreover, they

explain where and how the source code of a system must be instrumented to record the

unique numbers of M-R paths exercised during a system run. Melski and Reps also show

there are a finite number of M-R path in the source code of a system [Melski and Reps 1998,

Melski 2002].

Table 5 lists all twenty M-R paths of the ICFG of Figure 16. We also added an invalid

path in the last row of the table in order to illustrate the notion of nonmatching subscript of

parentheses. For all M-R paths, Table 5 includes the parentheses and their labels to show

they are valid. GS and GE respectively mean Global Start and Global End. Using the

columns titled Main, f, and Recursion on f, we attempt to relate an M-R path to its actual

execution behaviors. To explain the different execution behavior captured in an M-R path,

we observe that two types of edges were introduced during the transformation on the ICFG:

some intraprocedural surrogate edges and some interprocedural edges. In terms of execution

behavior, traversing the former edges means repetition of a loop (intraprocedural cycle), and

 73

traversing the latter edges means repeating a recursive procedure (interprocedural cycle.) We

find that the edges introduced in the transformation of the ICFG enable the M-R path to

capture the five types of execution behaviors listed below. The first four behaviors express

intraprocedural behavior, and the last one expresses an inter-procedural behavior:

• A while loop not entered or a do while loop not repeated (Table 5 uses the symbol N to

refer to this execution behavior),

• The first iteration of a loop (Table 5 uses 1st to refer to this execution behavior),

• Other iterations of the loop (Table 5 uses O to refer to this execution behavior),

Table 5: M-R paths of ICFG of Figure 16.

 M-R path
explanation M-R paths

 Main f
1 N N GS, m1, m2, m3, m7, (2, f1, f2,f3,f7,f8,)2, m8, m9, GE
2 N 1st GS, m1, m2, m3, m7, (2, f1, f2, f3, f4, f5, f6, f9, GE
3 N O GS, m1, m2, m3, m7, (2, f1, f3, f4, f5, f6, f9, GE
4 N L GS, m1, m2, m3, m7, (2, f1, f3,f7,f8,)2, m8, m9, GE
5 1st N GS, m1, m2, m3, m4, (1, f1, f2, f3, f7, f8,)1, m5, m6, m10, GE
6 1st 1st GS, m1, m2, m3, m4, (1, f1, f2, f3, f4, f5, f6, f9, GE
7 1st O GS, m1, m2, m3, m4, (1, f1, f3, f4, f5, f6, f9, GE
8 1st L GS, m1, m2, m3, m4, (1, f1, f3, f7, f8,)1, m5, m6, m10, GE
9 O N GS, m1, m2, m3, m4, (1, f1, f2, f3, f7, f8,)1, m5, m6, m10, GE
10 O 1st GS, m1, m2, m3, m4, (1, f1, f2, f3, f4, f5, f6, f9, GE
11 O O GS, m1, m2, m3, m4, (1, f1, f3, f4, f5, f6, f9, GE
12 O L GS, m1, m2, m3, m4, (1, f1, f3, f7, f8,)1, m5, m6, m10, GE
13 L N GS, m1, m2, m3, m7, (2, f1, f2,f3,f7,f8,)2, m8, m9, GE
14 L 1st GS, m1, m2, m3, m7, (2, f1, f2, f3, f4, f5, f6, f9, GE
15 L O GS, m1, m2, m3, m7, (2, f1, f3, f4, f5, f6, f9, GE
16 L L GS, m1, m2, m3, m7, (2, f1, f3,f7,f8,)2, m8, m9, GE
 Rf
17 N GS, (f, f1, f2,f3,f7,f8,)f, GE
18 1st GS, (f, f1, f2, f3, f4, f5, f6,)f, GE
19 O GS, (f, f1, f3, f4, f5, f6,)f, GE
20 L GS, (f, f1, f3,f7,f8,)f, GE

Invalid GS, m1, m3, m4, (1, f1, f3, f7, f8,)2, m8, m9, GE

 74

• A loop was previously entered and it is now being exited (Table 5 uses L to refer to this

execution behavior), and

• A recursion on procedure p (Table 5 uses Rp to refer to this execution behavior).

The last row of Table 5 is invalid because the subscripts of the parentheses do not

match. In terms of execution, this would mean entering a procedure p from one call site and

returning to another call site of procedure p. Obviously, this is an invalid execution. This

table shows how labeled parentheses are used to maintain the calling context of a procedure call.

As previously stated, Melski and Reps proposed a method to instrument source code

so that the set of M-R paths exercised during a system execution is recoded. For example,

executing the program of Figure 16 with the input ‘0’ records the following set of M-R

paths, where we refer to a M-R path by its row number in Table 5: <input=0, set of

M-R paths={1}>. In this case, only one M-R path is exercised. However, for all other

cases, more than one M-R path is exercised. For example, with input ‘2’ the outcome is:

<input=2, set of M-R paths={6,7,8,10,11,12,14,15,16, 17}>

3.4.3 Restriction on software functions and criterion of source code coverage

We have four different types of units of source code available, node, branch, B-L

path, and M-R path. We now use these units to first define restriction Z on software functions

(Section 3.4.3.1) and then describe a criterion X of source code coverage (Section 3.4.3.2).

3.4.3.1 Restriction Z on software functions

We know that in the general case we cannot guarantee safe predictions. Therefore, in

this section, we analyze how to use the unit of source code to create a restriction Z on

 75

software functions. We create a definition that regroups the four different types of units of

source code into one common term: trace element.

Definition: A trace element is a node (=source code component = basic block,) a branch, a

B-L path or a M-R path.

We start with a restriction and then we weaken it until it defines a restriction Z that

includes a broad category of software functions. When specifying our restriction Z, our

different attempts refer to a trace element e. In all cases, we assume that

e is or contains the source code component c that in turn includes the

select spot of source code where a change is proposed.

Our first restriction is the following:

First

attempt:

Every software function f must be associated to one trace element e such that if

a system test t activates f then t always exercises e and no system test t′

exercises e without activating f.

In other words, our first attempt requires that every software function be related to at

least one trace element in a unique manner. This condition is too restrictive because several

trace elements may be needed to express the uniqueness of source code behavior associated

to a software function f. For example, software function f is applied if trace elements e1 and

e2 are exercised. The sole exercise of e1 without e2 or of e2 without e1 would not suffice to

determine whether f was applied or not.

To accommodate for this new possibility, our condition needs to be stated as follows.

Second

attempt:

Every software function f must be associated to a set E of trace elements such

that if a system test t activates f then all trace elements of E are exercised, and

no execution of system test t′ exercises all elements of E without activating f.

 76

Again, we must weaken the above condition. Indeed, it is possible that no trace

element (or set of trace elements) is always exercised when a software function is activated.

This is often true when the implementation of a software function has been completely

duplicated in several areas of the source code. To allow for such a scenario, our restrictive

condition must be formulated as follows.

Third

attempt:

For every application of a software function, there exists a set E of trace

elements such that

If a system test t exercises all trace elements of E then t
activates f,
And

No execution of a system test t′ exercises all trace
elements of E without activating f.

When the implementation of software functions is not duplicated, there may exist

only one set E of trace elements that meets the condition above. However, when such

duplication exists in the source code, it is likely that several sets E meet our condition. Our

restrictive condition currently uses the existential quantifier there exists a set E of trace

elements; hence, it accommodates for situations where there are one or more sets E of trace

elements that satisfies our restriction.

So far, we have ignored whether software functions are dependent or independent of

each other.

Definition: Two software functions are dependent if there exists a descendant/ascendant

relationship between them in a generalization/specialization hierarchy. In

contrast, two software functions are independent if they are not dependent.

 77

However, as we point out below, the same set E of trace elements can be associated to

a software function f and also to all of f’s ancestors. Consequently, our current condition does

not need further modifications.

To explain the reason why our condition does not need to be changed, we recall that

the hierarchies of software functions specified in Chapter 2 are built using the

generalization/specialization relationships between software functions. For instance, in our

ATM example, the software function process withdrawal from checking is a specialization of

the software function process withdrawal. When a system test t activates the software

function process withdrawal from checking, it must also activate process withdrawal. In

general, we know it is always the case that when two software functions f and special-f are

dependent, the system test that activates special-f also activates f. In turn, this means that our

condition does not need to make the distinction between special-f and its ancestors. In other

words, a same set E of trace elements can be used to show that special-f is activated but also

to show that all of f’s ancestors are activated.

We therefore use our third attempt to specify our restriction Z on software functions

below.

Restriction Z

on software

functions:

For every application of a software function, there exists a set E of trace

elements such that

If a system test t exercises all trace elements of E then t
activates f,
And

No execution of a system test t′ exercises all trace
elements of E without activating f.

There exists an interesting property between our restriction Z and software

hierarchies. In order to express this interesting property, we refer to the notion of complete

 78

specialization of a software function. Complete specialization was defined in Section 2.1. It

specifies that a set F of software functions is a complete specialization of a software function

f if at least one function in F is activated when f is activated.

The interesting property is the following:

Property: IF a set F of software functions satisfies our restriction Z on software functions
AND
IF F is a complete specialization of software function f
THEN

f also satisfies our restriction Z on software functions

Proof: • Let F be the set of software functions that is a complete specialization of f.

• Let Ei be the set of trace elements that show fi∈ F satisfies restriction Z.

• Let E be the union of Ei’s of every fi∈ F.

• Set E of trace elements shows that there exists a set of trace elements

associated to software function f such that when e∈ E is exercised, f is

activated and also satisfies Z.

3.4.3.2 Criterion X of source code coverage

We now use our four units of source code to define an adequate source code coverage

criterion X. This ensures the needed connection between our criterion X and our restriction

Z. Moreover, in this section, we argue that our criterion X of source code coverage is

reachable by a finite set of system tests.

M-R path is the most specific of the four units of source code used to define

restriction Z. Moreover, we know that a source code coverage criteria specified in terms of

M-R paths subsumes coverage criteria specified by the other three units of source code—

nodes, branches, and B-L paths. In Section 3.4.3.2.1, we show with generic and specific

examples why our coverage criterion X must not only merely consider coverage of single M-

 79

R paths but also consider coverage of sets of M-R paths. In turn, in Section 3.4.3.2.2, we

describe our criterion X using sets of M-R paths.

3.4.3.2.1 M-R paths coverage

The first coverage that comes to mind requires every M-R paths to be exercised by at

least one system test. However, as we illustrate below, this coverage criterion is not enough.

1. Let us assume that a software system has two software functions f1 and f2 that satisfy

our restriction Z. In particular,

• f1 is associated to two sets of trace elements, in this case, M-R paths.

Let us say {p1, p2} and {p2, p3}.

• f2 is associated to one set of trace elements, also M-R paths.

Let us say {p4}.

2. Let us now assume that for the two system tests:

t1 exercises {p1, p2} and t2 exercises {p3, p4}.

3. M-R paths p1, p2, p3, and p4 have all been exercised. From our restriction Z, we know

that t1 must have activated f1 and t2 activated f2.

4. However, let us assume that there exists a possible system test that exercised {p2, p3},

but that this test scenario was not executed.

5. In such case, if our method is used to compute a prediction for a spot in source code

component c where c is only contained in M-R path p3 then only f2 is potentially affected

by a change at the proposed spot. In fact, our method finds that only t2 exercised p3.

Furthermore, t2 only activated f2. However, from point 4, we know there exists an

untested scenario that would have exercised {p2, p3}. In turn, this would show that f1 is

also potentially affected. Therefore, our prediction is unsafe.

 80

Such a scenario is not only theoretical. Below we present an illustration where the

coverage of all M-R paths is not always sufficient to compute safe predictions. Figure 17

illustrates a slight variation of the source code implementation of our bank ATM. The line

indicated with pis shows the last statement of M-R paths that create the problem. In order to

make this illustration more realistic, we must first explain how the source code reached its

current state.

Let us assume that originally the ATM was made of the source code in the left

column of Figure 17, in particular, only the source code nested in the then part of

Figure 17: Sample implementation of another bank ATM.

// Bank ATM
main ()
{

card = read_card_type(card_info);
if (card.hasChip() == False) {

// code magnetic validation here

another = ‘y’;
while (another == ‘y’) {

op_read = False;
while (op_read == False) {

cout << “Enter operation”;
cin >> op;
if (op == ‘W’)

op_read = True;
op_fp = withdraw;p1

else if (op == ‘D’)
op_read = True;
op_fp = deposit;p2

}

ac_read = False;
while (ac_read == False) {

cout << “Enter account”;
cin >> ac;
if (ac == ‘C’)

ac_read = True;
acct = card.getChecking();p3

else if (ac == ‘S’)
ac_read = True;
acct = card.getSavings();p4

}

op_fn(acct);

cout << “Other transaction?”;
cin >> another;

}
}

else { // This cards has a chip
// code chip validation here

another = ‘y’;
while (another == ‘y’) {

op_read = False;
while (op_read == False) {

cout << “Enter operation”;
cin >> op;
if (op == ‘W’)

op_read = True;
op_fp = withdraw;p5

else if (op == ‘D’)
op_read = True;
op_fp = deposit;p6

}

ac_read = False;
while (ac_read == False) {

cout << “Enter account”;
cin >> ac;
if (ac == ‘C’)

ac_read = True;
acct=card.getChecking();p7

else if (ac == ‘S’)
ac_read = True;
acct =

card.getSavings();p8

}
// Change line below
op_fn(acct);

cout << “Other transaction?”;
cin >> another;

}
}

eject_card ();
} // end main

 81

‘if(card.hasChip() == False)’. Then, bank cards with chip appeared on the

market. To take advantage of the information found on the bank card chip, the source code

was modified to become that displayed in Figure 17. The maintenance performed in order to

produce the current code consisted of the following steps:

1. Introduce the following if-condition ‘if (card.hasChip()==False)’.

2. Duplicate the code in the then and the else part of that if-statement.

3. Adapt the source code in the else part to make use of the extra information found in

bank cards with chip.

We now illustrate the fact that merely considering the coverage of all the M-R paths

is not enough to guarantee safe predictions.

Let us consider the four ATM software functions: withdraw from checking, withdraw

from savings, deposit in checking, and deposit in savings. One could create more precise

software functions that specify whether these transactions are performed with a regular

magnetic bank card or with a chip bank card. However, for the user the difference in the

bankcards does not affect the functionality of the ATM. In turn, we decide not to change the

list of software functions.

Let us now explain the p1, p2, p3, p4, p5, p6, p7, and p8 shown in bold in Figure 17.

Every pi points to an M-R paths. Each M-R paths consists of a path from the beginning of the

source code until pi, which is the last executable statement of the M-R path pi. After pi, the

M-R path terminates with two vertices: the corresponding loop End followed by Global End.

To cover the eight M-R paths, we only need the four system tests in Table 6 where

the actual tis are:

• t1: withdraw $100 from savings (with a regular magnetic bank card)

 82

• t2: deposit $100 in checking (with a regular magnetic bank card)

• t3: withdraw $100 from checking (with a chip bank card)

• t4: deposit $100 in savings (with a chip bank card)

Table 6 also shows that the four system tests activate the four software functions,

withdraw from checking, withdraw from savings, deposit in checking, and deposit in savings.

Thus, these four system tests cover all eight M-R paths and all four software functions.

We now show that even with such coverage, our method still computes unsafe

predictions. Let us assume that a maintenance exercise proposes to modify the line of source

code indicated with the comment in bold in Figure 17. Let us refer to this source code

component as c.

Our method first identifies that t3 and t4 exercised c. In turn, t3 and t4 respectively

activate software functions withdraw from checking and deposit in savings. Hence, our

method infers that only these two software functions are potentially affected by a change in c.

This is incorrect since the other two software functions withdraw from savings and deposit in

checking can also potentially be affected. The execution of the two following system tests

activates withdraw from savings and deposit in checking and also exercises source code

component c.

• t5: withdraw $100 from savings (with a chip bank card)

• t6: deposit $100 on checking (with a chip bank card)

Table 6: Exercise and Activate relationships sampled during the system tests tis.

Input Software functions applied M-R paths exercised
 t1 { withdraw from savings } { …, p1, p4 }
 t2 { deposit on checking } { …, p2, p3 }
 t3 { withdraw from checking } { …, p5, p8 }
 t4 { deposit on savings } { …, p6, p7 }

 83

In conclusion, our generic and specific illustrations show that measuring single M-R

path coverage is not enough to guarantee safe predictions. In the next section, we define

another more thorough source code coverage to remedy this problem.

3.4.3.2.2 Coverage of sets of M-R paths

In order to define this new type of coverage, we first observe that a system test

exercises not a single M-R path but a set of M-R paths. Hence, our new coverage is built

using sets of M-R paths.

Definition: • A complete path in the (untransformed) ICFG is a finite sequence of

control flow edges that starts by the edge from Global Start and terminates

by the edge to Global End, and there is a corresponding string of balanced

parentheses.

• A combination of M-R paths is complete if the union of all the M-R paths

in the combination corresponds to a complete path in the (untransformed)

ICFG.

Lemma: The set of all valid combinations of M-R path is finite.

Proof: There are a finite number of M-R paths. Thus, the set of all combinations of

M-R paths (or the power set of M-R paths) is also finite. The set of all

complete combinations of M-R paths is a subset of the power set of M-R

paths; therefore, it is finite.

In this work, we limit our effort to identifying a set of properties needed for

guaranteeing that our method computes safe predictions. We leave for future work the

computation that extracts all the complete combinations of M-R paths from the power set of

M-R paths. In fact, before developing such a method, we have another problem to solve.

 84

Even for small systems, the number of M-R paths is huge. The number of complete

combinations of M-R paths is even larger. It is therefore totally unpractical to require a set of

system tests to exercise all complete combinations of M-R paths. One way to solve this

problem is by executing a limited number of system tests to obtain a few Potentially Affect

relationships between software functions and source code. We refer to these few

relationships as seeds. Using these seeds, heuristics would then infer new correspondences

between these software functions and the unexercised M-R paths. Developing the needed

heuristics is also left for the future. Currently, we direct our attention to identifying a

property that a set of system tests must have for the seeds to be reliable. Indeed, in order for

heuristics to infer new correct correspondences, seeds must be reliable. The work presented

in Chapter 4 is our attempt at providing a set of criteria for selecting a set of system tests that

will then be exercised to collect seeds of value.

Before giving our criterion X of source code coverage, we observe that the conditions

of different branches and different loops are sometimes related. Due to these dependences,

certain complete paths in the (untransformed) ICFG can never be executed. We say that such

complete paths are unrealizable. It is possible for a complete combination of M-R paths to be

associated only to unrealizable complete paths. Statically computing the unrealizable paths is

unsolvable, for some important information may depend on the value of inputs. As

mentioned in the paragraph above, in the future, we intend to develop heuristics for inferring

new correspondences for a few seeds. These heuristics will solve the problem of unrealizable

paths. Indeed, these heuristics will be able to associate software functions to a set of M-R

paths corresponding to unrealizable paths if needed. For the moment, we assume that

combinations of M-R paths that only correspond to unrealizable paths are removed from the

 85

set of complete combinations. This ensures that every complete combination of M-R paths

has a corresponding realizable path. In turn, we know that for every complete combination of

M-R paths, there must exist a system test that exercises that particular complete combination.

Therefore, our criterion X of source code coverage requires the following:

Criterion X
of source
code
coverage

Every complete combination of M-R paths must be exercised by the execution

of at least one system test.

3.4.4 Reaching our new goal

Showing that restriction Z and criterion X allow reaching our goal requires a proof

that

1. There exists a finite set of system tests that satisfies criterion X of source code

coverage and criterion Y of software function coverage for all software functions that

respect restriction Z. This part is shown in Section 3.4.4.1.

2. When a set T of system tests satisfies criterion X and Y, the Exercise and Activate

relationships sampled using T guarantee that our method computes safe predictions for

the category of software functions that respect restriction Z. This part is shown in Section

3.4.4.2.

Let us first recall criteria X, Y and restriction Z.

Criterion X
of source
code
coverage

Every complete combination of M-R paths must be exercised by at least one

system test.

Criterion Y
of software
function
coverage

Every software function must be activated by at least one system test.

 86

Restriction Z
on software
functions

For every software function f, every time f is activated there exists a set E of

trace elements such that

If a system test t exercises all trace elements of E then t
activates f,
And
No execution of a system test t' exercises all trace
elements of E without activating f.

3.4.4.1 Satisfying the first point of our new goal

To show that there exists a finite set of system tests that satisfies criterion X of source

code coverage and criterion Y of software function coverage, we proceed as follows. First,

we show that there exists a finite set T of system tests whose execution satisfy criterion X.

Second, we show that for all software functions that respect restriction Z, satisfying criterion

X implies satisfying criterion Y. Hence, the finite set T of system tests that satisfied criterion

X also satisfies criterion Y.

Lemma: There exists a finite set of system tests whose execution
satisfies criterion X of source code coverage.

Proof: Criterion X specifies that
Every complete combination of M-R paths must be
exercised by at least one system test.

1. We know that there exists a finite number of valid combinations of M-
R paths.

2. By definition, we also know that for every valid combination C of M-R
paths, there exists a system test whose execution exercise C.

3. From 1 and 2, there exists a finite set of system tests that exercise all
complete combinations of M-R paths.

 87

Lemma: For all software functions that respect Z, the set T of
system tests that satisfies criterion X also satisfies
criterion Y.

Proof: Criterion Y specifies that
Every software function must be activated by at least
one system test.

1. By contradiction, let us assume there exists a software function f that
was not activated by T.

2. From restriction Z, we know that every software function f is
associated to at least one set E of trace elements. Moreover, every e in E is
a node (source code components), a branch (pair of source code
components), a B-L path (an acyclic intra-procedural sequence of source
code components), or a M-R path (an inter-procedural sequence of source
code components). We also know that for every node, branch, and B-L
path there exists an M-R path that contains it.

3. Let E1,…, En be the sets of trace element associated with f.
4. CASE 1: For a set Ei in E1, .., En, there exists a valid combination C of

M-R paths that contains all trace elements of Ei. In such a case, from our
restriction Z and criterion X, we know f must have been activated. This
contradicts our assumption in point 1.

5. CASE 2: For every set Ei, all trace elements of Ei are never found in a
valid combination C of M-R paths.

1. In such a case, there is no realizable path for which software
function f is activated. In other words, every set Ei’s describes an
unrealizable path.

2. Hence, software function f can actually never be performed by the
system.

3. By definition of software function, software function f must be a
task performed by the system.

4. From point above, f is not a software function. This contradicts our
assumption in point 1 that states that f is a software function.

6. Both cases above contradict point 1; hence, the set T of system tests
must satisfy criterion Y.

From the two lemmas above, we can infer that the first point of our goal is satisfied.

In other words, there always exists a finite set T of system tests that satisfies criterion X of

source code coverage, and criterion Y of software function coverage for all software

functions that respect restriction Z.

 88

3.4.4.2 Satisfying the second point of our new goal

We now must show that:

IF a set T of system tests satisfies criterion X of source code coverage

 and criterion Y of source code coverage

THEN when Exercise and Activate relationships are sampled using T, our

method computes safe predictions for all software functions that respect

restriction Z.

In our proof, we assume that the set T of system tests that satisfies criteria X and Y is

provided and that the Exercise and Activate relationships resulting from the execution of T

have also been sampled. Thus, our attention focuses on the latter part of the statement above.

That is, we want to show that our method computes safe predictions for all software

functions that respect restriction Z.

Instead of showing that every prediction is safe, we use a proof by contradiction. In

other words, we suppose that our method computes an unsafe prediction for a particular spot

in a source code component c. Then, we show that our supposition cannot be true.

In order for our method to compute an unsafe prediction, the following scenario must

take place. Our method computes a set A of software functions as being potentially affected

by a change to source code component c. However, a software function f that respects

restriction Z is also potentially affected by a change to c, and f is not in set A.

 89

Assumptions: 1. The execution of set T of system tests satisfies criterion X, that is, it all
complete combinations of M-R paths are exercised.

2. The implementation participation assumption is true. That is, if a
source code component c participates in the implementation of software
function f then there must exist a system test t that exercises c and activates
f.

3. Set T is used to sample Exercise and Apply relationships, and then,
Potentially Affect relationships are inferred by joining the Exercise and
Apply relationships sampled.

Theorem: When a set T of system tests satisfies criterion X and Y, then the Exercise and
Activate relationships sampled using T guarantees that our method computes
safe predictions for the category of software functions that respect restriction
Z.

Proof: We proceed by contradiction.

1. Let set A of software functions be a prediction computed using the
Potentially Affect relationships for a source code component c. Moreover,
let us assume that A does not contain a software function f and f is
potentially affected by a change in source code component c.

2. If f is potentially affected by a change in c then source code component
c must participates in the implementation of f.

3. From assumption 2, there must exist a system test i that activates
software function f and exercises source code component c.

4. From restriction Z, we know that if i activates f, there must exist an
associated set Ef of trace elements such that ∀ e∈ Ef are exercised when i is
executed.

5. From 3 and 4 above, i exercises all the trace elements efs∈ Ef and
exercises c. Hence, there must exist a realizable complete path that
contains every trace element in Ef and also contains c.

6. Hence, there exists a complete combination C of M-R paths where each
trace element in Ef is found in at least one M-R path of C and where c is
also found in at least one M-R path of C.

7. From assumption 1, our set T of system tests must contain a system test
j that exercised C. j may or may not be equal to i. In any case, j exercises
C, which exercised every trace element in Ef ; hence, j must activate f.

8. From 7, based on a system test j, our method must have included f in its
prediction.

9. Point 8 contradicts point 1; hence, under the stated assumptions, our
method must compute safe predictions for all software functions that
respect restriction Z.

 90

3.5 Assessment of our solution

In Chapter 2, we point out that the quality of a solution is determined by safety,

precision, and practicality. In particular, does the solution allow our method to compute safe

predictions? Precise predictions? Are the criteria required by the solution practical?

Concerning the first factor of safety of predictions, we find that our solution is

satisfying. In fact, we have found a set of conditions under which our method computes safe

predictions for a well-defined, broad set of software functions.

Our restriction on software functions seems adequate for our solution to be

considered practical. That is, many software functions of many software systems naturally

respect the restriction. On the other hand, a further analysis of the coverage conditions

required by our solution shows that it is currently not practical. In particular, the source code

coverage criterion requires that the system tests exercise all complete combinations of M-R

paths. Although the number of complete combinations of M-R paths is finite, their number is

large, even for small systems. It is therefore unrealistic to require the exercise of all these

possibilities.

Although currently impractical, our solution provides a finite bound to the problem of

computing Potentially Affected relationships. As mentioned earlier in this chapter, we plan on

developing a technique where a limited number of system tests are first executed to collect

some Potentially Affect relationships (seeds) between software functions and source code.

Then, some heuristics will use the seeds to infer new Potentially Affect relationships between

software functions and unexercised complete combination of M-R paths. For heuristics to

compute reliable relationships, the seeds must provide reliable information. In other words,

before developing the heuristics needed for inferring new Potentially Affect relationships, we

 91

must first find a technique to obtain safe and precise seeds. The next chapter works in that

direction. It specifies a set of criteria for selecting a few system tests that will hopefully

provide safe and precise Potentially Affect relationships between software functions and

source code.

The last qualitative factor of a solution is whether or not it enables finding precise

predictions. The solution developed in this chapter neither focuses nor mentions precision of

predictions. Its objective was only geared toward computing safe predictions. Nevertheless, if

all valid combinations of M-R paths are related to software functions, we know that much of

the precision of predictions will be lost. Hence, the heuristics mentioned above will not only

have to infer new Potentially Affect relationships, but they will also have to be tailored to

maintain an acceptable level of precision for predictions. In particular, instead of inferring

new Potentially Affect relationships for all complete combinations of M-R paths, the

heuristics will need to eliminate the complete combinations of M-R paths whose exercise

decrease precision while not adding to safety of predictions.

In conclusion, our solution shows that our method computes safe predictions for a

well-defined, broad set of software functions using only coverage information. On the

positive side, the coverage needed for computing safe predictions is reachable by a finite set

of system tests. However, that set of system tests is of unpractical size. Moreover, our current

solution makes no guarantee as to the precision of predictions.

In the next chapter, we propose a new solution that remedies the disadvantages of our

current solution. In particular, our new solution wants to improve on the precision of

predictions and makes sure that these results can be obtained using a small number of system

tests. We concede that our new solution cannot guarantee safe prediction; however, safety

 92

remains acceptable. This new solution can be used directly by our method for computing

Potentially Affect relationships. However, the original indent is for this new solution to

provide a few reliable Potentially Affect relationships (seeds). Then, these seeds can be used

by heuristics for inferring new Potentially Affect relationships of high reliability for the entire

source code, even the one not covered by the seeds.

4 A practical application of our method

In this chapter, we define criteria for selecting a few system tests that provide reliable

Potentially Affect relationships. We know that with just a few system tests, the safety and the

precision of predictions are not guaranteed. However, we want the information captured in

the sampled Potentially Affect relationships to be as safe and as precise as possible. In any

case, applying our method this way is practical since it only requires a few system tests. The

information obtained by these few system tests may be used directly. However, the original

intent is for these system tests to provide seed information that heuristics will be able to use

to infer new reliable Potentially Affect relationships.

This chapter is organized as follows. First, we present a set of criteria for selecting

system tests. Then, we perform a case study to evaluate the criteria in the context of our

method.

4.1 Criteria for system test selection

When identifying the criteria needed for system test selection, the guidelines are the

following:

1. Few system tests must be needed to satisfy these criteria.

2. We prefer qualitative over quantitative coverage. By quality, we mean coverage that

allows our method to compute safe and precise predictions.

The second point applies specifically to source code coverage. For software function

coverage on the other hand, we know that every software functions must be activated at least

once. In fact, given the way our method computes predictions, we know that nothing can be

predicted about nonactivated software functions. In contrast, for source code coverage, we

 94

know that a few system tests can only exercise a limited amount of paths in the source code.

Instead of trying to spread out the source code coverage achieved by these system tests, like

software testing often requires, we prefer that the source code components exercised by the

system test stay concentrated. This would usually guarantee safer and precise prediction by

our method. Therefore, instead of trying to maximize coverage of source code components,

we prefer that the exercise of source code remains focused.

Consequently, we specify our criteria for system test selection as follows.

1. Every software function of the system must be activated during at least one system

test. When using Sonar to compute predictions, this criterion translates to the following:

each software function found in Sonar’s software function specification file must be

activated by at least one system test.

2. When possible and appropriate, different system tests must reuse the same data

values.

3. System tests must avoid composition of software functions as much as possible; i.e.,

they should only activate one software function when possible. However, we know that

some software functions require the prior activation of other software functions. In such

case, software function composition is acceptable and required in order to satisfy

criterion 1.

4. Criteria 1 above must be satisfied with the least amount of system tests possible.

Criteria 1 and 2 increase the size of the set of system tests that will be used for

sampling Exercise and Activate relationships. In contrast, criteria 3 and 4 restrict the number

of system tests that will be selected. Using such guidelines, we make the set of system tests a

 95

controlled dependent variable of our studies. We refer to the set of four criteria above as the

test selection criteria.

4.2 Assessing our test selection criteria through case study

We now assess the level of prediction safety and correctness when computed by our

method with the Exercise and Activate relationships sampled from a set of system tests that

satisfy our test selection criteria. A prediction is correct or exact if it is 100% safe and 100%

precise. This study uses Sonar to compute the predictions. We repeated the study on two

software systems, in particular scalc and bool.

We present our case study as follows. In Section 4.2.1, we state our objective. In

Section 4.2.2, we explain the protocol followed for the study. In Section 4.2.3, we present the

two software systems, scalc and bool. Moreover, we enumerate a broad list of software

functions for both systems. In Section 4.2.4, we present our results, and in Section 4.2.5, we

draw conclusion of our studies.

4.2.1 Objectives of the study

In our study, we measure whether or not predictions are safe and if they are exact.

Therefore, concerning safety, we find that a prediction is safe or unsafe. Similarly, we find

that a precision is either correct or incorrect. In other words, in our study, to be considered

safe and exact, a prediction must be 100% safe and 100% exact respectively.

When conducting the case study, it is unpractical to verify whether all of Sonar’s

predictions are safe and exact. In fact, even for small systems the number of source code

components exercised is in the hundreds. Hence, we compute predictions for a pool of

twenty-five randomly selected source code components, and then we infer the results for the

 96

rest of the exercised source code components. The fact that we do not compute predictions

for all exercised source code components introduces some level of uncertainty in our claims.

We want this uncertainty factor to remain very low, 1% or less. In turn, we now state our

goal for the case study of scalc and of bool as follows.

Goal: We want to determine with more that 99% certainty that for software system

Z, Sonar computes X% of safe predictions and Y% of exact predictions when

Exercise and Activate relationships are sampled with a set of system tests that

satisfy our test selection criteria.

Assumption: We assume that our study does not contain any error of the following type: A

result computed by Sonar is said to be unsafe (or unprecise) when it is actually

safe (or precise.) Thus, we are assuming a 0% β error factor.

Dependent variables

The dependent variable is the set of system tests used to sample Exercise and Activate

relationships. However, thanks to our test selection criteria, we specify some control on this

dependent variable.

4.2.2 Protocol used in the study

Here are the steps followed during the study:

1. For the software system selected, we do the following:

a. Compile the selected software system in order to produce an instrumented

executable version.

b. Create a list of software functions for the software system selected.

c. Identify a set of system tests that satisfies our test selection criteria and then

execute each system test with the instrumented executable.

 97

2. Collect the set of all source code components covered then randomly select twenty-

five of these source code components. Finally, we identify the file name and the

beginning line-column position of each of the twenty-five source code components.

3. Perform an initial manual analysis for each of the twenty-five positions. In particular,

for a position p, we refer to the list of software functions and mark each software function

we believe is potentially affected by a change at p. For this initial analysis, we do not run

the system. We only read the source code and use the grep command to navigate in

source code files.

4. Let Sonar compute its prediction for each of the twenty-five positions.

5. Compare the manual predictions with those computed by Sonar. For a particular

position, if for a given source code position a manual prediction and Sonar’s prediction

are the same, we assume that they are both correct (that is, safe and precise). If two

predictions are different then we perform the next two steps of the protocol.

6. Perform a second more thorough manual analysis. During this second manual

analysis, we are permitted to execute the system, instrumented manually with print

statements in order to determine an execution’s dynamic behaviors. If needed, we adjust

the first manual predictions. At this point, we believe that all of the manual predictions

are exact.

7. Given the second manual exact prediction, we now determine whether or not Sonar’s

predictions are safe and then whether or not they are exact.

These last two steps do not need to be performed when the first manual predictions

agree with Sonar’s predictions. In fact, in such cases, we assume that Sonar’s prediction was

safe and precise; hence, it is correct. On the other hand, for the other cases where step 5 finds

 98

that two predictions are different then, we now compare Sonar’s prediction to our second

manual prediction. After all these steps, we are able to determine whether or not Sonar’s

predictions are safe and whether or not they are exact for each of the twenty-five source code

components.

One may argue that our second manual analysis is influenced by Sonar’s prediction

since we already compared the prediction of a first manual analysis with that of Sonar’s.

However, this influence is irrelevant. In this case, the important factor is that we do not

change Sonar’s predictions. In fact, in step 7, we compare the new manual predictions to

Sonar’s predictions created in step 4. In other words, during steps 6 and 7, manual

predictions may be changed in order to correct them, but Sonar’s prediction may not be

changed by sampling additional Exercise and Activate relationships.

The only valid argument on the validity of our study is that our second manual

analysis may still be incorrect and that further adjustment of the manual predictions must be

performed. This reasoning might be true for large systems. However, as we will see in the

next section, the two software systems selected for the study have source code of small size

(between 2,000 and 5,000 lines of source code including comments). We therefore believe

that the assumption that “predictions obtained by our second manual analysis are correct” is

fair for small size source code.

4.2.3 The two software systems studied: scalc and bool

4.2.3.1 scalc

 99

scalc is an interactive spreadsheet program that uses the curses library to allow the

user to move around the spreadsheet with the arrow keys. scalc is written in C++ and is

based on a well-crafted object-oriented design that separates the GUIs from the core

computation of the spreadsheet. Furthermore, the computation is separated between the

calculator engine and the spreadsheet document. The source code size is about two thousand

lines including comments.

scalc provides the software functions to perform the following tasks: (1) move around

the spreadsheet, (2) load an existing spreadsheet, (3) save a spreadsheet, (4) clear a

spreadsheet, (5) recalculate (or reevaluate) a spreadsheet, (6) toggle the auto reevaluation of a

spreadsheet between on and off, and finally (7) edit cell of the spreadsheet.

scalc distribution comes with the file README.txt, which I used for creating the list

of software functions presented in Table 7. The left column of the table lists the names of the

software functions and presents them in a tree-like format. For example, the software

function right appears as a child of motion meaning that right is a particular type of motion.

The right column provides a short description of each software function.

Table 7: List of software functions of the scalc software.

 Software functions Description of the software functions
SCALC

1 + Motion Function that refers to motion
from cell to cell in the
spreadsheet.

2 + Right Motion associated to the right
arrow key.

3 + Left Motion associated to the left
arrow key.

4 + Down Motion associated to the down
arrow key.

5 + Up Motion associated to the up
arrow key.

6 + Load Function that refers to the

 100

loading of an existing
spreadsheet.

7 + Load Process Once the user has selected the
function load spreadsheet, the
user decides to proceed with
loading an existing spreadsheet.

8 + Load Cancel Cancel loading of spreadsheet
and return to current
spreadsheet.

9 + Save Function that refers to the
saving of the current
spreadsheet.

10 + Save Process Once the user has selected the
function save spreadsheet, the
user decides to proceed with
saving the current spreadsheet.

11 + Save Cancel Cancel saving of the current
spreadsheet and return to it.

12 + Clear Clear all cells of the current
spreadsheet.

13 + Process Proceed with clearing the
current spreadsheet.

14 + Cancel Cancel the clearing operation.

15 + Recalculate Recalculate the content of each
cell of the spreadsheet.

16 + Toggle Auto calc Toggle the auto recalculate of
the spreadsheet to ON or OFF.
When this switch is ON, the
spreadsheet updates all the
required values after the
edition of a cell. It only
calculates the value of the
current cell if the switch is
OFF.

17 + Cell edit Enter in the cell edition mode.

18 + Cancel edition Cancel any edition to this cell,
restore its old value, and
return to current spreadsheet.

19 + Process Edition Update the value of the cell to
the newly edited value.

20 + Text The format of the new value is
TEXT.

21 + Math.
expression

The format of the new value is a
mathematical expression that
requires evaluation.

22 + Number The expression contains a number

23 + Arith.
Exp

The expression is an arithmetic
expression (contains +, -, /, or
* operators).

 101

24 + Function The expression contains a
function such as sin, cos, tan,
atan, sqrt, etc.

25 + Cell ref. The expression contains a cell
reference.

4.2.3.2 bool

bool Version 0.1.1 can be downloaded from the GNU Software Foundation website

(http://www.gnu.org/directory/Bool.html). bool is command-line driven and allows the user

to search for a Boolean-expression pattern in a list of files. bool is written in C, and its source

code size is about five thousand lines including comments. The implementation is procedural

in nature. The man page, which was used to create the list of software functions in Table 8,

specifies that bool takes three types of parameters:

1. Flags (or options) allow the user to activate different software functions such as

ignore case, count number of matches, etc.

2. A pattern in the form of a Boolean expression made of character strings grouped

using Boolean operators AND, OR, plus NEAR (default 10 words a part).

3. A series of files that are matched against the Boolean pattern. Files may be in text or

html format.

These three parameters may be used when creating a list of software functions for

bool. Furthermore, the man page explains that in addition to performing regular matching of

patterns, bool also performs special matching when a pattern is split on different lines. In

particular, for a text file, when a pattern starts at the end of one line and terminates at the

beginning of the next line, bool finds a match. However, if there are several new lines that

split the pattern in a text file then bool considers there to be no match. For html files, the

rules are different. The determinant factors are html tags. For example, a pattern that is split

by text formatting tags such as bold and new line will still be considered matches;

http://www.gnu.org/

 102

however, when the pattern is found in the file but split by tags such as new paragraph (<P>)

or new heading, there is no match. For example, for the pattern ‘Pattern’, bool finds a match

for the html excerpt P<\B>attern; however, there is no match with <P>Pat</P>tern.

Given that the man pages explain these different type of matching, one may define

software functions in relation to regular matching and special matching (pattern found on

several lines). These software functions are special because they embed the notion of

success. In other words, the software functions find a pattern with a regular match or find a

pattern with a special match, which means that the pattern must be found in the input files.

So, unlike software functions based on the three types of input parameters accepted by bool,

these last types of software functions are not directly visible from the command line. This

explains why we have found that the manual analyses involving regular and special matches

were much harder than for the other types of software functions. In addition, since both

regular and special match imply success, we also list the software function fail search.

However, we find that it does not make sense to differentiate between a fail search of regular

pattern and a fail search of special pattern (a failure is a failure regardless).We briefly explain

how software functions can be specialized with an example, and then we present the software

functions in Table 8. When creating a list of software functions for bool, one may be more or

less precise by specifying a software function in terms of one, two, or all three of the types of

parameters plus whether it is a regular or a special match. For example, going from general to

specific (1) the software function find regular match, (2) find regular match in an html file,

(3) find regular match in an html file with a case insensitive search, and (4) find regular

match in an html file with a case insensitive search for an ANDed Boolean expression.

Table 8: List of software functions of the bool software.

 Software functions Description of the software

 103

functions

Bool

1 + One-word pattern
search

Successful search file(s) for
a one-word pattern.

2 + Text file Successful search text
file(s) for a one-word
pattern.

3 + Regular file Successful search text
file(s) for a one-word
pattern and the file(s) do
not contain split patterns.

4 + Count Successful search text
file(s) for a one-word
pattern and print the numbers
of matches.

5 + Ignore case Successful case-insensitive
search of text file(s) for a
one-word pattern.

6 + N matches Successful search text
file(s) for N first
occurrence of a one-word
pattern.

7 + Fixed string Successful search text
file(s) for a fixed one-word
pattern (ignore the
particular meaning of and,
or, near).

8 + Special file Successful search of text
file(s) for a one-word
pattern where the file
contains the particular
pattern split on two lines.

9 + Fail Unsuccessful search of text
file(s) for a one-word
pattern.

10 + Html file Successful search html
file(s) for a one-word
pattern.

11 + Regular File Successful search html
file(s) for a one-word
pattern and the files do not
contain split patterns.

12 + Count Successful search html
file(s) for a one-word
pattern and print the numbers
of matches.

13 + Ignore case Successful case-insensitive
search of html file(s) for a
one-word pattern.

14 + N matches Successful search html
file(s) for N first

 104

occurrence of a one-word
pattern.

15 + Fixed string Successful search html
file(s) for a fixed one-word
pattern.

16 + Special file Successful search html
file(s) for a one-word
pattern where the file
contains the particular
pattern split on two lines.

17 + Fail Unsuccessful search of html
file(s) for a one-word
pattern.

18 + AND’ed Search Successful search for an
AND’ed pattern.

19 + Text file Succssful search a text file
for an AND’ed pattern.

20 + Html file Successful search a html file
for a AND’ed pattern.

21 + OR’ed Search Successful search for a OR’ed
pattern.

22 + Text file Successful search a text file
for an OR’ed pattern.

23 + Html file Successful search a html file
for a OR’ed pattern.

24 + NEAR’ed Search Successful search for a
pattern that contains a
NEARed expression.

25 + Text file Successful search a text file
for a NEAR’ed pattern.

26 + Html file Successful search a html file
for a NEAR’ed pattern.

4.2.4 Result of the study on scalc and on bool

After our set of system tests, nineteen system tests for scalc and twenty-one system

tests for bool, we found that 419 and 508 source-code components were exercised for scalc

and for bool, respectively. We then randomly selected twenty-five source-code components

for each of the two systems. Finally, we identified the file name and the beginning line-

column position of each of these twenty-five randomly selected source-code components.

Table 9 presents the two lists of twenty-five spots of source code.

 105

Table 9: List of spots in the source code used for our case study.

 scalc bool
1 Calculator.cpp, 185, 5 Kw.c, 545, 17
2 Document.cpp, 271, 21 Ac.c, 348, 7
3 Document.cpp, 231, 5 Ac.c, 205, 11
4 Textview.cpp, 114, 9 Ac.c, 318, 3
5 Document.cpp, 272, 2 Kw.c, 657, 23
6 Document.cpp, 286, 5 Kw.c, 440, 5
7 Calculator.cpp, 235, 26 Ac.c, 327, 11
8 Textview.cpp, 83, 25 Kw.c, 619, 54
9 Textview.cpp, 87, 18 Sgml.c, 554, 3
10 Calculator.cpp, 307, 3 Html.c, 531, 3
11 Textview.h, 59, 23 Kw.c, 574, 19
12 Textview.cpp, 60, 1 Html.c, 404, 11
13 Textview.cpp, 492, 5 Kw.c, 334, 3
14 Textview.cpp, 632, 5 Sgml.c, 180, 7
15 Textview.cpp, 243, 5 Kw.c, 178, 7
16 Calculator.cpp, 172, 1 Mem.c, 127, 1
17 Textview.cpp, 84, 25 Sgml.c, 555, 27
18 Textview.cpp, 437, 9 Kw.c, 452, 7
19 Calculator.cpp, 454, 5 Kw.c, 680, 23
20 Textview.cpp, 628, 5 Kw.c, 421, 11
21 Calculator.cpp, 558, 5 Text.c, 124, 11
22 Document.cpp, 84, 25 Ac.c, 407, 3
23 Textview.cpp, 220, 1 Html.c, 453, 3
24 Textview.cpp, 75, 5 Ac.c, 122, 1
25 Calculator.cpp, 364, 16 Ac.c, 368, 1

4.2.4.1 Results for scalc

After performing a first manual analysis, we run Sonar. Table 10 presents the results

of our first manual analysis as well as those computed by Sonar. Each row starts with a

number that cross-references to the particular source code position of interest listed in Table

9. An empty cell in the Sonar column means that Sonar’s prediction is the same as the

manual prediction. The rows in bold indicate a discrepancy in the two predictions.

Table 10: Comparison of the results of a manual analysis and of Sonar for scalc.

Pos. Manual Results Sonar’s results that help correct manual
results

1 Whole cell editing sub tree + Recalculate Whole cell editing sub tree

 106

2 Load processed
3 Save processed
4 Visual display affected All software functions
5 Load processed
6 Load processed
7 Edit cell reference + Edit function Edit cell reference + Edit function +

Edit cell with text
8 Motion up
9 Whole Cell editing subtree
10 Edit number Edit number + edit arith. exp
11 Visual display affected
12 Visual display affected
13 Toggle auto-recalculate All software functions
14 Whole load subtree Only Load processed affected
15 All visual display affected All software functions
16 Load processed + Recalculate
17 Motion down
18 Visual display affected Only Visual display after a cell

edition
19 Whole edit expression processed sub-

tree
Whole edit expression processed sub-
tree except edition of cell reference

20 Load processed
21 Whole edit expression processed subtree
22 Clear sheet processed Clear sheet processed+ Load

processed
23 Motion right
24 Visual display affected All software functions
25 Whole edit expression processed subtree Whole edit expression processed

subtree except edition of cell
reference

Table 10 shows that there are twelve discrepancies and thirteen predictions that are

the same between the manual analysis and Sonar’s. As indicated in our protocol, we assume

that the thirteen same predictions are exact. However, for the inconsistent predictions, we

now perform a second manual analysis to determine whether Sonar’s predictions are unsafe

or safe and exact or inexact. Conversely, this also helps determine when the first manual

analysis is unsafe or safe and exact or inexact. In Table 11, rather than only showing the case

of discrepancies, we present Table 10 with all the correct results, and then we indicate

whether Sonar’s predictions are CORRECT, UNSAFE, or SAFE. For safe and unsafe results,

 107

we also give the extra and missing software functions, respectively. Moreover, to indicate a

change in a manual result from the first to the second analysis, we italicized the results in

Table 11. In other words, this points out when our first manual analysis was wrong. It

happened in four cases, respectively in rows 7, 14, 18, and 22.

Table 11: Estimation of Sonar’s results for scalc.

Pos. Correct Results from second analysis Sonar’s results
1 Whole cell editing sub tree + Recalculate UNSAFE: Missing recalculate
2 Load processed Correct
3 Save processed Correct
4 Visual display affected Correct: indicates all affected
5 Load processed Correct
6 Load processed Correct
7 Edit cell reference + Edit function + Edit

cell with text
Correct

8 Motion up Correct
9 Whole Cell editing sub-tree Correct
10 Edit number SAFE: indicates edit arith. Exp affected
11 Visual display affected Correct (none affected)
12 Visual display affected Correct (none affected)
13 Toggle auto-recalculate SAFE: indicates all affected
14 Load processed Correct
15 All visual display affected Correct: indicates all affected
16 Load processed + Recalculate Correct
17 Motion down Correct
18 Visual display of cell edition affected Correct: indicates all edit cell sub-tree
19 Whole edit expression processed sub-tree UNSAFE: Missing edit cell reference
20 Load processed Correct
21 Whole edit expression processed sub-tree Correct
22 Clear sheet processed + Load processed Correct
23 Motion right Correct
24 Visual display affected Correct: indicates all affected
25 Whole edit expression processed sub-tree UNSAFE: Missing edit cell reference

First, we note that three of Sonar’s predictions are unsafe (1, 19, and 25). Second, two

predictions (10 and 13) are safe but not exact. Finally, the remaining twenty predictions made

by Sonar are correct. For results (4, 15, 18, and 24), we find that the results are correct;

however, some additional interpretation is needed. The correct results indicate that only the

 108

visual display of the application is affected. Currently, Sonar cannot make the difference

between the visual and the computational aspect of a software function. Hence, Sonar

highlights a software function independent of whether its computational or visual aspect is

affected. Programmers do not usually have problems determining if the source code they are

analyzing deals with the computational part or the user interface (UI) part of a system. The

tough part of the programmer’s job is to determine the particular software functions to which

a particular source code component relates. Consequently, in these four cases, we find that

Sonar’s predictions are safe and correct.

The results above only provide information for 25 of the 419 source-code components

exercised. However, we can use the binomial distribution to estimate what the predictions

would be for the remaining 396 source-code components. The binomial distribution can be

used when a trial, in this case a prediction computed for a source code component, is

independent of the others. This is also known as Bernoulli trials. In our case, predictions are

independent of the proximity between source code components. Two source code

components may generate different predictions whether they are near each other or not.

Hence, predictions for different source code components are Bernoulli trials.

Finally, using the binomial distribution, we can determine the X and Y of our

objective.

Goal: We want to determine with more that 99% certainty that for software system

Z, Sonar computes X% of safe predictions and Y% of exact predictions when

 109

Exercise and Activate relationships are sampled with a set of system test that

satisfy our test selection criteria.

We may say that for the scalc software and our 19 system tests that satisfy our test

selection criteria

• X = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the

remaining 396 source code components would be safe

• Y = 60%. We know with more than 99% certainty that 60% of Sonar’s predictions for the

remaining 396 source code components would be exact.

4.2.4.2 Results for bool

As for scalc, we first performed a first manual analysis on bool for each of the

twenty-five source-code components. Second, we let Sonar compute its predictions for the

same source code components. Table 12 presents the results of both predictions using the

same convention than for scalc, in particular, discrepancies in predictions are in bold.

Table 12: Comparison of the results of a manual analysis and of Sonar for bool.
Pos. Manual Results Sonar’s results that help correct

manual results
1 All but 2 unsuccessful search (text/html Fail)
2 All
3 All
4 All
5 Text & Html count number of matches
6 Text & Html find a fixed string
7 All
8 OR all sub-tree
9 All Html search
10 All Html search Except unsuccessful Html

search, and count number of
matches in Html file

11 All Except count number of matches All Except count number of
matches and failed search

12 All Html search All Html search except failed

 110

html search
13 All but search a fixed string
14 All Html search
15 All but search a fixed string
16 None
17 All Html search
18 Text & Html find a fixed string
19 Text & Html find n matches All except unsuccessful search,

and count number of matches
20 All All but count number of

matches
21 All text search
22 Text find a special match + failed text search Text find a special match
23 All Html search All Html search except count

number of matches in Html file
24 All
25 All

Table 12 shows that there are seven discrepancies and eighteen predictions where our

first manual analysis gives the same predictions as Sonar’s. As indicated in our protocol, we

assume that the eighteen same predictions are exact. On the other hand, for the inconsistent

predictions, we now perform a second manual analysis to determine whether Sonar’s

predictions are unsafe or safe and exact or inexact. Rather than providing the results for the

inconsistent predictions, we give Table 13 with all twenty-five results computed after our

second analysis. These results are now assumed to all be exact. We can then compare them

with Sonar’s. For safe and unsafe results, we also give the extra and missing software

functions. Moreover, to show that a prediction from our first manual analysis has been

changed by our second analysis, we italicized it. In other words, this points out when our first

manual analysis was wrong. It happened in four cases, in rows 10, 19, 20, and 23.

Table 13: Estimation of Sonar’s results for bool.
Pos. Correct Results Sonar’s results that help correct

manual results
1 All but failed text/html search Correct
2 All Correct

 111

3 All Correct
4 All Correct
5 Text & Html count number of matches Correct
6 Text & Html find a fixed string Correct
7 All Correct
8 OR all sub-tree Correct
9 All Html search Correct
10 All Html search except unsuccessful Html search,

and count number of matches in Html file
Correct

11 All Except count number of matches UNSAFE: Missing text/html
failed search

12 All Html search UNSAFE: Missing failed html
search

13 All but search a fixed string Correct
14 All Html search Correct
15 All but search a fixed string Correct
16 None Correct
17 All Html search Correct
18 Text & Html find a fixed string Correct
19 All except failed search, and count number of

matches
Correct

20 All but count number of matches Correct
21 All text search Correct
22 Text find a special match + failed text search UNSAFE: Missing failed text

search
23 All Html search except count number of matches Correct
24 All Correct
25 All Correct

First, we note that three of Sonar’s predictions are unsafe (11, 12, and 22). Second,

the remaining twenty-two predictions are exact. Surprisingly, all twenty-two predictions are

safe and imprecise.

The results above only provide information for 25 of the 508 source-code components

exercised. However, we can use the binomial distribution to estimate what the predictions

would be for the remaining 483 source-code components. In particular, we can determine the

X and Y that make our hypothesis below correct.

Goal: We want to determine with more that 99% certainty that for software system

 112

Z, Sonar computes X% of safe predictions and Y% of exact predictions when

Exercise and Activate relationships are sampled with a set of system tests that

satisfy our test selection criteria.

We may say that for the bool software and our 21 system tests that satisfy our test

selection criteria

• X = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the

remaining 483 source code components would be safe

• Y = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the

remaining 483 source code components would be exact.

4.2.5 Conclusion of study

Although scalc and bool are very different in nature—the first is object-oriented and

interactive while the second is procedural and command-line driven—the results of our study

remain very similar. In both cases, safety of predictions is around 70%, and the level of

correctness varies of only 10% (between 60% and 70%) between the two systems. Thus,

when Exercise and Activate relationships are sampled with a set of system tests that satisfy

our test selection criteria, the safety and the correctness of predictions does not vary

dramatically between the two systems selected. This is encouraging. If these results repeated

on several other systems, we would be able to infer that the way a system is implemented

does not influence Sonar’s predictions (when system tests satisfy our test selection criteria).

However, the current rate of safety (70%) and correctness (between 60 and 70%)

must be improved before we can use these results as a basis for inferring new Potentially

Affect relationships. Our future work will therefore not only focus on testing Sonar and our

test selection criteria with other software systems but also on developing a technique to

 113

improve the current level of safety and of correctness of predictions. This may be done

through refinement. After Exercise and Activate relationships are first sampled with a set of

system tests that satisfy our test selection criteria, more system tests are selected for further

refinement of the sampled Exercise and Activate relationships. Another solution is to create

new test selection criteria.

A particular area that needs help from Sonar is that of large software systems.

However, currently we have no way to guarantee the correctness of manual results when

systems are large. For such systems, assuming the correctness of predictions is not

acceptable. A promising direction is to study the help provided by Sonar’s predictions instead

of studying the rate of safety and correctness of Sonar’s predictions. In other words, although

we cannot guarantee the safety and the correctness of Sonar’s results, can we determine if

Sonar’s predictions teach new information to the programmer? The information below shows

that such studies are in fact possible, and they are likely to produce very useful results.

Our case study has a very interesting side effect. In fact, if we look back at our first

and second manual predictions, we find that for systems scalc and bool four predictions

manually computed during our first analysis are wrong; therefore, they were updated by our

second manual analysis. In many environments, programmers can only investigate the source

code using the technique used by our first manual analysis. In particular, programmers do not

have the time to manually instrument the source code (with print statements) and execute the

system to determine certain dynamic behaviors. In these environments, programmers are

limited to code review assisted with text search tools (such as grep) in order to determine the

ripple effect of a source code change on the software functionality. As the results of our case

studies on scalc and bool show, results of the first manual analysis were wrong four times.

 114

When further analyzing these results, we observe that when the first manual analyses

are wrong, those of Sonar are correct. This is true for the four cases of both scalc and bool.

We definitely want to find out if that trend generalizes. If it does generalize, it will indicate

that when the manual analysis is difficult and the programmer has a greater risk to commit an

error, Sonar has a high probability to compute the correct predictions, or at least a safe

prediction. Hence, the use of Sonar with Exercise and Activate relationships sampled from

system tests that satisfy our test selection criteria would be computing predictions of great

assistance to programmers. This approach of studying the usefulness of Sonar’s predictions

seems to be a promising direction, especially for large systems.

5 Related Works

To introduce related works, we reuse the E-R diagram presented in Chapter 1. Several

researchers have worked on relating software specifications to source code. From Figure 18,

we see three possible ways to relate software specification to source code: (1) one direct

approach, (2) two transitive approaches through design and constraints, or (3) using system

tests.

Antoniol et al. propose a direct approach. They directly map the functional

requirements to the source code. Their technique uses the similarity between the

requirements document vocabulary and the names of identifiers in the source code in order to

relate software functions (or functional requirements) to source code components [Antoniol

et al. 2000]. They performed a case study on a real-world system that showed that their

method traded off quite a bit of precision to get safe results. They found that to get safe

predictions they had to allow for a very low level of precision (12%). In other words, all

Design &
Constraint

Source Code

System Test

Software Function
(related to

Functional Requirements)

ExerciseActivate

Satisfy Implement

X

Figure 18: E-R diagram of software components and their relations.

 116

software functions affected are part of the predictions; however, only one out of eight

predictions is truly affected. When they tried to improve the precision, the safety of

predictions suffered dramatically. For example, when predictions are safe at 50% (half of the

affected software functions are not in the prediction), they found that the precision of the

prediction is at 54% (half of the software functions in a prediction are really not affected).

These percentages indicate that their method does not currently produce good results on real-

world systems. Moreover, their method can only study its reliability through empirical

studies. That is, there is no framework to study the general theoretical reliability of their

method. On the other hand, our method has enabled us to theoretically study the safety of

predictions. Moreover, from our case study, we found that our method seems to be more

accurate than that of Antoniol et al. However, their method has less setup costs than our

method since system tests are not required. Furthermore, with their method, a programmer

can query from any part of the source code, independent of whether this source code is

executable or not. In our case, the programmer can only query the source code components

that were exercised by a system test.

A second technique for relating software specifications to source code uses design

and/or formal constraints. In Figure 18, the two relations of interest are Satisfy and

Implement. Commercial companies such as Rational™ or TogetherSoft™ have pushed this

approach. Gates et al. also propose a similar model where formal constraints in the form of

logic rules enable inferring relationships from source code to requirements [Gates and Della-

Piana 1997, Gates and Li 1998, Gates and Teller 2000]. When correctly applied, these

methods are sound and give good predictions. The downside is the setup cost. These methods

require the existence of a well-defined software development process where design and/or

 117

logic rules are created during the initial software development cycle and, more importantly,

are maintained in subsequent cycles of development and maintenance. Such maintenance

must not only update the design and/or logic rules but also update their Satisfy relationships

with software requirements. The manual effort of maintaining Satisfy relationships requires

tedious work. Over time, errors are likely to be introduced, which compromises the integrity

of Satisfy relationships. Developing a method that automates computing Satisfy relationships

may prove to be very challenging. In contrast, our method can be applied to software projects

that did not start with a rigorous process requiring design and logic rules to be created. In our

case, only system tests are needed to enable the application of our method. Currently, it is

still more common to find companies with up-to-date test suites for their software products

rather than with up-to date requirements document, design, and source code all in-sync. In

any case, product and practice suggested by Rational are gaining acceptance in the software

industry. Thus, in the future, our method may be combined with that of the Rational Unified

Process. Our method for predicting Potentially Affect relationships can then help verify the

integrity of Satisfy relationships. In particular, after a software maintenance has been tested

with an instrumented version of the system, the Potentially Affect relationships computed by

system testing can be used to point out the Satisfy relationships that need updating between

requirements and design components.

The third method, which is ours, requires system tests. Several efforts prior to ours

have used system tests to relate software functions to source code. However, they all

compute relationships between software functions and source code to go from a software

function to source code. In particular, they provide heuristics to locate the implementation of

a particular software function in the source code. In other words, the query starts from a

 118

software function, and the result predicts the source code components that implement that

software function. These methods do not answer the same question as ours. However, since

they also relate software functions to source code using system tests, it is important for us to

present them.

Parikh and Zvegintzov were the first to propose comparing the execution traces of

system tests to find information with potential relevance to specific software maintenance

[Parikh and Zvegintzov 1983]. In particular, they proposed to compare the exercise traces of

system tests that activate the software functions directly related to the proposed maintenance

with the exercise traces of similar system tests that do not activate the software functions

related to the maintenance. Segments of source code related to the first exercised trace but

not to the second are potential locations where the maintenance could take place. A

programmer can start investigating the source code from these segments. Wilde and Scully,

Reps et al., and Wong et al. implemented a tool to facilitate using this approach [Wilde and

Scully 1995, Reps et al. 1997, Wong et al. 1999]. Wilde and Scully implemented Software

Reconnaissance, and Wong et al. implemented χSuds. Both tools represent exercised traces

using node profiles. Reps et al.’s technique proposed to represent exercised traces using

acyclic intraprocedural paths (B-L paths) to identify Y2K related problem in the source code.

Only Wilde and Scully studied issues related to the theoretical aspect of their heuristics, but

to do so, they assumed the existence of an infinite number of system tests. On the other hand,

we have proposed a method to compute safe results for a large category of software functions

where only a finite number of system tests is required. Hence, unlike Wilde and Scully’s

method, our analysis remains tractable.

6 Conclusion and future directions

This research has explored a method to identify the software functions potentially

affected by a change at a selected spot of the source code. This method uses system tests to

infer relationships between software functions and the source code of a software system. In

particular, the system tests sample Exercise and Activate relationships between the system

tests and the source code components and between the system tests and the software

functions, respectively. Our method then consists of joining the Exercise and Activate

relationships information to detect the ripple effects from a change in the source code on

software functions.

We found the conditions needed for our method to guarantee safe predictions for a

large class of software functions. Some of these conditions specify the source code coverage

that the system tests must achieve; in particular, all complete sets of interprocedural paths as

defined by Melski and Reps (M-R paths) must be exercised. Although a finite number of

system tests can achieve this coverage, no practical number of system tests can do it.

However, this source code coverage criterion proposes a finite limit to our problem of safely

predicting the software functions potentially affected by a source code change. Later works

may use this limit as a stopping criterion for their algorithm. Since there are a finite number

of complete sets of M-R paths, solutions will always be tractable. For example, we plan to

develop a method where a few system tests are used to compute seeds Exercise and Activate

relationships. These seeds will then be used to propagate information pertaining to software

function to all complete sets of M-R paths. Actually, further research is needed to reduce the

complete sets of M-R paths so that the predictions will remain safe and the level of precision

 120

will improve. In fact, when all complete sets are covered, we know that the predictions will

be safe but highly imprecise.

We developed Sonar, a prototype tool that implements our method. Our case studies

used Sonar on small real systems. For these studies, we created a new set of test selection

criteria that were always satisfied by a few system tests. These criteria are generic; therefore,

more case studies on different software systems can be done to further test our test selection

criteria. Although our results are better than the method of Antoniol et al., they are still not

good enough to be used as seeds by a propagation technique such as the one described in the

previous paragraph. In fact, seeds relationships may only be used if we are highly confident

that the information propagated is safe and fairly precise. Currently, our two case studies

have shown that predictions are safe only 70% of the time. The percentage of safe predictions

would need to be in the upper nineties in order to qualify as good seeds.

Although our results are not good enough for programmers to rely only on them, our

case studies have shown that programmers’ manual analyses would benefit from our

predictions. In particular, a side effect of our studies has illustrated that each time the

programmer made an error in the manual predictions Sonar computed safe predictions. If this

tendency generalizes, it would definitely show that our method is useful to programmers

when they are manually performing difficult crucial analyses on how a change at a particular

spot of the source code impacts a software application’s functionality.

We now develop three types of future works. The first task is to improve Sonar. We

intend to tailor a program profiling technique that helps compute the Exercise relationships

between a partial execution of a system test and a partial exercise trace. Indeed, Exercise now

relates a system test to its complete exercise trace. In the case of interactive programs, a

 121

system test often activates a sequence of several unrelated software functions. It may be

useful to partition the execution of such a system test and only relate each partial execution to

its corresponding partial exercise trace. Such partitioning will likely improve the precision of

Sonar’s results. Creating a relation between the partial execution of system tests and partial

exercise traces would be fairly straightforward for systems that run as single-process, but, in

the case of multiprocess or multithreaded programs, it becomes much harder to create

relationships between partial execution. Since interactive programs with GUI often run in

multiple threads, it would be crucial for the new profiling technique to handle such cases.

Annotated grammar used to compute Activate relationships may assist the partitioning of a

system test into segments that correspond to its unrelated software functions. Recursion in

the rules of a feature grammar such as the one of the bank ATM presented in Chapter 2 may

help indicate the cycles in source code that determine the break points, that is, where a

software function terminated and another started executing.

We are also interested in implementing Sonar for analyzing Java programs. At the

moment, it is limited to the study of C and C++ programs. In the case of Java programs, we

could use the built-in profiling interface JVMPI to help compute Exercise relationships.

The second task is to improve on our current method for computing predictions by

not only using dynamic analysis but also using static analysis. We already mentioned this

direction earlier in this chapter when describing the use of seeds relationships and a

propagation technique. In particular, the goal is to dynamically obtain a few seeds

relationships that compute predictions with a high degree of safety and precision for a limited

number of source code components. In parallel, we can develop heuristics to propagate the

 122

information of seeds relationships throughout the rest of the source code based on static

analysis.

The third future task consists of conducting more experiments with Sonar to verify if

our claims generalize on large systems. In particular, we would like to collaborate with the

software industry and verify whether our claims remain true on real-world systems.

However, when studying the application of our method on a large project, it may not be

feasible to determine whether predictions are safe and precise. A more relevant question is:

are predictions providing new information to programmers? And is the new information

important to the point that it will avoid the introduction of bugs in a future release of a

software system? In parallel, we plan to perform a comparative study on the effort required

for particular maintenance in relation to the coupling between software functions in source

code. This could then define software metrics to be incorporated in Sonar.

Our desire is to help programmers in the process of modifying a program. So far,

programmers determine the ripple effect of source code modification on software function

using ad hoc techniques made of code and documentation review and, when possible, of

exercise traces review. Currently, we know that our method may not be capable of

guaranteeing safe and precise predictions when using only a reasonable set of system tests.

However, we find it important that we can bring new information to the table. In particular, if

the new information is important to the point that it will avoid the introduction of bugs in a

future release of a software system then our method is worth applying.

7 References

[Agrawal 1999] H. Agrawal, “Efficient coverage testing using global dominator graphs,”

SIGSOFT Software Engineering Notes, vol. 24, 1999, pp. 11-20.

[Agrawal, et al. 1993] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging with

dynamic slicing and backtracking,” Software - Practice and Experience, vol. 23,

1993, pp. 589-616.

[Aho et al. 1986] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques,

and Tools. Addison Wesley, January 1986.

[Albrecht and Gaffney 1983] A. J. Albrecht and J. E. Gaffney, “Software Function, Source

Lines of Code and Development Effort Prediction: A Software Science

Validation,” IEEE Trans. Software Eng., November 1983, pp. 639-648.

[Antoniol et al. 2000] G. Antoniol, G. Camfora, A. De Lucia, G. Casazza, and E. Merlo,

“Tracing Object-Oriented Code into Functional Requirements”, in Proc. of the

8th International Workshop on Program Comprehension (IWPC’00), Limerik,

Ireland, June 10-11, 2000, pp. 79-86.

[Ball and Larus 1996] T. Ball and J.R. Larus, “Efficient Path Profiling,” in Proc. of 29th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-29),

Paris, France, December 2-4, 1996, pp. 46-57.

[Ball 1998] T. Ball, “On the limit of control flow analysis for regression test selection,” in

Proc. of the ACM/SIGSOFT International Symposium on Software Testing and

Analysis, Clearwater Beach, FL, March 2-5, 1998, pp. 134-142.

 124

[Balzer 1969] R. M. Balzer, “EXDAMS—Extensible Debugging and Monitoring System,” in

AFIPS Proceedings of the Spring Joint Computer Conference 34, Washington,

D.C., 1969, pp. 125-134.

[Beck 1999] Ken Beck, Extreme Programming Explained: Embrace Change. Reading, MA:

Addison Wesley, October 1999.

[Binkley 1995] D. Binkley, “Reducing the cost of regression testing by semantics guided test

case selection,” in Proc. of the Conference on Software Maintenance 1995

(CSM95), Opio (Nice), France, October 17-20, 1995, pp. 251-260.

[Camuffo, et al. 1990] M. Camuffo, M. Maiocchi, and M. Morselli, “Automatic software test

generation,” Information and Software Technology, vol. 32, 1990, pp. 337-346.

[Celentano, et al. 1980] A. Celentano, S. C. Reghezzi, P. D. Vigna, C. Ghezzi, G. Gramata,

and F. Savoretti, “Compiler Testing using a Sentence Generator,” Software -

Practice and Experience, vol. 10, 1980, pp. 987-918.

[Cusumano and Selby 1995] Michael A. Cusumano and Richard W. Selby. Microsoft

Secrets: How the World’s Most Powerful Software Company Creates

Technology, Shapes Markets, and Manages People. New York, NY: Simon &

Schuster, December 1998.

[Davis 1993] Alan M. Davis, Software Requirements: Objects, Functions, and States. Upper

Saddle River:NJ, Prentice Hall, 1993.

[Deprez and Lakhotia 2000] J-C. Deprez and A. Lakhotia, “A formalism to automate

mapping from features to code,” in Proc. of the 8th International Workshop on

Program Comprehension 2000 (IWPC2000), Limerick, Ireland, June 10-11,

2000, pp. 69-78.

 125

[Erdem, et al. 1998] A. Erdem, W. L. Johnson, and S. Marella, “Task oriented software

understanding,” in Proc. of the Thirteenth International Conference on

Automated Software Engineering, Honolulu, HI, October 13-16, 1998, pp. 230-

239.

[Ernst et al. 1997] Michael Ernst, Greg J. Badros, and David Notkin, “An Empirical Analysis

of C Preprocessor Use, ” technical report UW-CSE-97-04-06, University of

Washington, Seattle, WA, April 22, 1997.

[Fischer 1977] K. F. Fischer, “A test case selection method for the validation of software

maintenance modifications,” in Proc. of Computer Software and Applications

1977 (COMPSAC'77), New York, NY, 1977, pp. 421-426.

[Fischer, et al. 1981] K. F. Fischer, F. Raji, and A. Chruscicki, “A methodology for retesting

modified software,” in Proc. of the National Telecommunications Conference B-

6-3, November, 1981, pp. 1-6.

[Gates and Della-Piana 1997] A. Gates and C. Della-Piana, “The identification of integrity

constraints in requirements for context monitoring,” in Proc. of the 1997 IEEE

International Conference and Workshop on Engineering of Computer-Based

Systems (ECBS'97), Monterey, CA, March 24-28, 1997, pp. 498-505.

[Gates and Li 1998] A. Gates and S. Li, “Software Faults and their Detection through

DynaMICs,” in Proc. of the International Association of Science and Technology

for Development (IASTED) Software Engineering Conference, Las Vegas, NV,

October 28-31, 1998, pp. 323-327.

 126

[Gates and Teller 2000] A. Q. Gates and P. J. Teller, “DynaMICs: An Automated and

Independent Software-Fault Detection Approach, ” in Proc. of the Fourth IEEE

International High Assurance Systems Engineering Symposium, Washington,

D.C., November 1999, pp. 11-19.

[Griswold et al. 1996] W.G. Griswold, D.C. Atkinson, and C. McCurdy. “Fast, flexible

syntactic pattern matching and processing, ” In Proc. 4th Workshop on Program

Comprehension, Berlin, Germany, March 28-31, 1996, pp. 144-153.

[Hanson 1978] D. R. Hanson, “Event associations in SNOBOL4 for program debugging,”

Software - Practice and Experience, vol. 8, 1978, pp. 115-129.

[Harrold and Soffa 1989] M. J. Harrold and M. L. Soffa, “Interprocedural data flow testing,”

in Proc. of the Third Testing, Analysis, and Verification Symposium, Key West,

FL, December 13-15, 1989, pp. 158-167.

[IEEE 1983] IEEE Standard for Software Test Documentation, ANSI/IEEE STD 829, 1983.

[Melski and Reps 1998] D. Melski and T. Reps, “Interprocedural path profiling, ” TR-1382,

Computer Sciences Department, University of Wisconsin, Madison, WI,

September 1998.

[Melski 2002] David Melski, “Interprocedural path profiling and the interprocedural express-

lane transformation,” Ph.D. dissertation, Computer Sciences Department,

University of Wisconsin, Madison, WI, 2002.

[Parikh and Zvegintzov 1983] G. Parikh and N. Zvegintzov, Tutorial on Software

Maintenance. Silver Spring, MD: Computer Society Press, 1983.

[Purdom 1972] P. Purdom, “A Sentence Generator for Testing Parsers,” BIT, vol. 12, 1972,

pp. 366-375.

 127

[Reps, et al. 1997] T. Reps, T. Ball, T. M. Das, and J. Larus, “The use of program profiling

for software maintenance with applications to the Year 2000 Problem,” Lecture

Notes in Computer Science, vol. 1301, 1997, pp. 432-449.

[Rothermel and Harrold 1997] G. Rothermel and M. J. Harrold, “A safe, efficient regression

test selection technique,” ACM Transaction on Software Engineering and

Methodology, vol. 2, 1997, pp. 173-210.

[Sommerville 1992] I. Sommerville, Software Engineering, 4th edition. Reading, MA:

Addison Wesley, 1992.

[Spadafora and Bazzichi 1982] I. Spadafora and F. Bazzichi, “An automatic generator for

testing compiler,” IEEE Transaction on Software Engineering, vol.

8, 1982, pp. 343-353.

[Tolmach and Appel 1990] A. P. Tolmach and A. W. Appel, “Debugging standard ML

without reverse engineering,” in Proc. of the 1990 ACM Conference on LISP and

Functional Programming, Nice, France, June 27-29, 1990, pp. 1-12.

[Wilde and Gust 1992] N. Wilde and T. Gust, “Locating User Functionality in Old Code,” in

Proc. of Conference on Software Maintenance, Orlando, FL, November 9-12,

1992, pp. 200-205.

[Wilde and Scully 1995] N. Wilde and M. C. Scully, “Software Reconnaissance: Mapping

Program Features to Code,” Software Maintenance: Research and Practice, vol.

7, 1995, pp. 49-62.

 128

[Wong, et al. 1999] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi, “Locating

program features using execution slices,” in Proc. of the Second IEEE

Symposium on Application-Specific Systems and Software Engineering

Technology, Richardson, TX, March 24-27, 1999, pp. 194-203.

[Wong, et al. 1997] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of

effective regression testing in practice,” in Proc. of the Eighth IEEE

International Symposium on Software Reliability Engineering, Albuquerque,

NM, November 2-5, 1997, pp. 522-528.

[χAtac] Telcordia Technologies Inc. Telcordia Software Visualization and Analysis Toolsuite

(χSuds)—User’s Manual, first edition. Morristown, NJ: Telcordia Technologies

Inc., 1998. Available at http://xsuds.argreenhouse.com/html-

man/xsudsTOC.html, (χAtac belongs to the χSuds toolsuite).

http://xsuds.argreenhouse.com/html-man/xsudsTOC.html
http://xsuds.argreenhouse.com/html-man/xsudsTOC.html

Deprez, Jean-Christophe. Bachelor of Science, University of Southwestern Louisiana, 1994;
Master of Science, University of Southwestern Louisiana, 1997; Doctor of
Philosophy, University of Louisiana at Lafayette, Spring 2003

Major: Computer Science
Title of Dissertation: Detecting Ripple Effects of Program Modifications on a Software

System’s Functionality
Dissertation Director: Dr. Arun Lakhotia
Pages in Dissertation: 141; Words in Abstract: 298

 ABSTRACT

When changing a line of source code, a programmer needs to know how changing

that line may affect the end-user functionality of the software system. In this dissertation, we

explore a method that uses system tests to relate software functions (units of software

functionality) to source code. This method can be used to predict the software functions

potentially affected by a change at a particular spot in the source code. The quality of a

prediction is measured in terms of its safety and its precision. These two attributes are

respectively addressed by answering the following questions: Are all potentially affected

software functions predicted, and are all software functions predicted potentially affected?

We define a source code coverage criterion in terms of sets of inter-procedural paths.

When a system test that satisfies this criterion is used, our method guarantees safe predictions

for a large class of software functions. For most systems achieving such source code

coverage may require an exponential number of system tests. Moreover, the precision of

predictions is not guaranteed. Consequently, we create a new set of test selection criteria on

the basis that all these new criteria must always be satisfied by a small number of system

tests. Case studies on two software systems, namely scalc and bool, show that sets of system

tests that satisfy our new criteria enable our method to compute safe predictions 70% of the

time and safe and precise predictions between 60–70% of the time.

 130

These results are not at a level where our method would supersede a programmer’s

manual analysis. However, they complement manual predictions by improving a

programmer’s confidence in the result of her/his manual analysis. Incidentally, during our

two case studies, we observed that our method always corrected the programmer when he

made a wrong manual prediction.

 BIOGRAPHY

Jean-Christophe Deprez received his Bachelor’s degree in Computer Science from the

University of Southwestern Louisiana in 1994. After working at Pfizer for a year, he came

back to Louisiana for his graduate studies where he joined the Center for Advanced

Computer Studies (CACS) under the Graduate School Fellowship program. He first focused

his studies on using static analyses of programs to assist software reengineering. This lead to

his master thesis: “A Context Sensitive Transformation for Restructuring Programs.” He

obtained a Master of Science in Computer Science from the University of Southwestern

Louisiana in 1997. After a six month sabbatical, he returned to Louisiana for his doctoral

research. He studied dynamic program analyses and their use in assisting program

comprehension. Since Fall 2001, he has been an Assistant Professor in the Computer Science

and Information System Department of Pace University in New York.

	Introduction
	Motivations
	Relating source code to software functions
	Measuring the quality of a prediction
	Objectives and Challenges
	Contributions
	Impacts
	Outline of this dissertation

	P
	Predicting Potentially Affected software functions using system tests
	Source code components and software functions
	Source code components
	Software functions

	Activate and Exercise: the basic relationships
	System tests exercise source code components
	System tests activate software functions
	System tests
	Recovery techniques
	Applicability and limitation of our recovery technique
	Works related to our recovery technique

	Potentially Affect
	Implementing our method: Sonar
	Implementing our method
	Demonstration of Sonar
	Preparing our bank ATM
	Using Sonar during a maintenance
	Before implementing the software function fast-cash withdrawal

	Computing safe predictions
	Expressing safe predictions with coverage conditions
	Predictions based on coverage conditions: unsafe
	Expressing safe predictions with restriction
	Computing safe predictions with restriction
	Restrictions on software functions: a first attempt
	Our solution for computing safe predictions with restriction
	Restriction on software functions and criterion of source code coverage
	Restriction Z on software functions
	Criterion X of source code coverage
	M-R paths coverage
	Coverage of sets of M-R paths

	Reaching our new goal
	Satisfying the first point of our new goal
	Satisfying the second point of our new goal

	Assessment of our solution

	A
	A practical application of our method
	Criteria for system test selection
	Assessing our test selection criteria through case study
	Objectives of the study
	Protocol used in the study
	The two software systems studied: scalc and bool
	scalc
	bool

	Result of the study on scalc and on bool
	Results for scalc
	Results for bool

	Conclusion of study

	R
	Related Works
	C
	Conclusion and future directions
	R
	References

