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1 Introduction

When designing a change to a software system, a programmer reviews the source
code and often wonders if changing the source code at a particular spot might lead to an
unanticipated ripple effect on the end-user functionality of the system. This concern is
warranted because a segment of source code often participates in the implementation of

i

many software functions.™In most cases, the sharing of source code between various
software functions is neither documented nor evident from the source code. This dissertation
addresses such concerns of a programmer by answering the following question:

If the source code at a given spot were modified, which software

functions would be potentially affected?

Our work assumes that this question is raised when a change to the source code is
being designed and before the change is applied. When designing a change, a programmer
may have multiple alternatives. The programmer may ask the above question for each
alternative in order to discover the area of the source code with the least ripple effect. As a
corollary, our answer to the question above is only a prediction since it does not take into
account exactly how the source code will be modified but only where the change might take
place. The notion of prediction is emphasized by the term potentially in our question. We
define potentially affected with the following statement.

A software function f is potentially affected by a change at a selected

spot of the source code if the segment of source code at that spot

participates in the implementation of software function f.

! A software function is a task performed by a software system described from an end-user’s viewpoint.



1.1 Motivations

If software change requests were not frequent, our research would have limited
impact. However, a useful software system rarely stays unchanged. It undergoes continuous
modifications to adapt to changes in the needs of the end user, changes in the business
environment, and changes in technology. It has been acknowledged that a maintenance
programmer spends a significant amount of effort understanding the program being modified
[Sommerville 1992]. Furthermore, a software maintenance process such as that of Parikh and
Zvegintzov points to the importance of identifying the software functions affected by a
particular maintenance before modifying the system [Parikh and Zvegintzov 1983].
Likewise, in the newer incremental software development model used by many companies
such as Microsoft and by Extreme Programming techniques, an entire system is developed in
iteration [Cusumano and Selby 1995, Beck 1999]. In this development model, an entire
system is built in layers where the implementation of software functions is added one
software function at a time until the whole system is built. At each iteration cycle, the
programmer modifies the existing source code to insert a new software function. Therefore,
the programmer must already identify the ripple effect that the source code changes have on
software functions during the initial development of a software application.

Currently, programmers identify the software functions affected by a change in an ad
hoc manner. This often leads to overlooking some of the affected software functions. In turn,
the resulting errors, if caught on time, lead to reworking the source code and more testing,
resulting in lost time. When the errors are not caught before deployment, these errors impact
the system’s behavior unpredictably, resulting in poor quality. Our technique will enable

programmers to identify the potentially affected functionality before changing the source
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Figure 1: E-R diagram of software.

code. Hence, they will have the direct opportunity to adapt their source code modifications to
eliminate undesired side effects. This is expected to improve the quality of modifications
made to source code and to reduce the overall time and effort involved in making source

code modifications.

1.2 Relating source code to software functions

To answer our opening question, a relation between the software functions of a
system and the system’s source code must be created. Figure 1 calls this relation X. For our
purpose, one must be able to use the X relationships between source code and software
functions to identify the software functions potentially affected by a change at a selected spot
of the source code.

Figure 1 shows that there are three possibilities to create X relationships: (1) directly,

(2) transitively using constraints and design, or (3) using system tests. Below, we briefly




describe the previous works that have used X relationships, and we mention which of the
three approaches was used.

Antoniol et al. developed a technique to compute X relationships directly [Antoniol et
al. 2000]. Their technique computes the probability for a segment of source code to relate to
a particular functional requirement based on the similarity of vocabulary used in the
requirements documents and in the source code. In other words, a process similar to that used
in search engines attempts to match identifiers of the source code to words in the functional
requirements document. This technique is highly dependent on how programmers name
variables and procedures in a program. As reported in a case study by Antoniol et al., this
approach only provides mediocre results when applied on real world systems [Antoniol et al.
2000].

The second way for inferring X relationships is by joining information from the
Implement and Satisfy relationships. Commercial companies such as Rational " and
TogetherSoft™ push this approach using design components to infer X relationships. Gates et
al. also developed a similar approach. Instead of using design components, their approach
relates constraints (logic rules) created from the requirements to the source code. In turn, this
allows inferring X relationships transitively [Gates and Della-Piana 1997, Gates and Li 1998,
Gates and Teller 2000]. This approach through design and constraints provides a well-
founded framework; however, it requires manual intensive tasks. In fact, not only must the
design and constraints be manually created but the Satisfy relationships must also be
manually created. Moreover, any change to the design, constraints, or requirements
document often requires an update of the Satisfy relationships. Over time, such an intensive

manual effort is likely to introduce errors where the requirements, Satisfy relationships, and



design become out-of-sync. Hence, the X relationships inferred from Satisfy relationships
may not be reliable. One solution is to automate the current manual maintenance of Satisfy
relationships. However, this would require very advanced natural language processors and
currently may prove too challenging.

A third approach relates software functions to source code by joining information
from the Exercise and Activate relationships. This approach works by observing that the
execution of a system test activates software functions and exercises source code. Various
efforts have used this approach to locate where requirements are satisfied in the source code
implementation [Reps et al. 1997, Wilde and Scully 1995, Wong et al. 1999]. Until the mid-
nineties, programmers read the entire traces of source code created by executing system tests,
and then they determined what source code segments related to the functional requirement of
interest. Thanks to the methods developed by Reps et al., Wilde and Scully, Wong et al., one
can directly zoom in to the area of the source code likely to be related to a selected functional
requirement. So far, the methods that use Exercise and Activate relationships provide good
information when navigating from software functions to source code. However, nobody has
investigated whether Exercise and Activate relationships enable the inverse navigation from
source code position to software functions.

When using Exercise and Activate relationships for inferring X relationships, the main
part of the job is to identify a set of system tests needed to achieve the particular goal. All
previous works propose techniques to navigate from software functions to source code. In
contrast, our goal is to provide a technique for navigating from source code to software

functions. Hence, the set of system tests used to achieve the previous goal differs from ours.



In fact, they only require a few system tests to be executed. In contrast, for our purpose, we

need to execute many more system tests in order to provide reliable results.

1.3 Measuring the quality of a prediction

Before presenting our objectives, we specify the factors that determine the quality of
a prediction: safety and precision. This will simplify the task of stating our objectives. The
two attributes safety and precision, which determine the quality of a prediction, are
independent of the method used to obtain that prediction.

Definition: » A prediction is safe if and only if it identifies all the software functions
potentially affected by a change at a selected source code location.
» A prediction is precise if and only if all the software functions it identifies
are potentially affected by a change at a selected source code location.

In other words, safety answers the question “has our prediction identified all
potentially affected software functions?”’, and precision answers ““Are all potentially affected
software functions identified by our prediction?”

When using the system tests to predict the ripple effect of a source code change on
software functions, we know that the set of system tests used for sampling Exercise and

Activate relationships will strongly influence the safety and precision of a prediction.

1.4 Objectives and Challenges

The main objective of our work is to determine criteria for selecting system tests
where the resulting Exercise and Activate relationships predict the software functions

potentially affected by a change at a particular source code location with the best possible



level of safety and of precision. Secondly, we also want to automate our method for

computing predictions as much as possible.

1.

To achieve these goals, we address the following:

We must find the adequate techniques for automating the sampling of Exercise and
Activate relationships. Challenge: Program profiling helps sample Exercise relationships,
but we have to develop our own technique for sampling Activate relationships. Moreover,
several program profiling methods exist; therefore, we must determine the most adequate
one for our purpose.

We want to identify a set of criteria for system test selection such that the Exercise
and Activate relationships sampled from the execution of these system tests guarantee
safe predictions. Moreover, the number of system tests that satisfy these criteria must be
finite. Challenge: Most software systems accept infinitely many system tests, and the
source code implementation of a system often contains infinitely many execution paths.
Hence, we must make sure that all needed execution paths in relation to the safety of
predictions have been exercised by the execution of a system test. We know that
satisfying our criteria for test selection will require a huge set of system tests. Obtaining
such set of system tests may not be feasible in practice. Moreover, to guarantee safe
predictions, our theory currently does not guarantee the level of precision. These last
points lead to our next objective.

We want to find criteria for test selection that are satisfied by an acceptable number
of system tests. In particular, the number of system tests must be different from the
number of software functions of a system by at most a small constant factor. Moreover,

the Exercise and Activate relationships sampled from system tests that satisfy our criteria



must predict the ripple effect of a source code change on software functions with an

acceptable, well-determined degree of safety and precision.

1.5 Contributions

1.

Our research makes the following contributions:

A technique for identifying the software functions activated by a system test. The
technique works as follows: Step a) Build a grammar describing the input space of the
system; Step b) Annotate each production rule of the grammar with the software
functions activated by strings parsed by those rules; Step c) Parse a system test to
determine the software functions activated by it.

Sonar, a prototype tool that predicts the ripple effect on software functions by a
change at a spot in the source code.

A system test selection criterion that guarantees safe predictions for a large class
of software functions. This system test selection criterion is based on the notion of
interprocedural paths as defined by Melski and Reps. Since an exponential number of
tests may be needed to satisfy the criterion, the criterion is not practical. Furthermore,
there is no guarantee as to the level of precision of the predictions made using this
criterion. In many cases, the resulting precision may be very low. Thus, this criterion is of
theoretical significance only.

A second test selection criteria that is practical in the size of system tests needed
and the safety and precision of the predictions. These test selection criteria are
satisfied by a number of system tests with a constant relation to the number of software
functions. Our case studies on the safety and precision of the predictions based on

system tests satisfying this second criterion found that Sonar computed safe predictions
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70% of the time and also computed safe and precise predictions between 60—70% of the

time for the two systems studied.

1.6 Impacts

Our third contribution states that we found conditions to guarantee safe predictions
for a large class of software functions from finite samples of Exercise and Activate
relationships. Currently, it is unpractical to create a set of system tests whose Exercise and
Activate relationships satisfy our condition. However, our finding provides a finite upper
bound to the problem of relating a large class of software functions to source code in order to
obtain a safe prediction on the ripple effect of a source code change on the software
functions. Future efforts may use this bound as a stopping criterion for their algorithms. For
example, a small set of system tests would be used to create a few seed Exercise and Activate
relationships. A mechanism would then be used to propagate the seed information to the rest
of source code until our bound is reached. Since the bound is finite, we know the propagation
algorithm will be tractable.

Part of our fourth contribution is a new set of test selection criteria. These criteria are
always satisfied by small sets of system tests. More importantly, the Exercise and Activate
relationships sampled from the execution of these small sets of system tests show an
improvement over the automated method proposed by Antoniol et al. However, these new
criteria must be refined if they are to be used to create seed Exercise and Activate
relationships. Currently, 70% of the predictions are safe. For good seeds, we would want the
percentage of safe prediction in the high nineties.

Currently, our approach to predict potentially affected software functions should not

supersede a programmer’s manual analysis. Nevertheless, programmers should definitely

9



complement their results with predictions computed by our method. A side effect of our case
study illustrates that our predictions are likely to provide new information to a programmer
when his/her manual analysis is likely to be wrong.

Tools that help the software development process, such as those of Rational ™ and
TogetherSoft ™, may benefit from our approach. Currently, these tools predict the software
functions potentially affected by a source code change using the relationships design
components have with software functions and source code, respectively, called Satisfy and
Implements in Figure 1. Satisfy relationships between software functions and design elements
are maintained manually; thus, over time errors are likely to occur. Using our approach
provides another means to compute the software functions potentially affected by a source
code change. Hence, the prediction of the ripple effect of a source code change on software
function could be computed both ways, using Implements and Satisfy relationships and using
Exercise and Activate relationships. A difference in predictions may show that some Satisfy
relationships are not up-to-date.

On a more general note, the software industry is moving toward object-oriented,
component-based software architecture. Programmers using these programming techniques
may benefit from our research more than ever. Unlike programs with procedural/functional
architecture whose skeletons usually follow the description of the system’s software
functions they implement, new architectures put the emphasis on objects and relations
between objects. This is done by encapsulating all the code related to an object in the same
area of a program. In these new architectures, it is very common for one type of object and its
methods to be used in the implementation of several software functions of a system.

Therefore, modifications to a shared object can possibly affect all the software functions that
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share it. In a large system, programmers are not always aware of this code sharing. Lack of
this kind of awareness may lead to changes in the source code with disastrous effects on the
functionality of a system. Our techniqgue communicates this sharing of code to programmers.
Thus, our research is potentially more helpful for systems developed using newer

programming technologies such as object-oriented programming.

1.7 Outline of this dissertation

In Chapter 2, we describe our method that uses system tests in order to infer
relationships between software functions and source code. We first define the three entities of
the model: source code, software function, and program input. Then, we explain how
program profiling helps sampling Exercise relationships, and we present our technique based
on annotated grammar for sampling Activate relationships. Chapter 2 then explains how our
method combined Exercise and Activate relationships to predict the ripple effect of a change
at a selected source code position on software functions. We conclude Chapter 2 with a
presentation of Sonar, a prototype tool that implements our method. In Chapter 3, we identify
the conditions needed in order to compute safe predictions. In Chapter 4, we present our case
studies that determine how well Sonar compute predictions when the sampled Exercise and
Apply relationships are small. Chapter 5 reviews in more detail the related works presented in

this introduction. Chapter 6 presents conclusions and plans for our future works.
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2 Predicting Potentially Affected software functions
using system tests

We present a method to predict the software functions potentially affected by a
change introduced at a selected position of source code. Before addressing the particularities
of our method, we first describe the domains of inputs (source code components) and of
outputs (software functions) in Section 2.1.
We then break down the presentation of our method into two steps. Section 2.2
explains how to sample Exercise relationships between system tests and source code
components and how to sample Activate relationships between system tests and software
functions. In Section 2.3, we explain how to combine Exercise and Activate relationships to
infer Potentially Affect relationships. Our method uses these latter relationships to compute
its predictions.
Here are some definitions and notations used throughout this dissertation.
Definition: * A set of elements contains zero or more elements in no particular order and
no element is repeated. A Singleton is a set with one element.
e [J(S) denotes the power set of set S. It is the set of all subsets of S including
S.
* A sequence of elements contains zero or more elements in a specific order,

and an element may appear several times within the sequence.

* An ordered pair of two elements a and b denoted <a, b> is a sequence of two

elements, where a is the first element and b is the second element.



» A collection of elements is a set or a sequence of elements.

* R: A /JB defines a relation R between two spaces, namely, A and B. R
specifies the relationships between elements of A and B. A relation may be
one-to-one, one-to-many, many-to-one, or many-to-many. Set-theoretic
notation can be used to define the domain of a relation R. Every element of R

is an ordered pair (A', B'), where A'JA and B'JB.

2.1 Source code components and software functions

2.1.1 Source code components

Our method is to help during a program understanding exercise. Thus, the source
code implementation of a system exists. Below, our definitions explain how the source code
is divided into components.

Definition: » Source code of a system consists of all files that implement a system and
that a programmer is allowed to change.

» A source code component is a partition of source code. A source code
component may be a file, a procedure, a basic block, a statement, or an
expression.

» A basic block is “a sequence of consecutive statements in which flow of
control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end” [Aho et al. 1986, page 528].

Usually, source code components do not share pieces of source code with other
source code components. In our work, we have partitioned source code into basic blocks. In

the case of basic block, source code is not shared between source code components. Given
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that in our research we only use source code components at the level of basic blocks, we

interchangeably use these two terms.

To enable interprocedural source code analysis, the above definition of basic block is
adapted as follows:

» Two basic blocks are added to every procedure definition. The first basic block
corresponds to the start of a procedure. This first basic block is sometimes associated to
the syntax that specifies the signature of the procedure. The second basic block
corresponds to the end of the procedure. It may be associated to the symbol (or reserved
word) that indicates the end of a procedure.

» Every procedure call c in a procedure p generates two basic blocks, one representing the
entry from p to the target procedure ¢ and the other representing the exit back from the
target procedure c to p.

These adaptations enable a precise recording of the basic blocks exercised during the

execution of a software system.

2.1.2 Software functions

Software functions are short names given to the functional behaviors of a system. On
the same level, we may also describe a software function as a name given to a set of
references to portions of the software documents that document a particular functional
behavior.

Definition: » A software function f of a software system is the name given to a task
performed by a software system expressed from the end-user’s viewpoint.

This definition is general, as it does not specify the granularity a task must have in

order to be considered a software function. The only specificity of the definition is that a task
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must be specified from an end-user’s viewpoint. Thus, when listing the software functions
offered by a system, one is free to enumerate the functional behavior of a system no matter
how generic or specific they may be. For example, a software function of a bank automated
teller machine (ATM) may be as generic as perform monetary transaction or as specific as
that expressed in a test scenario such as attempt to overdraw cash from checking.

Our definition of software function, however, excludes the internal behaviors of the
system transparent to the end-user, as well as the nonfunctional behaviors. For example, the
behavior perform lexical analysis performed by a compiler is transparent to the compiler
user; therefore, it is not considered a software function. Our future efforts will work on
including these behaviors as a part of our method.

We prefer introducing the new term software function rather than using functional
behavior or functionality because the term function naturally combines with the verb activate,
which we later use to refer to the relationships between software functions and system tests.
We also rule out the term feature since it is used to refer to nonfunctional characteristics of a
system, which our definition currently excludes.

The remainder of this section uses a bank ATM example to show how to materialize
and organize software functions in a tree. In this particular example, we extract the list of
software functions shown in Table 2 from the textual description of the functional

requirements of the bank ATM given in Table 1.
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Table 1: A list of functional requirements of our bank ATM.

Functional requirements of our bank ATM

wN e

The ATM must first authenticate the customer by matching the card number and PIN.

If the PIN validation fails three straight times the ATM ejects the card.

Once the PIN is validated, the ATM must allow the customer to perform one or more

of the following operations:

* Check balance of checking or savings account tied to current bank card.

» Withdraw cash from the checking or savings account tied to current bank card by
specifying a sum that is a multiple of $10.

» Deposit a check in the checking or savings account tied to current bank card.
» Transfer money from an account associated with the bank card to any other

account.

4. After a successful operation, the customer must be able to request a receipt.
5. The customer must be able to cancel an operation at any time before it has started

being processed.

6. Failure of any operation, beside a failed PIN validation, must generate an error
message on the screen that requires the customer’s acknowledgement. Once
acknowledged, a receipt detailing the failure is printed. Hence, on failure a receipt is

always printed.

Table 2: A list of software functions created from requirements of our bank ATM.

f1 Enter PIN f11 Abort withdrawal from f21 Process transfer from savings
savings to checking
f2 Abort PIN f12 Process deposit operation f22 Abort transfer from savings

to checking

f3 Process a balance operation

f13 Process deposit in checking

f23 Process transfer from savings
to other

f4 Process balance from
checking

f14 Abort deposit in checking

f24 Abort transfer from savings
to other

5 Process balance from savings

f15 Process deposit in savings

25 Process receipt operation

f6 Abort balance operation

f16 Abort deposit in savings

f26 Start another transaction

7 Process withdrawal operation

f17 Process transfer from
checking to savings

f27 Process operation on
checking

f8 Process withdrawal from

f18 Abort transfer from checking

f28 Process operation on savings

checking to savings
f9 Abort withdrawal from 19 Process transfer from f29 Process a money transaction
checking checking to other

f10 Process withdrawal from
savings

f20 Abort transfer from checking
to other

Table 2 is a flat list. However, some software functions are not totally different from

each other; hence, it is more convenient to classify them in a hierarchy built using a

generalization/specialization relationship between software functions. By definition of the
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generalization/specialization relation, a hierarchy of software functions always holds the
following properties:
Property: » If a software function f is a generalization of f' then

» fisan ancestor of f' in the hierarchy and

» The activation of f* automatically means that f (and all other ancestors

of f) is also activated.
» A hierarchy of software functions is either a tree or an acyclic graph

because a specialization cannot be more general than its ancestors.

Such hierarchical organization facilitates the assessment of a prediction computed by
our method. In particular, one can directly know that an entire subtree of software functions
is unaffected by simply viewing that the root software function of that subtree is not affected.
For example, in our ATM bank, if a prediction shows that a change does not affect the
process withdrawal software function, then we automatically know that the specialized
versions of that software function process withdrawal from checking and process withdrawal
from savings are not affected. When structuring software functions in a hierarchy, this
information is directly visible as compared to presenting them in a flat list such as Table 2.

The generalization/specialization relationship between software functions is the basic
concept of our classifications; however, there exist different techniques to specify such an
organization. In particular, one may use object-oriented, function-oriented, and state-oriented
viewpoints to determine whether two software functions are related. In the object-oriented
model, one specializes the hierarchy of software functions according to the objects and their
attributes. In the case of the function-oriented classification, the focus is on the action

performed by software functions. In state-oriented classification, the system functionality is
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partitioned according to the different states that the system can be in. Some software
functions can only be activated when the system is in one particular state and not any other.
These three classification techniques are also the most prominent ways of determining
suitable organizations of the requirements of a system [Davis 1993, page 21].

Table 3 shows the three types of hierarchies for the list of software functions given in
Table 2. Each hierarchy provides a different point of view on the world of the bank ATM’s
software functions. One may also construct a hybrid hierarchy where more than one of the
three classification techniques is used to organize a group of software functions. A resulting
hierarchy of software function often has a tree structure, but it may also be an acyclic graph;
this is usually the case when organizing software functions using a hybrid hierarchy.

Finally, we define the concept of complete specialization. We later use that concept to
express an interesting property between software functions and their source code
implementation.

Definition: A set F of software functions is a complete specialization of a software

function f if the activation of f also implies the activation of at least one f; F.
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Table 3: Software functions organized in function-oriented, object-oriented, and state-
oriented hierarchies.

Function-oriented hierarchy

Object-oriented hierarchy

State-oriented hierarchy

Bank ATM

— Process

— Enter PIN (f1)

— Request Balance (f3)

— from checking (f4)
L— from savings (f5)

— Withdraw (f7)

— From Checking (f8)
L— From Savings (f10)

I— Deposit (f12)

— From Checking (f13)
— From Savings (f15)

— Transfer

— From Checking

to savings (f17)
— From Checking

to others (f19)
— From Savings

to checking (f21)
— From Savings

to others (f23)

— Print receipt (f25)

L— Start another transaction (f26)

— Abort

L— Same as subtree

as Process except

in this subtree actions
are aborted.

Bank ATM
—|PIN

— Enter PIN (f1)
— Abort PIN (f2)

—|Account
—|Checking

I— Process withdraw from (f8)
— Process deposit on (f13)

I— Process transfer to (f21)

— Abort withdraw from (f9)

— Abort deposit on (f14)

— Abort transfer from (f18/f20)
— Abort transfer to (f22)

Same subtree as Checking
Except here action are
performed on savings.

Print (f25)

Transaction

Start another (f26)

I— Process balance enquiry (f4)

— Process transfer from (f17/f19)

Bank ATM

—I PIN validation |

— Enter PIN (f1)
— Abort PIN (f2)

—|Transaction mode |

—|Enquiry transacation mode |

I— Balance from checking (f4)
I— Balance from savings (f5)
'— Abort balance enquiry (f6)

—|M0ney transaction mode (f29)|

—I One account transaction |

— Process withdraw from checking (f8)
— Abort withdraw from checking (f9)

— Process withdraw from savings (f10)
— Abort withdraw from savings (f11)

— Process deposit in checking (f13)

I— Aborted deposit in checking (f14)

— Processed deposit in savings (f15)
— Aborted deposit in savings (f16)

—I Two account transaction

— Processed transfer from
checking to savings (f17)
— Aborted transfer from
checking to savings (f18)
— Process transfer from
checking to other (f19)
— Aborted transfer from
checking to other (f20)
— Processed transfer from
savings to checking (f21)
— Aborted transfer from
savings to checking (f22)
— Process transfer from
savings to other (f23)
'— Aborted transfer from
savings to other (f24)

—| Print receipt mode

Print receipt (f25)
—I Next transaction mode

Start another transaction (f26)
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As a final note, we observe that there is no direct relationship between software
functions and function points. Function points estimate the effort needed to implement a
system [Albrecht and Gaffney 1983]. They do so by categorizing and counting the inputs and
the outputs of a future system. On the other hand, in our case, software functions are not
addressing a future yet unimplemented system, but they are a nomenclature of the functional
behaviors of an exiting system. Eventually, we may say that by estimating the effort to
implement a system, function points also gauge the effort needed to implement the software
functions of a system. However, there is not a quantitative correlation between a chunk of

function points and a software function.

2.2 Activate and Exercise: the basic relationships

Our method proposes using system tests to relate source code components to software
functions. System testing verifies whether a completely integrated software system conforms
to the requirements. Therefore, a system test corresponds to the execution of a particular
system test scenario. System testing activity implies two things:

1. Software functions are being tested by system tests. We say that a system test
activates the software functions being tested; therefore, there exists Activate relationships
between system tests and software functions.

2. A system test requires the execution of the system. During a test run, it is possible to
record the source code components exercised. We say that there exist Exercise
relationships between software tests and source code components.

In section 2.2.1, we explain how program profiling helps in sampling Exercise
relationships. In Section 2.2.2, we describe a technique to compute some Activate

relationships.

20



2.2.1 System tests exercise source code components

We first define the Exercise relation that exists between system tests and source code
components. We then explore how program profiling helps automate the sampling of
Exercise relationships between system tests and source code components.

Definition: Exercise: T O C defines a set of relationships between system tests and source
code components. T is the space of all potential system tests for a system, and C is
the set of all the source code components that implement a system.

For most systems, there exist an infinite number of potential system tests; in turn,
there exist infinitely many potential Exercise relationships. The program profiling technique
presented below enables the sampling of a finite number of Exercise relationships.

Program profiling consists of recording information about the execution of a software
system with a particular test phrase. The information recorded is called an execution profile.
An execution profile collects information such as the source code components exercised
during a run, the memory usage, the CPU time spent in a particular procedure, etc. For our
method, we are only interested in profiling the source code components exercised during an
execution. We refer to a collection of the source code components exercised during a
particular run as an exercise trace.

Different profiling techniques record exercise traces in different formats. The
following are the most common profiling techniques and their corresponding exercised trace
format:

* Node profiling records an exercised trace as a set of source code components.

» Branch profiling (or edge profiling) records an exercised trace as a set of ordered pairs

<cl,c2> where the flow of execution has gone from c; to c,.

21



» Path profiling records an exercise trace as a sequence of source code components. There
exist several path-profiling techniques such as intraprocedural or interprocedural path
profiling.

An important observation must be made at this time. The current definition of
Exercise states that every Exercise relationship relates a system test to a source code
component, not to an exercised trace. Hence, given a set of Exercise relationships sampled by
profiling the execution of system tests, it is possible to find all the source code components
related to a particular system test. However, the sequencing in which source code
components were exercised is lost. In other words, given the current definition of the
Exercise relation, the information available in Exercise relationships is as if they were
collected using node profiling. The extra sequencing information that branch and path
profiling techniques save would actually be lost. The next important fact is that, as we will
see in Section 2.3, our method to predict the software function potentially affected does not
make use of sequencing between source code components. Thus, no harm is done to the
applicability of our method when simply using node profiling.

However, as we will see in Chapter 3, if we want the resulting predictions made by
our method to have certain properties, system tests will have to achieve a source code
coverage expressed in terms of path. We will present more detail on path profiling in Chapter 3.

We further observe the following about program profiling and its use for sampling
Exercise relationships. Program profiling collects an exercise trace, but an exercise trace by
itself is not an Exercise relationship. To sample Exercise relationships, a link between a
system test and each source code components of an exercised trace must be saved. Thus, we

must have a unique way to refer to a system test. This is achieved by assigning a unique
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name to every system test. Normally, system tests are given unique names as they are
executed or as they are specified in the test documentation. Using system test’s unique names
and their corresponding exercise traces, it is then possible to save Exercise relationships.

Let us now illustrate how Exercise relationships are created between a system test and
the source code components of our bank ATM. First, we present the system test
specification. We then show the exercise trace created when the system test is executed.
Finally, we list the Exercise relationships sampled between the system test and the source
code components.

System test with unique name t consists of the following interaction: The customer
1. Enters a valid PIN,

2. Withdraws $100 from checking successfully (this implies the customer has more than
$100 in his/her account),

3. Requests no receipt, and

4. Does not start another transaction.

Figure 2 shows the exercise trace created when executing system test t. When listing
the Exercise relationships below, we use the notation X;..X; to delimit a source code
component (or basic block) that starts on line i and terminates on line j of procedure X. When
the source code component starts and ends on the same line i, we simply denoted it X;. Using

set notation to enumerate the Exercise relationship created using the process above, we get
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EEES

w7
VB

ML2
ML3
ML4
ML7

ML9

M4
M6

w4
MA6

Mb3
Vb4

M1
M62
MB3
M4

card_info = readCard();
success = validateProcess(card_i nfo);
if (success = False) then

cust_rec =
bank_db. get Cust oner Record(card_i nfo);

op = doQperationMenu();
/] abort then goto next op.
if (op = ABORT) then

acnt = get Account ( SI MPLE_MENU,
cust _rec);
if (acnt = null) then

if (op = WTHDRAW t hen
fromacnt = acnt;

to_acnt = null;

if (op !'= BALANCE) then // noney op.
amount = doAmount Menu() ;

if (ambunt = ABORT) then

per f or mMvbneyTr ansacti on(from acnt,
to_acnt, op, anount);

Next Op:
next =
until (next
sendCard();

doNext QpMenu() ;

Fal se) // end of repeat |oop

P1
P2

P4
P5
P6

P9
P10

P13
P14

Al

A3
Ad

Al4

Al8

T12

T17
T18

success = Fal se;
attenpt = 0

doPI NMenu() ;
= attenpt + 1,

pin
t t =
n = ABORT) then

i =
attenp
it (pi

success = c_i nfo. validateCustomner(pin);

if (success = False) then

until (success) or (attenpt =
return success,;

3)

acnt _no = doAcnt Menu(nenu_type);
the_acnt = null; //Assume failure or abort
if (acnt_no = CHECKING then

nmsg = cust_rec. get Checking(the_acnt);

if (the_acnt = null) then

return the_acnt;

if (op = WTHDRAW t hen
nmsg = fromacnt.w t hdraw anount);
if (nsg.noError()) then
sendCash(anmount) ;

if (nmeg !=null) and (nsg.error()) then

recei pt
if (receipt

= doRecei pt Menu();
= YES) then

Figure 2: Highlighted lines of source code are the exercised trace of system test t.

24




{ (t, M), (t, M), (t,M3), (t,M7..Mg), (t,M12), (t,M14), (t,M17..M313), (t,M1s,
M2a), (t,M25..M26), (t,Maa, Mas), (t,Masg), (t,Ms3..Ms4), (t,Me1), (t,Me2),
(t,Me3), (t,Mga), (t,P1..P2), (t,P4), (t,Ps..Pg), (t,P9), (t,P10), (t,P13), (t,P14),
(t,A1), (t,A2..Az), (t,Ag), (t,A14), (t,A1g), (t,T1), (t,T2..T3), (t,T4), (t,T12),

(tTa7, (tT1e) }

The enumeration above only specifies the Exercise relationships sampled by the
execution of system test t. When executing many system tests, many more Exercise
relationships can be collected in the same fashion. However, that sample is never complete
since there exist infinitely many potential Exercise relationships in an Exercise relation. In
other words, for any practical purpose, only a finite number of system tests are executed;
thus. the Exercise relationships sampled never constitute a complete Exercise relation.

The Exercise relation is many-to-many. In other words, a system test relates to many
source code components. Inversely, many system tests may exercise the same source code
component.

In the above explanation, we have only considered the case where a system test is a
complete execution of the system. Indeed, in our example, system test t specifies a list of
interactions that corresponds to a complete customer session from entry to exit of the ATM.
In other words, a system test is an indivisible unit. Each first element of Exercise
relationships refers to the unique name of a complete system test. In certain circumstances, it
may be desirable to partition a system test into several sequences of interactions, for example
when some sequences of interaction are totally unrelated to each other.

Sampling Exercise relationships between partial system tests and their corresponding

source code components only require a simple adaptation to the profiling technique if a
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system is not distributed and runs in a single process/thread. In fact, for such a system, the
exercise sequence of source code components respects the order of system test interactions.
However, in the case of multi-threaded and distributed systems, the change to the profiling
technique is nontrivial. For such systems, the exercise sequence of source code components
does not automatically follow the order of user interactions. A first and a second series of
interactions specified by a system test may exercise source code components concurrently in
different processes or different threads. Adding interprocess communication to this scenario
makes sampling Exercise relationships for a partial system test even more complex. Our
intent is to study the applicability of our method with complete system tests. So, we leave
changes to the profiling technique for the future.

Let us now briefly mention two techniques that enable performing program profiling.
We refer to the first method as source code instrumentation profiling and the second as
interpreted profiling. Source code instrumentation consists of adding code to the source code
of a system at compile time. This extra source code assigns a unique identification to each
source code component. Subsequently, when the system is executed, the unique identification
number of the source code components exercised during a particular run is saved into a file
(or database). Source code instrumentation techniques were pioneered by research in source
code debugging [Balzer 1969, Hanson 1978, Tolmach and Appel 1990, Agrawal, et al.
1993]. They later found applications in testing, namely test case coverage and regression test
selection [Fischer 1977, Fischer, et al. 1981, Harrold and Soffa 1989, Binkley 1995,
Rothermel and Harrold 1997, Wong, et al. 1997, Ball 1998, Agrawal 1999]

The interpreted profiling technique only applies to a system that interpreted. An

interpreter executes the source code of the system by interpreting it at run time. When

26



instructed to profile execution, the interpreter can additionally collect execution profiles. For
example, the java virtual machine (JVM) has a built-in capability for performing profiling.
The interface between the profiler and the JVM is defined in the profiling interface JVMPI.

This enables a third party to write a profiler that is connected to the JVM at run time.

2.2.2 System tests activate software functions

We say that a system test activates the software functions being tested.

Definition: Activate: T O F defines the relationships between t elements of T and of F, where
T is the space of all potential system tests for the software system, and F is the
space of software functions of the software system.

As for the Exercise relation, the Activate relation also contains infinitely many
relationships between software functions and input phrases. This is derived from the fact that
there often exist infinitely many potential system tests for a system.

The Activate relation is many-to-many. That is, a system test may, and often does,
activate many software functions. Inversely, a particular software function may be activated
by many system tests.

Unlike Exercise relationships whose sampling must be automated due to the large
number of source code components, Activate relationships may be collected manually.
Indeed, a well-engineered project that follows IEEE 829-1983 Software Documentation
Standards directly or indirectly specifies Activate relationships [IEEE 1983]. The IEEE 829
standard suggests that test documentation start by the creation of a system test plan at the
same time as the requirements analysis phase. The next step is to create a test design
specification from which a test case specification is then built. Each test design specifies the

features—or software function in our case—of the system the test is addressing. Test cases
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are then generated for each test design. Hence, when respecting the IEEE 829 standard,
relationships between software functions and test cases can easily be extracted from test
documentation. When performing a system test, a tester follows the explanations provided by
a test case specification; hence, there exists a direct relationship between the actual test and
the test case.

Independent of a project respecting the IEEE 829 standard, actual tests will frequently
be coded as scripts. A test engine enables running these scripts; as a result, the actual test
may be executed automatically. Coding test in scripts is possible irrespective of a system’s
interface. Test scripts can be created whether the system is command line driven, interactive
with text menus, or interactive with a graphical user interface (GUI). Several commercial
testing tools such as Rational®Robot by Rational or WinRunner by Mercury Interactive
Corporation enables the recording of interactions between a tester and a GUI system into
scripts.

Over time, companies have accumulated large regression test suites for each of their
software applications. In the cases where a large quantity of such test scripts is available for a
particular application but where the IEEE 829 standards have not be followed, it is necessary
to recover the Activate relationships between the test scripts and the software functions of a
system in an automated manner. Below we present such a technique.

Recovery of Activate relationships

The recovery method assumes the existence of a series of system tests and of a set of
software functions. It analyzes each system test and then determines the software functions it
activates. In order to explain our recovery technique, we first specify the information found

in a system test.
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2.2.2.1 System tests

When IEEE 829 standards are respected, system test documentation found in the test
design specification and the test case specification contains all necessary information to
determine the software functions activated by a system test. Among others, the pieces of

information found in the system test documentation are the following:

A series of interactions with the system and information on data to be used by the
tester.
* Asetof input files.
» A set of preconditions that must be satisfied in order to execute the test. These
preconditions define what state the system must be in before performing the test.
They are specified either in textual descriptions or in formal specifications.
» Alist of the expected outputs.
» A set of post-conditions that the state of the system must satisfy after the test.
However, when the IEEE 829 standards on software test documentation are not
respected, that information is not available. In many cases, the only system test information
available is test scripts and the information needed to run the test script, such as input files
referred to by the test scripts or the names of the databases to connect to when running the
test scripts.
The fact that only a limited amount of information is available seems limiting. Then
again, we have found that many Activate relationships can be recovered by only referring to

test scripts and their associated input files.
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The following example illustrates the system test information available to a recovery
technique. We use our bank ATM system for this illustration. As a side note, we imagine

there exists a test engine with the ability to run the system test script in Figure 3.

Database: ““bankl.db”
TestScript: “1234 enter withdraw checking 40 enter no no”

Figure 3: Test script named Withdraw_Checking_success.1.

First, the caption shows that the system test has the name
Withdraw_checking_successl. The inside of the system test script contains two lines. The
first line specifies the database needed to conduct the system test: bank1.db. The second line
contains the following list of information: ““1234 enter’” specifies a PIN number needed for
authentication, “withdraw’” that the transaction is a withdrawal, *““checking” that the
transaction is to be performed on the customer’s checking account, and ““40 enter”” that the
sum of the transaction is $40. The first ““no” specifies that no other transaction is to be

started, and the second ““no”” specifies that the customer requested no receipt.

2.2.2.2 Recovery techniques

We actually developed two recovery techniques. The first technique has more power
but requires the creation of a grammar that expresses the full property of the syntax of test
scripts. A grammar is defined by a set of production rules made of terminals and
nonterminals from which one is the start non-terminal. We illustrate a grammar for our bank
ATM later. The second recovery technique does not require such grammar and, for most
software application, retains enough power for the recovery of Activate relationships. A
description of the first technique appeared in the proceedings of the international workshop

on program comprehension 2000 [Deprez and Lakhotia 2000].
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For the moment, we focus our attention on recovering Activate relationships found in
test scripts, and we ignore the information specified next to the test script part of a system
test such as the first line of Figure 3, which indicates the name of the database to use when
running the script. Afterward, we address the cases where our technique can sometimes use
the information found besides the test scripts.

In short, our first technique works in two steps.

1. A grammar able to parse a test script is built.
2. Software functions are specified as parse tree patterns where a parse tree pattern is
directly associated to the rules of the grammar.

Thereafter, the software functions activated by a system test can be determined by
checking if the parse tree pattern associated with the software function is present in the parse
tree of a particular test script. If true, executing the test script activates the particular software
function.

Figure 4 illustrates the first step of our technique by giving a grammar that parses the
test script of our bank ATM. The grammar is given in Backus Naur Form (BNF). BNF has
the power to express context free languages; however, the actual ATM language is regular.
We utilize BNF because it is a convenient notation, clearer than its regular expression
counterpart. In Figure 4, regular black font represents nonterminals, bold font represents
terminals, | means or, * means zero or more occurrences, + means one or more occurrences,

and € means empty string.
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Grammar for analysis of input space coverage of the ATM:
Session ::= Pin Ops
Pin = DDDD Enter | D Abort
Ops = Transaction No| Transaction Yes Ops | Abort | ¢
Transacti on :: = Bal ance Account | MoneyTrans Ti cket | Abort
MoneyTrans ::= Transfer Account TransAcnt Anount |
Wt hdraw Account Ampunt |
Deposit Account Anmount |
Abor t
TransAcnt ::= Account | Others AccNum | Abort | €
Account = Checking | Savings | Abort
AccNum = D+ Enter | D* Abort
Ampount = D+ Enter | D* Abort | ¢
Ti cket =Yes | No | ¢
D =1 2] 3] 4] 5] 6| 7] 8] 9]0

Figure 4: BNF grammar for parsing test scripts of our bank ATM.

Parse tree patterns enable parsing to detect the syntactic features of a test script;
therefore, we call the association of a grammar to a partial parse tree featured grammar. One
can then create a featured grammar for our bank ATM by associating parse tree patterns to
the ATM software functions.

In Figure 5, we illustrate parse tree patterns associated with two software functions,
namely, get balance from checking, and process withdrawal operation. The software
function get balance from checking is represented by the following partial derivation:

Transaction = Balance Account = Balance Checking. The software function processed

withdrawal operation is represented by the following partial derivation: MoneyTrans =
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f1: get balance from checking f2: processed withdraw al operation

. MoneyTrans
Transaction
Withdraw Account Amount
Balance Account / /
Checking Checking | Savings D+ Enter

Figure 5: Derivation trees for two features based on the grammar of Figure 8.

Withdraw Account Amount = Withdraw (Checking | Savings) Amount = Withdraw
(Checking | Savings) D+ Enter.
We now give a formal definition of featured grammar.
Definition: FS = (G, F, ¢) is a feature syntax of a system where
» G denotes a regular or context free grammar that describes the syntax of a
particular software application test script,
» F denotes the set of software function of the software application, and
* ¢:T/[F isarelation that maps a partial derivation tree to a software function.
The ¢ relation is a many-to-many for the following reasons. In certain cases, a
software application implements several ways for the user to activate a particular software
function, for example, through menu interaction or using shortcut keys. Therefore, the ¢
function sometimes maps different partial derivation trees to a software function. Inversely, it
is possible that ¢ maps one partial derivation tree to several software functions. This situation
arises when our recovery technique cannot differentiate between two or more software
functions. This happens when the difference between software functions is not at the syntax

level but at the semantic level. We illustrate such a scenario below.
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Let us assume that the list of our bank ATM software functions contains the two
software functions process withdraw from checking and overdraw when withdrawing from
checking. The test script given in Figure 3 could activate either one of these two software
functions. Unfortunately, our technique cannot determine which software function is
activated since it depends on the amount of money in the customer’s checking account before
running the test script. Of course, the information on the sum of money in an account is
available in the bank database, but currently our technique does not make use of data stored
in database records. The fact that our technique cannot differentiate between the two software
functions is reflected in the many-to-one correspondence from the two software functions to
the same parse tree pattern.

Constructing a featured grammar for a particular application is not necessarily a
challenging task. However, it introduces work not currently practiced during software
development. For real size systems, constructing a complete featured grammar and the
relation ¢ may take significant time. Moreover, adding to the application’s user interface
requires updating the featured grammar to keep it in-sync with its corresponding software
application. Consequently, the software industry will not likely adapt its software
development cycle for a technique that requires additional tedious work.

Practitioners are more likely to adopt an approach that builds structures incrementally
on-demand. Thus, we propose an alternative method where the construction of a grammar for
the complete syntax of test scripts is not needed. Such an approach can be developed by
observing the following. The presence of a specific pattern of tokens in the test script of a
system test is often sufficient for determining the activated software functions. For instance,

if a test script of our bank ATM has the tokens Balance and Checking in sequence, then the
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Partial Regular Expressions Software Functions Selected

(@) | “Checking’ fo4

(b) | ‘Deposit’ ‘Savings’ [0-9]* “‘Enter’ f1o

(c) | “Withdraw’ (*Savings’|’Checking’) [0-9]* ‘Enter’| f,;

(d) | “‘Deposit’ (*Savings’|’Checking’) [0-9]* ‘Enter’ | fog

(e) | ‘No’ “Yes’ | fo3

Figure 6: Regular expression patterns of software functions of our bank ATM.

system test activates the software function get balance from checking. In such case, simple
text matching is sufficient to determine that the software function get balance from checking
IS activated.

In this new technique, one associates software functions with regular expression
patterns. These patterns only need to specify a partial regular expression with the few tokens
to match in script in order to determine the activation of a software function. That is, the
patterns only need to specify regular expressions that parse a part of the test script.

Implementing this second technique is straightforward with engines such as UNIX
egrep. That is, a programmer associates regular expression patterns to software functions,
then, for each pattern, egrep identifies the test scripts that match the pattern.

Figure 6 presents some correspondence of function ¢ between the bank ATM
software functions and some partial regular expressions. In our notation of Figure 6, words in
single quotes are tokens found in the test script. The other symbols follow the notation of
regular expression understood by the UNIX function regexp.

Certain software functions need more careful analysis than others. For example,
verifying whether a test script activates the withdraw function only requires checking for the

‘Withdraw’ token. In contrast, verifying if an input phrase applies the software function print
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a receipt is more intricate. In this case, we cannot merely specify the ‘Yes’ token because the
same token is also used to specify the start of another transaction. Thus, in this case, we must
specify a partial regular expression that ensures the ‘Yes’ token matches the function request
receipt and not that of initiate another transaction. The partial regular expression
corresponding to the software function request receipt is shown on line (e) of Figure 6.
Partial regular expressions can be developed incrementally on-demand; therefore,
they are more likely to be adopted by the software industry. While most scripting languages
support regular expressions, writing complex regular expressions is not always easy. For a
complex but highly structured input phrase, one may use tree-based regular expressions, such
as those provided by tawk [Griswold et al. 1996]. Such regular expressions have been
successfully used in lightweight techniques for reverse engineering information from

programs [Griswold et al. 1996, Ernst et al. 1997].

2.2.2.3 Applicability and limitation of our recovery technique

The language of the ATM is regular; however, the language of other applications, as
per the Chomsky hierarchy of languages, may be regular, context-free, context-sensitive, or
Turing enumerable. Turing enumerable languages form the largest class. They subsume
context-sensitive languages, which subsume context-free languages, which in turn subsume
regular languages.

In theory, the language accepted by a software system may be Turing enumerable or
context-sensitive. However, the syntax of test script languages for most software application
can usually be described using context-free or regular grammar. There exist tools for
automatically generating parsers for regular and context-sensitive grammars. These tools

may easily be adapted for our purpose. For example, using a platform such as Software
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Refinery, one can easily specify a context-free grammar that describes the language of a
particular software application’s test script. Moreover, the Refine language has the
capabilities to specify parse tree pattern using the rule construct. Thus, software refinery
would be a practical tool for implementing our recovery technique. Other parser generators
that allow specifying attribute grammars can also be used for implementing our recovery
technigque. As mentioned previously, implementing our second technique is straightforward
with regular expression matching tools such as UNIX egrep.

So far, we have shown how both of our techniques recover the Activate relationships
between software functions and the test script portion of system tests. However, we have
ignored the rest of the information found in a system test, such as input files referred to by a
test script or the names and locations of databases used by a test script. That extra
information may sometime reveal the activation of additional software functions. Below, we
explain how and when our recovery technique can be extended to determine the software
functions of information found outside test scripts.

We first give a description of the extension to our technique, and then we give a brief
example. The extension associates additional featured grammars to input files requested by
test scripts. The content of an input file must be in a known format so a grammar can be
created for the particular format. Once the featured grammar for a given format is created,
our technique works exactly as for test scripts. In other words, parsing the content of an input
file with the associated featured grammar determines the software functions activated by that
input file. We illustrate this scenario below.

Let us assume that

» The software application of interest is an HTML viewer;
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» Atest script specifies the following operation: Open the input file test.ntml in the viewer;
and

* The content of test.html sets the title of the page in the html header section and specifies a
header of level 1 in the body section.

Referring only to the test script, our technique would only identify the activation of
software function open html file. However, when our technique also uses the appropriate
featured grammar associated to the HTML format, it can also determine that the content of
test.html activates the software function set title and the software function display heading 1.
In this illustration, our second technique, which uses regular expression pattern, can also
recover many software functions associated to the HTML syntax.

Unfortunately, creating a featured grammar or regular expression patterns is not
always possible for the simple reason that the application programmer does not always know
the input file’s formats. For example, a programmer does not know the format used by a
database management system (DBMS) for storing data. To interact with data in a database,
the programmer only needs to know the SQL language. In such cases, our technique cannot

analyze the data of the database to determine if they activate software functions.

2.2.2.4 Works related to our recovery technique

Prior efforts used grammars related to the input space of a software application.
However, their purpose was not to recover Activate relationships but instead to generate input
phrases, which could later be used to test the application. In particular, the grammar of a
programming language was used to generate programs that were later used to test the

compiler [Purdom 1972, Celentano, et al. 1980, Spadafora and Bazzichi 1982, Camuffo, et
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al. 1990]. These test-generating techniques do not connect grammar to software functions;
thus, they are unable to recover Activate relationships.

Incidentally, our technique requires much simpler grammars than those used for test
phrase generation since we are not worried about the validity of the system test’s syntax. In
our case, we assume that system tests already exist and are valid. Thus, for our purpose,
grammars may overlook certain complexity in the syntax of test scripts (or other input files).
It may specify a grammar that parses a superset of the language of test scripts. In contrast, the
grammars for test case generation must be precise so as to generate phrases with a perfect
syntax structure. Moreover, test generation techniques often require additional methods to

validate the semantic of a generated test phrase.

2.3 Potentially Affect

In this section, we explain the term potentially affect. In other words, what does it
mean for a software function to be potentially affected? We then show that combining
Exercise and Activate relationships infer relationships between source code components and
software functions. In turn, these inferred relationships help identify the software functions
potentially affected by a change at a specified spot in the source code.

A software function f is potentially affected by a change at spot s of

the source code if the source code component that contains s

participates to the implementation of software function f.

The terminology participates to the implementation of is ambiguous. We clarify it by

the following assumption.
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Implementation If a source code component ¢ participates to the implementation of
participation
assumption: software function f, then there must be a system execution that activates f
and exercises c.
Hence, from the assumption above, we know that
There cannot exist a system test t that activates a software function f

and exercises a source code component ¢ where ¢ does not participate

to the implementation of f.

The implementation participation assumption shows that Exercise and Activate
relationships can be combined to determine the software functions potentially affected by a
change at a selected spot of the source code. This will require joining Exercise and Activate
relationships.

The combination of these two types of relationships is done using the standard select
and project operators from relational calculus defined below.

Definition: « 0,.(R) defines the select operator. It selects X' from R where X'/7X and
R:XZX. It returns a set of ordered pairs (X',Y") where Y'[7Y.

. I, (R) defines the project operator. It projects R on X where R is a
relation between domain X and some other domain Y. It returns a set with
the first elements of R if R is a set of (X",Y") or the second elements of R
if Risasetof (Y', X').
Applying these operators on the Exercise and Activate relationships sampled from

system test allows inferring relationships between exercise traces and software functions. We

specify how to infer such relationships below.
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Let us assume the following:

1. T is a set of system tests, C is a set of source code components, and F is a set of
software functions.

2. The sampling of Exercise relationships between system tests in T and source code
components in C has been performed. Similarly, the sampling of Activate relationships
between system tests in T and software functions in F has also be performed.

The Potentially Affect relationships between source code components and software

function are created as follows:

Definition: PotentiallyAffect = { (1. (o, (Activate)).¢) |t O 7z, (o, (Exercise)) & ¢ O c}

We can now extract the software functions potentially affected by a change to a spot s
in the source code.

1. By finding the source code component c that contains spot s. Spot s in the source
code is identified by a directory/filename, a line, and a column. With these pieces of
information, it is straightforward to find the corresponding source code component ¢ that
contains a particular spot.

2. By computing the set F' of potentially affected software function as follows:
F'={r, (o, (PotentiallyAffect))|lc 0 C} .

A word about the quality of predictions is now in order. Let us first assume that there
exists an oracle that always gives a safe and precise prediction as to the set of software
functions that will be affected by a change at a specified spot in the source code. Second, let
us also assume that for a given spot s, the oracle finds that the set Fp, is the resulting
predictions of the set of software functions potentially affected. We can now define the

notion of safety and of precision of a prediction:
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1. Safety of a prediction: A set F' of software functions is a safe prediction if Fpa L/F'".
The ratio of safety of a prediction can then be measured as follows. Let A=Fp,—F" where
—is set subtraction; i.e., it removes all elements of F' from Fy.. If an element is in F' but
no in Fya, then the element is dumped.

Ratio of Safety = [A| / |Fpal.

2. Precision of a prediction: A set F' of a software function is precise if F' 7 Fpa.
Alternatively, the ratio of precision of a prediction can be measure as follows. Let
A=F'—-Fp,; i.e., remove all elements of Fy, from F'. If an element is in Fp, but not in F',
then the element is dumped.

Ratio of precision = (|Fpal HAl) / |Fpal.

Thus, safety measures how many of the potentially affected software functions are
part of a prediction. In contrast, the precision measures how many software functions of a
prediction are potentially affected. When a prediction is both safe and precise, we say that the
prediction is exact or correct.

Definition: A prediction is exact (or correct) if it is safe and precise. Alternatively, we
may say that a precision is exact if its ratios of safety and of precision are
100%.

When using our method, a prediction is computed from Potentially Affect
relationships, which are computed by combining a sample of Exercise and Activate
relationships. In turn, Exercise and Activate relationships are sampled by a set of system
tests. Consequently, the safety and precision of predictions depends on the set of system tests

used for sampling the Exercise and Activate relations.
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In Chapter 3, our goal is to find a set of conditions that guarantee safety; however, we
do not care about precision. In Chapter 4, we define a set of criteria that a set of system tests
must satisfy in order to be used to sample Exercise and Activate relationships. These criteria
do not guarantee safe predictions; however, they improve the precision of predictions.

Besides the level of safety and precision, there is also a practicality factor. In our
context, practicality characterizes the properties of the set of system tests needed for
sampling the Exercise and Activate relations. If satisfying the properties requires a large
number of system tests or if it requires system tests not likely to be in a test suite, then the
properties are unpractical. In this research, we do not attempt to measure practicality. We
simply state whether a set of specified properties are practical or not. As we will see in our
future analysis, the answer on the practicality issue will be obvious.

Before studying our methods, in the next chapters, we present Sonar, a prototype tool
that uses our method for detecting ripple effects caused by modifying a specified spot of the

source code.

2.4 Implementing our method: Sonar

First, we present our design decisions for Sonar and how to prepare the required
inputs to use Sonar with a software system. Second, we illustrate applying Sonar with our
bank ATM. Then, for demonstrating Sonar at work with our bank ATM, we specify a
maintenance task to implement in the ATM, and then we show how Sonar helps during that

maintenance task. Finally, we present actual screen shots of Sonar.
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2.4.1 Implementing our method

In order to compute predictions, Sonar must refer to Exercise and Activate
relationships. In other words, a preparatory step that samples Exercise and Activate
relationships from system tests is performed before predictions can be computed. In this
section, we explain this preparatory step.

Prior to computing and storing Exercise and Activate relationships, a set of software
functions and a set of system tests must be available. We assume that there exists a set T of
system tests. As indicated in Section 2.2, each system test is held in a file with a unique
name, and the file contains the test script plus other information needed to execute the system
test. To facilitate the preparatory step, we require a file to list all the unique filenames of the
system tests.

Software functions are listed in a software function definition file. In addition to the
list of software functions, the software function definition file also stores the
generalization/specialization relationships between the software functions. This allows the
software functions to be listed in a tree. Each software function defined in the software
function definition file also maintains a reference to a software function activation file. The
software function activation file associated to a software function f contains a list of the
system tests that activate f. In other words, the software function activation files hold the
Activate relationships.

The information in a software function definition file is as follows:

1. A unique name for the software function being defined,
2. A short and a long description of the software function,
3. The name of the corresponding software function activation file, and
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4. Two lists of software functions. They enumerate software functions that are
specialization and generalization of this software function. These two lists allow
structuring software functions into a tree.

In the following, we first address the Activate relationships then the Exercise
relationships.

We know that software function activation files hold the Activate relationships. The
software function activation file associated with a software function f lists the unique names
of the system tests that activate f. The two techniques based on featured grammar and on
regular expression pattern could be used to compute the software function activation file of
each software functions. However, we have left our implementation of Sonar independent of
the method used to compute the Activate relationships. Sonar requires each software function
activation file to be associated to a software function in the software function definition file.
It also requires each software function activation file to correctly list the names of the system
test that activate the corresponding software function.

Our sampling of Exercise relationships uses xAtac, a tool developed by Telcordia that
performs node profiling of system runs [xAtac]. xAtac uses source code instrumentation in
order to collect exercise traces. It has the ability to instrument source code of the C and C++
languages. By default, xAtac holds all exercise traces profiled in a single trace file. However,
xAtac allows different names to be given to each exercise trace profiled. This capability
gives xAtac the necessary power to hold the Exercise relationships needed by Sonar. To
obtain a sample of Exercise relationships for a set T of system tests, the following is done:

1. Compile a software system S with xAtac.

2. For each systemtesttin T do
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a. Let n be the unique name of t

b. Execute S with t. Thanks to the special compilation, the profile exercised by t is
saved in the file S.trace.

C. Name n the exercise trace just created in S.trace

After this step, the file S.trace contains the Exercise relationships sampled using the
set T of system tests. xAtac formats S.trace so that, given the name of system test, it is simple
to extract the set of source code components exercised. However, xAtac does not provide the
inverse function, which computes the set of names of system tests that exercised a particular
source code component. Sonar needs the latter function to compute predictions. Hence, in our
preparatory step, we use the S.trace file created by xAtac to precompute the inverse relation
and then to cache it.

Sonar is merely a prototype tool. In real life, the capacity of Sonar would likely be
integrated in a tool for managing the software development process such as those of
Rational " and Together Software "

The following is a summary of the list of information needed for preparing Sonar
with a particular software system S:

o Afile that lists a set T of system tests with unique names.

» Atrace file obtained by executing an instrumented version of the system S (instrumented
using xAtac) with each system test in T.

» A software function specification file that defines the software functions and the
relationships between them.

» A software function application file for each software function defined in the software

function definition file.
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Our preparatory step precomputes and caches information so that Sonar efficiently
computes its predictions for system S. After the preparation step, Sonar is ready to compute
predictions. To obtain a prediction, the user specifies a filename, a line, and a column. Then
Sonar highlights its prediction in the tree of software functions. In the next section, we

demonstrate the usefulness of Sonar with an example.

2.4.2 Demonstration of Sonar

First, we illustrate the file needed to prepare our bank ATM system for Sonar. We
then demonstrate how a maintenance task on our bank ATM system benefits from the
prediction computed by Sonar. Our bank ATM is imaginary so we cannot truly apply Sonar
to it. Our demonstration manually computes its prediction exactly as Sonar would.
Nevertheless, we conclude this section with actual screen shots of Sonar computing

predictions for the software functions of a small spreadsheet application.

2.4.2.1 Preparing our bank ATM

For the purpose of this demonstration, we assume that the ATM is implemented by
the source code shown in Figure 2 of Section 2.2.1. The first file required for preparing the
bank ATM for Sonar is a file that lists all the system test names (t;’s). Table 4 gives these
unique names in the left column. In the right column, we find the test script portion of the
system tests.

Now assume that the source code was instrumented with xAtac and that the
instrumented system of the ATM was executed with these system tests. This activity creates

the second file needed: the trace file. Finally, Figure 7 illustrates portions of the software
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Table 4: List of system tests used for computing Exercise and Activate relationships
for our bank ATM system.

System test Test script
names
t1 12 Abort
t2 1234 Enter Balance Abort
t3 1234 Enter Balance Checking No
t4 1234 Enter Balance Savings No
t5 1234 Enter Withdraw Checking Abort
t6 1234 Enter Withdraw Checking 100 Enter No No
t7 1234 Enter Withdraw Savings 200 Enter Yes No
t8 1234 Enter Deposit Checking 500 Enter Yes No
t9 1234 Enter Deposit Savings 1000 Enter No No
t10 1234 Enter Transfer Checking Savings 500 Enter Yes No
t11 1234 Enter Transfer Checking Other 11122334 123.42 Enter Yes No
t12 1234 Enter Transfer Savings Checking 200 Enter Yes No
Process_Mtrans ProcMtrans.sfa:
Process a money transaction t6
ProcMtrans.html t7
ProcMtrans.sfa 18
{ Process } t9
{ Withdraw, Deposit, Transfer, Checking, Savings } t10
t11
PWithdraw t12
Process a withdrawal t13
PWithdraw.html
PWithdraw.sfa PWithdraw.sfa
{ Money _trans }
{ WCheck } t6
t7
PWChecking
Process Withdraw from checking
PWCheck.html PWCheck.sfa
PWCheck.sfa
{ Withdraw, Checking } t6
{}
(A) (B)

Figure 7: (A) illustrates a partial software function specification file (only three of many
software functions are defined). (B) displays three software function application files. One
for each of the three software functions listed in Figure 7(A).

function definition file and the software function activation files of the ATM. All the ATM

information needed for Sonar is now prepared.
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2.4.2.2 Using Sonar during a maintenance

The best method to show the appropriate use of a tool such as Sonar is to propose a
maintenance task and then demonstrate when and how the computed predictions assist during
maintenance.

Let us assume that the current version of the ATM satisfies the functional
requirements given in Section 2.1.2. The team responsible for the ATM realizes that
historically most withdrawal transactions are for $20, $40, or $60. Thus, instead of requiring
a customer to enter an amount every time a withdrawal operation is selected, the new menu
will enable a customer to select a fast cash withdrawal option with the different amounts
specified above. The ATM analysts ask a programmer to implement fast cash withdrawal
where a customer does not need to enter the amount to withdraw when that amount is $20,
$40, or $60. Thus, the functional specification 3 (Table 1) of the current functional
specifications changes. It is now:

3. Once the PIN is validated, The ATM must allow the customer to perform one
or more of the following operations:
* Withdraw cash from the checking or savings account tied to current bank
card. The withdrawal function must allow a customer:
* To select the amount $20, $40, $60 directly without actually typing the

amount.
¢ To enter an amount.

From this new specification, the programmer knows to study the implementation of
the withdraw software function and find where the customer is asked to specify an amount.
Research by Erdem and Johonson illustrates that to understand a particular behavior,
programmers often refer to the exercised traces of input phrases that apply the behavior of
interest [Erdem et al. 1998]. In our case, the programmer would refer to the exercise traces of

system test that activate the withdraw software function.
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Mai n process of bank ATM
Begi n of main process

card_info = readCard();
success = validateProcess(card_info);
if (success = False) then

endi f
cust_rec =
bank_db. get Cust oner Record(card_i nfo);

repeat {

op = doOperationMenu();
/1 abort then goto next op.
if (op = ABORT) then

else // valid op then as for account
acnt = get Account ( SI MPLE_MENU,
cust _rec);
if (acnt = null) then
got o Next Op;
endi f
endi f
/1l W thdraw op.
if (op = WTHDRAW t hen
fromacnt = acnt;
to_acnt = null;

endi f
if (op !'= BALANCE) then // noney op.
anmount = doAnpunt Menu() ;

if (ambunt = ABORT) then V\
else if (op = WTHDRAW and
(amount%d0 !'= 0) then

doAmount Error ();
got o Next Op;

New code
could go there

endi f
per f or mMvbneyTr ansacti on(from acnt,
to_acnt, op, anount);

endi f
/1 junp here in case of failure
Next Op:

next = doNext QoMenu();

until (next = False) // end of repeat
sendCard();
End // of the main process

| oop

Bool ean val i dati onProcess(Cardl nfo c_info)
Begi n
success
att enpt
repeat {
pin = doPl NMenu();
attenpt = attenpt + 1;
if (pin = ABORT) then

Fal se;
0

endi f
success = c_info.validateCustomer(pin);
if (success = False) then
doPI NEr r or Menu() ;

endi f

until (success) or (attenpt = 3)

return success;

End

Account get Account (i nt menu_type,
Cust oner Record cust _rec)
Begi n
acnt _no = doAcnt Menu(menu_type);
the_acnt = null; //Assume failure or abort
if (acnt_no = CHECKING then
msg = cust_rec. get Checki ng(the_acnt);
else if (acnt_no = SAVINGS) then
msg = cust_rec. get Savi ngs(the_acnt);

endi f

/1 print error message
if (the_acnt = null) then
str = nmsg. get FormatedString();
print Recei pt (str);
endi f
return the_acnt;
End

voi d preformvbneyTransacti on(Account from acnt,

Account to_acnt, int op, int anmount)
Begi n
if (op = WTHDRAW then
msg = from.acnt.wit hdraw(anmount);

if (nmsg.noError()) then
sendCash(anount);
endi f

endi f
if (meg !=null) and (nsg.error()) then
str = msg. get FormatedStr();
print Recei pt (str);
el se
Il Ask if customer wants receipt
recei pt = doRecei pt Menu();
if (receipt = YES) then
str = msg. get FormatedStr();
print Recei pt (str);
endi f
endi f
End

Figure 8: Exercise trace of system test that activates the software functions withdrawal from

checking and withdrawal from savings.
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Figure 8 shows in regular black font the source code components exercised when
activating the software function perform withdrawal from checking and perform withdrawal
from savings. In other words, the grayed out code is not exercised by the system tests that

activate the two types of withdrawal.

2.4.2.3 Before implementing the software function fast-cash withdrawal

When studying the source code components highlighted in Figure 8, a programmer
focuses on understanding the implementation of the withdraw software function. During that
investigation, the programmer realizes that the line of code ” ant =doAnmount Menu()”
calls the menu where the customer is asked to enter the amount to withdraw. Thus, a
potential solution for implementing fast-cash withdrawal is to change this function call. The
box ‘New code’ in Figure 8 indicates the spot in the source code where a change could take
place in order to implement fast-cash withdrawal.

This is the moment that predictions computed by Sonar are useful. Before designing
the source code change, the programmer must know if the solution proposed for
implementing fast-cash withdrawal affects software functions other than the withdraw
transactions. In other words, when changing the source code at line
"am =doAnount Menu( ) ", what are all the software functions potentially affected?

The programmer does not necessarily have the answer to the question above because
during the initial review of the source code, the programmer studied the exercise traces with
attention focused on the understanding the withdraw software function. During this
investigation of the code, the programmer did not necessarily pay attention to finding out the

other software functions that could also reach the line of source code of interest.
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Bank ATM
— Authenticate PIN

— Processed

I— Perform operation

'— Money Transaction

— Withdraw
— From checking

Processed

— From savings

Processed

— Deposit
— From checking

Processed

— From savings

Processed

— Transfer

— From checking

To savings
Processed

To other

I— From savings ...
(same as
Transfer ... From checking)

— Print receipt

Figure 9: Software functions
potentially affected by a change
at the position shown in Figure 8.

Using Sonar, the programmer can get an instantaneous prediction that answers the
question. Figure 9 shows the software functions of the ATM that would be affected by a
change to the line of code “ ant =doAnount Menu( ) ” . The prediction shows that the other
monetary transactions, namely, deposit and transfer, could be affected. With that information,

the programmer can now design the source code change that modifies the withdrawal
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software function but does not affect the deposit and transfer transaction. Without the
predictions, the programmer might have made a change to the source code that also affected
the deposit and the transfer software function.

We note that the results computed by Sonar also include the PIN authentication and
the print receipt software functions. These two software functions are not directly affected,
thus, they could be considered imprecision. Such imprecision is sometimes unavoidable. For
example, it is not possible to reach the withdraw software function without a positive
authentication of a PIN. Thus, Sonar will often predict that the software function Process
PIN Authentication is potentially affected even when it might not be. On the other hand,
other types of imprecision can be avoided. For instance, in our example, the prediction
includes the software function Print receipt because input phrase t7 applies Withdraw in
combination with Print receipt. If t7 did not request a receipt, then the prediction would have
been more precise. In Chapter 4, we define criteria for system tests to reduce imprecision.

Finally, one may wonder why the programmer only used the exercise traces of a few
withdraw operations instead of simply studying the entire code of the ATM. This deeper
analysis would have shown the programmer that the deposit and transfer transactions could
be affected by a change to the proposed line of source code. In fact, when modifying a small
program, studying its entire implementation is the best method. However, when the source
code implementation is larger than just a few thousand lines of source code, studying the
entire source code is often not a practical option.

We now present a few actual screen shots of Sonar. These screen shots come from the
study of the software application scalc, a small spreadsheet program used later in our case

study. Although Sonar is mainly built to predict the software functions affected, we have

53



I_HH

File Feature |
Thome fsrlaEy Get ris%onar/Demo/scalcfcache fscalc. Bd
T Load
= Load Proscess
LioadCancel
Frecalculaie |
Save
SaveCancel
= SaveProfess
o Chear
ClearProce s sed
ClearnCancal
AT
§ CellEd iting
§ CallProcess
X
B Expradsimn
Ainithmanie
Callkaleience
Fanglign
B CallRalaried Ta
L TRT, T
&= falExpiessian
CellCanse|

Figure 10: Sonar analyzing scalc.

built it in such a way that it can also project the inverse information, i.e., Sonar can also
identify the source code components related to a particular software function. The capacity to
project information from software functions to source code components is also found in
xSuds from Telcordia.

Figure 10 shows the tree of software functions of scalc. This tree is generated from a
software function specification file. This figure shows that the software function Recalculate
is selected to identify the source code components that implement the software functions.
Sonar highlights the relevant source code using html tags that color the relevant source code.
The answer can then be displayed in a web browser such as the Netscape™ web browser
(Figure 11).
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Figure 11: Highlighted source code is involved in the implementation of software function
Recalculate.

We will now illustrate the true function of Sonar: the ability to predict the software
functions affected by a change at a particular spot in the source code. In this example
illustrated in Figure 12, the spot at line 169 and column 20 of file cal cul at or . cpp points
to the source code statement eval uat e(y, x) highlighted in orange in Figure 11. Figure
12 illustrates how a programmer asks Sonar for a predication, and Figure 13 shows the

method used by Sonar for presenting its prediction.
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Figure 12:A programmer wants Sonar to project the software functions affected if
source code of cal cul at or. cpp at line 169 and column 20 were modified.
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Figure 13: Projection computed by Sonar.
Potentiallyaffected software functions are
highlighted.
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3 Computing safe predictions

In this chapter, our goal is to identify conditions under which our method safely
predicts the software functions potentially affected by a change at a selected spot of the
source code. In Section 3.1, we show how computing safe predictions relates to the method
presented in the previous chapter. In turn, this allows our goal to be expressed in terms of
coverage of software functions and coverage of source code that a set of system tests must
achieve. Section 3.2 shows that using only coverage information is not sufficient to guarantee
safe predictions. Therefore, we slightly redefine our goal in Section 3.3. We then propose in
Section 3.4 a solution to this new goal where safe predictions are guaranteed for a well-

defined, broad category of software functions. Finally, in Section 3.5, we assess our solution.

3.1 Expressing safe predictions with coverage conditions

In the following, we use our definitions and assumptions to connect the notion of safe
predictions to our method that computes predictions. This allows us to express our goal
precisely. We start from the definition of safe prediction:

A set F' of software functions is a safe prediction if Fya /F'

where Fy, is the correct prediction of the software functions potentially

affected.

In other words, a prediction is safe if it contains all the software functions potentially
affected by a change at a specified spot of the source code. To further our analysis, we need
the definition of potentially affected. We refer to the definition of potentially affected given
in Chapter 1; however, we replace the phrase segment of source code by source code

component since we have defined the latter.



A software function f is potentially affected by a change at a selected
spot of the source code if the source code component that contains the

spot participates to the implementation of software function f.

Finally, our method relies on our implementation participation assumption. Thanks to
this assumption, we can connect the notion of safety to the predictions computed by our
method. The assumption states

If a source code component ¢ participates in the implementation of

software function f, there must be a system execution that activates f

and exercises c.

On the one hand, the implementation participation assumption relates safety of
predictions to the activation of software functions and the exercise of source code
components, and on the other hand, our method uses system tests to sample Exercise and
Activate relationships. So, we initially state our goal as follows.

We want to identify conditions needed by a set of system tests such that
» There always exists a finite set T of system tests that satisfies the condition below.

* Whenaset T is used to sample Exercise and Activate relationships, our method computes
safe predictions.

Conditions on a set of system tests are specified in terms of coverage of software
functions and coverage of source code. Thus, we can further refine the way we express our
goal:

We want to identify a criterion X of source code coverage and a criterion Y of

software function coverage such that

58



» There exists a finite set T of system tests whose execution satisfies coverage criteria X
and Y.
*  Whenset T is used to sample Exercise and Activate relationships, our method computes

safe predictions.

3.2 Predictions based on coverage conditions: unsafe

Unfortunately, when only using information about software function coverage and
source code coverage, it is impossible to guarantee safe predictions. No coverage of source
code and of software functions is sufficient for guaranteeing that our method always
computes safe predictions.

Before illustrating our problem with an example, we first present the two factors that
cause the problem:

» Factor 1. A software function is completely re-implemented in several areas of the source
code. This happens when the implementation of a new software function cannot easily fit
in the current source code of a system. In such cases, the software function is
implemented several times in different areas of the source code that relate to that new
software functions.

» Factor 2. The activation of different software functions results in the same path of source
code being exercised. This situation can occur when the complete source code
implementation of a system is not accessible, for example, when third party libraries in a
compiled form are used to implement a system.

A system that combines these two factors in a certain way makes it impossible to
guarantee safe predictions. Our example is based on a very simple calculator. In particular,

the calculator has only two software functions, namely, add two numbers and subtract two
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main () Start

{

read( operandl); v2

read( oper and2) ; read(operandl);
read(operator); read(operand2);
read(operator);

if (operandl%? == 0) then

eval (operandl, operand2, if (operandl9%®? == 0) then
operator);
el se v3 T
if (operator == '+') then =
print(operatorl + @V:Ir agcd)ger ingrl:at or): }
oper ator 2); P » op ’ )

else // operator is -
print(operatorl -
operator 2);

[f (operator == "+ )]
hen
v5

E)rlnt (operatorl + J E)rlnt (operatorl - J
operator2); operator?2);

Figure 14: Sample source code and CFG of system used for illustration of unsafe
predictions.

numbers. The source code implementation of our calculator and its corresponding control
flow graph are shown in Figure 14. For the purpose of our example, let us assume that the
procedure eval in Figure 14 belongs to a third library and its source code is not accessible.
The control flow graph (CFG) of Figure 14 contains three complete paths from start
to end:
* P1=Vi, V2 Vs Vy
*  P2=V1, V2, Vs V5, V7
*  P3=Vi, V2, Vs Ve, V7
Let us now point out the presence of the two factors. Factor 1 is present since both
add and subtract have their implementation duplicated in the source code. Add is

implemented by paths p; and p,, and subtract by path p; and ps. Factor 2 is also present since
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path p; implements several software function, in this case the two software functions add and
subtract.
We now present three system tests that respectively exercise the paths p1, p2, and ps.

Moreover, the set of these three system tests activates the two software functions add and

subtract.

e =2 3 + activate software function add

e =3 2 + activate software function add

e 3=3 2 - activate software function subtract

We now show that despite the full coverage of software functions and of the full path
of source code achieved by these three system tests, our method still computes unsafe
predictions. In particular, let our method compute a prediction for a spot in source code
component v3. Our method finds that
1. t; is the only system test that exercised vs, and
2. t; activates the software function add.

Our method predicts that a modification to a spot of v; potentially affects the software
function add. This prediction is unsafe since the execution of the following system test

t4,=2 3 - activates software function subtract.

Moreover, t, also exercises path p;, which contains vertex vs. Thus, a safe predictions
must include both the software functions add and subtract. However, referring only to
coverage of software function and of source code, we have no way to know that the system
test t4 is needed to guarantee safe predictions. In fact, the execution of the three system tests,
t;, t, and ts, already achieves a full coverage of software functions and of paths of source

code.
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In conclusion, in the general case, it is not possible to guarantee safe predictions only
referring to the coverage of software function and the coverage of path of source code.

There are two ways to remedy this problem. A first solution is broadening our
analysis by incorporating semantic checks whose role would be to discover that, for example,
the three system tests ty, to, and t3 of our calculator example are not enough to guarantee safe
predictions. Building the required semantic checks would render the application of our
method very tedious, given that this problem does not occur frequently in practice.

Thus, for the moment, we prefer a second strategy where we impose a restriction on

software functions.

3.3 Expressing safe predictions with restriction

We accept the fact that safe predictions for all software functions cannot always be
computed from coverage information only. Instead, we slightly shift our goal by wondering
whether there is a well-defined category of software functions for which we can guarantee
safe predictions only using coverage information. Obviously, we want this well-defined
category of software functions to be as broad as possible.

From this strategy, we can reformulate our new goal as follows.

NEW GOAL.:
We want to identify a restriction Z on software functions, a criterion X of source code
coverage, and a criterion Y of software function coverage such that

1. There always exists a finite set T of system tests whose execution

satisfies criterion X and criterion Y where criterion Y applies to all
software functions that respect restriction Z.
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2. IF (Exercise and Activate relationships are sampled with set T of
system tests that satisfies
criterion X of source code coverage AND
criteria Y of software functions coverage)
THEN our method computes safe predictions
for all software functions that respect restriction Z.

In the next section, we propose a solution to this new goal and show that the proposed

solution does in fact fulfill our new goal.

3.4 Computing safe predictions with restriction

In Section 3.4.1, we propose a first attempt where we specify a restriction Z on
software functions. This trial fails. However, it teaches important lessons for our next
attempt. In Section 3.4.2, we then develop our new solution and prove that this second trial

fulfills our goal.

3.4.1 Restrictions on software functions: a first attempt

In this first attempt, we start by proposing a restriction Z on software functions.
However, this restriction is not good enough to guarantee safe predictions. For this first
effort, we construct restriction Z to avoid the problem mentioned in Factor 2 of Section 3.2,
which points out that different system tests can activate different software functions but
exercise the same path of source code.

Restriction Z (Attempt 1): System tests that activate different software

functions never exercise the same path of source code.

Although this restriction solves the problem raised in Factor 2, it still does not allow
guaranteeing safe predictions. In fact, for most software systems, there are infinitely many

paths in the source code, and restriction Z does not allow determining the finite set of these
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paths that must be covered for guaranteeing safe predictions. To clearly point out the
problem, we examine a particular case.

Let us assume that a change is to take place at a spot of source code component c.
Because of loop and recursion, the source code implementation of most systems has
infinitely many paths that contain c. Currently, restriction Z does not allow determining the
finite set of paths needed to obtain a safe prediction for c. Randomly selecting a finite
number of paths that contains c jeopardize the safety of predictions, and exercising all these
paths requires an infinite number of system tests.

Consequently, our first attempt fails. However, we draw lessons from it.

Lesson 1. Restriction Z restricts software functions in terms of path of source code.
Doing so makes restriction Z have an effect on criteria X and Y. In particular, let us define
criterion X as every path of source code to be exercised by at least one system test, and let us
define criterion Y as every software function to be activated by at least one system test. We
know that if a set T of system tests satisfies criterion X then T also satisfies criterion Y for all
software functions that respect Z. Specifying a restriction Z with such a property is useful
because we then only need to focus our attention on finding an adequate criterion X.

Lesson 2. Currently, our restriction Z on software functions is not restrictive enough.
In fact, to guarantee a safe prediction for a set of software functions that respect restriction Z,
an infinite number of paths must be exercised. One strategy for solving this problem is to
find a way of connecting restriction Z to a criterion X that is reachable by a finite number of
system tests.

In conclusion, from lesson 1, we decide that our restriction Z on software function

must guarantee that when criterion X of source code coverage is satisfied, criterion Y of
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software function coverage is also satisfied for all software functions that respect restriction
Z. From lesson 2, we know that restriction Z on software functions must be connected to a

criterion X that is reachable by a finite number of system tests.

3.4.2 Our solution for computing safe predictions with restriction

Our lessons learned make a crucial point: restriction Z on software function and
criterion X of source code coverage must relate in some way. To achieve a connection
between X and Z, we find it practical to first search for units of source code used for
measuring source code coverage. Second, we determine how these units of source code can
be used to specify a restriction Z on software functions. Third, we use these units of source
code to specify a criterion X of source code coverage reachable by a finite set of system tests.
Criterion X and restriction Z will be connected since they are specified in terms of the same
units of source code. Moreover, these units of source code also allow a restriction Z on
software functions to be specified such that when criterion X of source code coverage is
satisfied, criterion Y of software function coverage is also satisfied for all software functions
that respect restriction Z.

Consequently, to reach our goal, we perform the following steps:

1. Let criterion Y of software functions coverage be:
Every software function must be activated by at least one system test.

2. Identify different units of source code used for measuring source code coverage in the
remaining of Section 3.4.2.

3. First, find how the units of source code help specify a restriction Z on software
functions. Then, determine a criterion X of source code coverage that is reachable by a

finite set of system tests (Section 3.4.3).
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4, Show that we have identified criteria X and Y, and a restriction Z that fulfill the two

points of our goal (Section 3.4.4).

Units of source code

Chapter 2 showed how program profiling helps record the source code exercised.
Moreover, it presented node and branch profiling. These two types of profiling define two
units of source code, namely, nodes (source code components) and branch (ordered pair of
source code components). In this section, we go one step further by presenting units of
source code that represent paths of source code. Units of source code paths will enable
specifying a weaker restriction Z. Since our goal is to find a restriction Z that allows for a
broad category of software functions, paths will define better units of source code than node
and branches.

First, we propose to define a unit of source code as a full path.

Definition: A full path is a single sequence of source code components that corresponds to
a possible chronological order of exercise during a system test.

Full paths are not convenient because often there are infinitely many full paths in the
source code. Hence, it will be the job of restriction Z to determine the finite set of full paths
that must be covered in order to guarantee safety. However, all full paths are different, and
there are no clear good criteria for determining whether a full path must be selected. In turn,
we look at other alternatives.

Next, we present the notion of intraprocedural acyclic path and interprocedural path.
Research by Ball and Larus and by Melski and Reps have respectively defined intra- and

interprocedural paths and methods for profiling these paths efficiently [Ball and Larus 1996,
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Figure 15: Control flow graph transformed for computing B-L paths.

Melski and reps 1998]. Both types of paths are defined on the control flow graph of the

source code.

Definition: A control flow graph G= (V, E) is defined by a set V of vertices where each
vertex v/7V represent a basic block of the source code, and a set E of edges.
An edge e//E is represented by an ordered pair <vi, v,> where vy, vo//V. It
indicates that there exists a flow of control from basic block v; to basic block
Vo. In addition, V is augmented with a Start vertex and an End vertex, and E is
augmented with an edge <Start, v> where v corresponds to the basic blocks of
that is exercised first, and a set of edges <v, Exit> where each v corresponds to

a basic block that may be executed last.

Ball-Larus intraprocedural paths

When a procedure contains a loop, there are infinitely many intraprocedural paths in a
control flow graph. Ball and Larus propose to summarize the infinite number of paths with a
finite number of acyclic intraprocedural paths (B-L paths). Every intraprocedural path can be
expressed as a composition of B-L paths.

The definition of B-L path uses the notion of back edges in the control flow graph.
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Definition: Back edge in a directed graph is an edge from basic block a to basic block b
where b is always executed before a.
In Figure 15, a and z respectively represent the Start and the End vertices of the CFG.
The gray edge <e,b> is a back edge; it is part of the CFG. However, we observe that the dash
edges are not. Their use is explained later.
There exist four types of B-L paths:

» Acyclic paths from Start to Exit, for example, abz.

» Acyclic paths from Start to a CFG vertex x finishing by the execution of <x, h> where h is

the target of a back edge. For example, the sequence made of the single vertex a finishing
by the execution of (a,b).

» Acyclic paths from a CFG vertex h that is the target of a back edge to Exit, for example,
bz.

» Acyclic paths from a CFG vertex v that is the target of a back edge to a CFG vertex x

such that acyclic paths finish by executing <x, h> where h is the target of a back edge. We

note that v and h may be the same node in the case where there are several paths within a

single loop, for example, bce and bde. Both finish by executing(e, b)

Ball and Larus give a method that computes B-L paths by substituting each back edge
(gray edge of Figure 15), with two surrogate edges (dash edges of Figure 15). The first
surrogate edge goes from the CFG Start vertex to the target of the back edges, and the second
edge goes from the source of a back edge to the CFG End vertex. Since this transformation
removes the intraprocedural cycle, the transformed CFG is acyclic. In turn, there exist a finite

number of B-L paths within a procedure. In addition to the transformations, Ball and Larus
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also provide an algorithm to instrument source code so it records the B-L paths exercised
during an execution.
Melski-Reps interprocedural paths

Influenced by Ball and Larus, Melski and Reps defined the notion of interprocedural
path. We refer to such interprocedural paths as M-R paths. M-R paths are defined on the
interprocedural control flow graph (ICFG). We first expand our definition of CFG to define
ICFG.

An interprocedural control flow graph (ICFG) consists of a Global Start vertex, a
Global End vertex, and a set of control flow graphs (CFGs), one for each procedure of the
source code. As specified in the next section, each CFG has a unique Start vertex and a
unique End vertex. Each vertex in a CFG represents a source code component at the basic
block level, except for procedure calls where each call defines two vertices, an Entry vertex
and an Exit vertex. In the ICFG, for every call to a procedure p, there is an entry edge labeled
(i from the call Entry vertex to the Start vertex of p, and an exit edge labeled ); from the End
vertex of p to the Exit vertex of the call to p. The label (j and ); are used to maintain the
calling context when computing a valid interprocedural path. In addition, an ICFG contains
an edge from the Global Start vertex to the Start vertex of the main procedure—the
procedure that is always executed first (start node in the call graph)—and an edge from the
Exit vertex of the main procedure to the Global Exit vertex.

As for B-L paths, defining M-R paths requires some transformation on the ICFG.
Figure 16 displays the transformed ICFG used to compute M-R paths. An original ICFG

includes the gray edges but does not include the dashed edges. In Figure 16, the three
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Figure 16: Interprocedural control flow graph transformed for computing M-R paths.

transformations that must be performed on an ICFG to compute the set of M-R paths are the
following:
* An extra loop End vertex is added to each procedure. An edge from each loop End vertex

to the Global Exit vertex is added.
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. Every back edge (the gray edge in Figure 16) is discarded and replaced by two edges
(dashed edges in Figure 16) respectively from Start to the source of the back edge and
from the target of the back edge to loop End. We refer to the new dashed edges as
surrogate edges. Creating these surrogate edges is the same operation required by Ball-
Larus; it removes intraprocedural cycles. In terms of execution, traversing the dashed
edge from Start vertex to the target of a back edge represents the beginning of a new
iteration of a loop, and traversing the dashed edge from the source of the back edge to the
End vertex represents the end of a loop iteration.

. Edges generated by a recursive call to procedure p, also shown as gray edges in
Figure 16, are discarded. In the ICFG, a recursive call to a procedure p is responsible for
two control flow edges: an edge going from the Entry of p in a procedure m to Start of p,
and an edge going from the End of p to the Exit of p in procedure m. These two edges are
replaced by a summary edge going from the Entry of p in m directly to the Exit of pinm
(long dash edge in Figure 16). We note that this new edge is referred to as a summary
edge, not a surrogate edge. In addition, two interprocedural edges are created: a first one
from Global Start vertex to the Start vertex of procedure p, labeled (,, and another one
from the End vertexof p to Global End, labeled ),. Edges mark (, or ), are called
recursive edges.

Definition: » The following BNF grammar helps specify the M-R paths in the

transformed ICFG. To each M-R path, there corresponds a string of left

unbalanced (or balanced) parentheses.
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» Letusassign a label e to every edge without a parenthesis label:

Unbalanced Left ::= Unbalanced Left (; Unbalanced Left

Unbalanced Left ::= Unbalanced Left (, Unbalanced Left

Unbalanced Left ::= Balanced

Balanced ::= (j Balanced ); Balanced (for 1 <i <number of call site in
the program)

Balanced ::= (, Balanced ), (for a procedure p called recursively)

Balanced ::=e

Balanced ::= € (where € means empty string)

» Referring to the grammar above, we define an M-R path as a path from
Global Start to Global End in the transformed ICFG, which corresponds to
a string of balanced or left unbalanced parentheses.

In addition to the above transformations needed to define M-R paths, Melski and
Reps developed an algorithm to assign a unique number to each M-R path. Moreover, they
explain where and how the source code of a system must be instrumented to record the
unique numbers of M-R paths exercised during a system run. Melski and Reps also show
there are a finite number of M-R path in the source code of a system [Melski and Reps 1998,
Melski 2002].

Table 5 lists all twenty M-R paths of the ICFG of Figure 16. We also added an invalid
path in the last row of the table in order to illustrate the notion of nonmatching subscript of
parentheses. For all M-R paths, Table 5 includes the parentheses and their labels to show
they are valid. GS and GE respectively mean Global Start and Global End. Using the
columns titled Main, f, and Recursion on f, we attempt to relate an M-R path to its actual
execution behaviors. To explain the different execution behavior captured in an M-R path,
we observe that two types of edges were introduced during the transformation on the ICFG:
some intraprocedural surrogate edges and some interprocedural edges. In terms of execution

behavior, traversing the former edges means repetition of a loop (intraprocedural cycle), and
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Table 5: M-R paths of ICFG of Figure 16.

M-R path M-R paths

explanation

Main | f
1 N N | GS, m1, m2, m3, m7, (,, f1, f2,f3,f7,18, ),, m8, m9, GE
2 N 1 | GS, m1, m2, m3, m7, (o, f1, 2, £3, f4, 5, {6, 9, GE
3 N O | GS, ml, m2, m3, m7, (, f1, 3, f4, 5, 16, f9, GE
4 N L | GS, ml, m2, m3, m7, (, f1, f3,f7,18, ),, m8, m9, GE
5 1° N | GS, ml, m2, m3, m4, (4, fl, f2, f3, f7, 18, );, m5, m6, m10, GE
6 1 | 1% | GS, m1, m2, m3, m4, (4, f1, f2, 3, f4, 15, 6, f9, GE
7 1° O | GS, ml, m2, m3, m4, (, f1, f3, f4, 15, 6, f9, GE
8 1% L | GS, ml, m2, m3, m4, (s fl, f3, 7, f8, )1, m5, m6, m10, GE
9 @) N | GS, m1, m2, m3, m4, (, f1, f2, 13, f7, 18, );, m5, m6, m10, GE
10 o) 1 | GS, m1, m2, m3, m4, (4, f1, 2, £3, f4, 5, 6, 9, GE
11 @) O | GS, ml, m2, m3, m4, (s, f1, 13, f4, 15, 16, f9, GE
12 0 L | GS, ml, m2, m3, m4, (y, f1, f3, 7, 18, );, m5, m6, m10, GE
13 L N | GS, ml, m2, m3, m7, (,, f1, f2,f3,f7,18, ),, m8, m9, GE
14 L 1 | GS, m1, m2, m3, m7, (5, f1, f2, f3, f4, 15, 16, 9, GE
15 L O | GS, ml, m2, m3, m7, (5, f1, f3, f4, 15, 6, f9, GE
16 L L | GS, ml, m2, m3, m7, (,, f1, f3,f7,f8, ),, m8, m9, GE

Ry

17 GS, (4, f1, f2,f3,f7,18, )¢, GE
18 1* | GS, (5, 1, 2, f3, f4, 15, 16, )¢, GE
19 O | GS, (4, f1, f3, 4, 15, 16, )¢, GE
20 L | GS, (s, f1, f3,f7,18, );, GE

Invalid GS, m1, m3, m4, (4, f1, f3, 7, 18, ),, m8, m9, GE

traversing the latter edges means repeating a recursive procedure (interprocedural cycle.) We
find that the edges introduced in the transformation of the ICFG enable the M-R path to

capture the five types of execution behaviors listed below. The first four behaviors express

intraprocedural behavior, and the last one expresses an inter-procedural behavior:

* A while loop not entered or a do while loop not repeated (Table 5 uses the symbol N to

refer to this execution behavior),

« The first iteration of a loop (Table 5 uses 1% to refer to this execution behavior),

» Other iterations of the loop (Table 5 uses O to refer to this execution behavior),
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* Aloop was previously entered and it is now being exited (Table 5 uses L to refer to this
execution behavior), and
» Arrecursion on procedure p (Table 5 uses Ry, to refer to this execution behavior).

The last row of Table 5 is invalid because the subscripts of the parentheses do not
match. In terms of execution, this would mean entering a procedure p from one call site and
returning to another call site of procedure p. Obviously, this is an invalid execution. This
table shows how labeled parentheses are used to maintain the calling context of a procedure call.

As previously stated, Melski and Reps proposed a method to instrument source code
so that the set of M-R paths exercised during a system execution is recoded. For example,
executing the program of Figure 16 with the input * O’ records the following set of M-R
paths, where we refer to a M-R path by its row number in Table 5: <i nput =0, set of
M R pat hs={ 1} >. In this case, only one M-R path is exercised. However, for all other
cases, more than one M-R path is exercised. For example, with input * 2’ the outcome is:

<i nput =2, set of MR paths={6,7, 8,10, 11, 12, 14, 15, 16, 17}>

3.4.3 Restriction on software functions and criterion of source code coverage

We have four different types of units of source code available, node, branch, B-L
path, and M-R path. We now use these units to first define restriction Z on software functions

(Section 3.4.3.1) and then describe a criterion X of source code coverage (Section 3.4.3.2).

3.43.1 Restriction Z on software functions

We know that in the general case we cannot guarantee safe predictions. Therefore, in

this section, we analyze how to use the unit of source code to create a restriction Z on
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software functions. We create a definition that regroups the four different types of units of

source code into one common term: trace element.

Definition: A trace element is a node (=source code component = basic block,) a branch, a
B-L path or a M-R path.

We start with a restriction and then we weaken it until it defines a restriction Z that
includes a broad category of software functions. When specifying our restriction Z, our
different attempts refer to a trace element e. In all cases, we assume that

e is or contains the source code component c that in turn includes the

select spot of source code where a change is proposed.

Our first restriction is the following:

First Every software function f must be associated to one trace element e such that if
attempt: a system test t activates f then t always exercises e and no system test t'
exercises e without activating f.

In other words, our first attempt requires that every software function be related to at
least one trace element in a unique manner. This condition is too restrictive because several
trace elements may be needed to express the uniqueness of source code behavior associated
to a software function f. For example, software function f is applied if trace elements e; and
e, are exercised. The sole exercise of e; without e; or of e, without e; would not suffice to
determine whether f was applied or not.

To accommodate for this new possibility, our condition needs to be stated as follows.
Second Every software function f must be associated to a set E of trace elements such
attempt: that if a system test t activates f then all trace elements of E are exercised, and

no execution of system test t' exercises all elements of E without activating f.
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Again, we must weaken the above condition. Indeed, it is possible that no trace
element (or set of trace elements) is always exercised when a software function is activated.
This is often true when the implementation of a software function has been completely
duplicated in several areas of the source code. To allow for such a scenario, our restrictive
condition must be formulated as follows.

Third For every application of a software function, there exists a set E of trace
attempt: elements such that

If a system test t exercises all trace elements of E then t
activates f,

And

No execution of a system test t' exercises all trace
elements of E without activating f.

When the implementation of software functions is not duplicated, there may exist
only one set E of trace elements that meets the condition above. However, when such
duplication exists in the source code, it is likely that several sets E meet our condition. Our
restrictive condition currently uses the existential quantifier there exists a set E of trace
elements; hence, it accommodates for situations where there are one or more sets E of trace
elements that satisfies our restriction.

So far, we have ignored whether software functions are dependent or independent of
each other.

Definition: Two software functions are dependent if there exists a descendant/ascendant
relationship between them in a generalization/specialization hierarchy. In

contrast, two software functions are independent if they are not dependent.
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However, as we point out below, the same set E of trace elements can be associated to
a software function f and also to all of f’s ancestors. Consequently, our current condition does
not need further modifications.

To explain the reason why our condition does not need to be changed, we recall that
the hierarchies of software functions specified in Chapter 2 are built using the
generalization/specialization relationships between software functions. For instance, in our
ATM example, the software function process withdrawal from checking is a specialization of
the software function process withdrawal. When a system test t activates the software
function process withdrawal from checking, it must also activate process withdrawal. In
general, we know it is always the case that when two software functions f and special-f are
dependent, the system test that activates special-f also activates f. In turn, this means that our
condition does not need to make the distinction between special-f and its ancestors. In other
words, a same set E of trace elements can be used to show that special-f is activated but also
to show that all of f’s ancestors are activated.

We therefore use our third attempt to specify our restriction Z on software functions
below.

Restriction Z For every application of a software function, there exists a set E of trace
on software elements such that

functions: If a system test t exercises all trace elements of E then t
activates f,
And

No execution of a system test t' exercises all trace
elements of E without activating f.

There exists an interesting property between our restriction Z and software

hierarchies. In order to express this interesting property, we refer to the notion of complete
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specialization of a software function. Complete specialization was defined in Section 2.1. It
specifies that a set F of software functions is a complete specialization of a software function
fif at least one function in F is activated when f is activated.
The interesting property is the following:
Property: IF a set F of software functions satisfies our restriction Z on software functions
AND
IF F is a complete specialization of software function f

THEN
f also satisfies our restriction Z on software functions

Proof: » Let F be the set of software functions that is a complete specialization of f.
» Let E; be the set of trace elements that show f; F satisfies restriction Z.
» Let E be the union of E;’s of every fi F.
» Set E of trace elements shows that there exists a set of trace elements
associated to software function f such that when eE is exercised, f is

activated and also satisfies Z.

3.4.3.2 Criterion X of source code coverage

We now use our four units of source code to define an adequate source code coverage
criterion X. This ensures the needed connection between our criterion X and our restriction
Z. Moreover, in this section, we argue that our criterion X of source code coverage is
reachable by a finite set of system tests.

M-R path is the most specific of the four units of source code used to define
restriction Z. Moreover, we know that a source code coverage criteria specified in terms of
M-R paths subsumes coverage criteria specified by the other three units of source code—
nodes, branches, and B-L paths. In Section 3.4.3.2.1, we show with generic and specific

examples why our coverage criterion X must not only merely consider coverage of single M-
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R paths but also consider coverage of sets of M-R paths. In turn, in Section 3.4.3.2.2, we

describe our criterion X using sets of M-R paths.

34321 M-R paths coverage

The first coverage that comes to mind requires every M-R paths to be exercised by at
least one system test. However, as we illustrate below, this coverage criterion is not enough.
1. Let us assume that a software system has two software functions f; and f, that satisfy

our restriction Z. In particular,
» f; isassociated to two sets of trace elements, in this case, M-R paths.

Let us say {p1, p2} and {p2, ps}.

» fyis associated to one set of trace elements, also M-R paths.

Let us say {pa}-.

2. Let us now assume that for the two system tests:

t; exercises {p1, p2} and t, exercises {ps, pa}.

3. M-R paths p1, p2, ps, and p,4 have all been exercised. From our restriction Z, we know
that t; must have activated f; and t; activated fs.

4. However, let us assume that there exists a possible system test that exercised {p,, ps},
but that this test scenario was not executed.

5. In such case, if our method is used to compute a prediction for a spot in source code
component ¢ where c is only contained in M-R path p3 then only f; is potentially affected
by a change at the proposed spot. In fact, our method finds that only t, exercised ps.
Furthermore, t, only activated f,. However, from point 4, we know there exists an
untested scenario that would have exercised {p,, ps}. In turn, this would show that f; is

also potentially affected. Therefore, our prediction is unsafe.
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/1 Bank ATM
main ()

card = read_card type(card i nfo);
if (card.hasChip() == Fal se) {
/1 code magnetic vaI|dat|on here

another = 'y’ ;
whi l e (another ==
op_read = Fal se;
while (op_read ==
cout << “Enter
cin >> op;
if (op =="W)
op_read = True
op_fp = w thdraw pl
else if (op == 'D)
op_read = True
op_fp = deposit;p2

vy Ao

Fal se) {
operation”;

ac_read = Fal se;
while (ac_ read Fal se) {
cout << “Enter account”;
cin >> ac;
if (ac == ‘C)
ac_read = True;
acct = card. getChecklng() p3
else if (ac ='S)
ac_read = True;
acct = card.getSavings();p4

}
op_fn(acct);

cout << “Qther transaction?”;
cin >> anot her

else { // This cards has a chip
/1 code chip validation here

another = 'y’ ;
whi | e (another = 'y") {
op_read = False
while (op_read ==
cout << “Enter
cin >> op;
if (op == ‘VV)
op_read = True;
op_fp = mnthdramrps
else if (op =="'D)
op_read = True;
op_fp = deposit;p6

Fal se) {
operation”;

ac_read = Fal se
whil e (ac_read Fal se) {
cout << “Enter account”;
cin >> ac;
if (ac == 'C)
ac_read = True;
acct card getCheckrng() p7
else if (ac S)
ac_read = True;
acct =
card. get Savi ngs(); p8

}
/1 Change |ine bel ow
op_fn(acct);

cout << “Qther transaction?”;
cin >> anot her
}
}

eject_card ();
} /1 end main

Figure 17: Sample implementation of another bank ATM.

Such a scenario is not only theoretical. Below we present an illustration where the
coverage of all M-R paths is not always sufficient to compute safe predictions. Figure 17
illustrates a slight variation of the source code implementation of our bank ATM. The line
indicated with p;s shows the last statement of M-R paths that create the problem. In order to
make this illustration more realistic, we must first explain how the source code reached its
current state.

Let us assume that originally the ATM was made of the source code in the left

column of Figure 17, in particular, only the source code nested in the then part of
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“if(card. hasChi p() == Fal se)’ . Then, bank cards with chip appeared on the
market. To take advantage of the information found on the bank card chip, the source code
was modified to become that displayed in Figure 17. The maintenance performed in order to

produce the current code consisted of the following steps:

1. Introduce the following if-condition * i f (car d. hasChi p() ==Fal se) .
2. Duplicate the code in the then and the else part of that if-statement.
3. Adapt the source code in the else part to make use of the extra information found in

bank cards with chip.

We now illustrate the fact that merely considering the coverage of all the M-R paths
is not enough to guarantee safe predictions.

Let us consider the four ATM software functions: withdraw from checking, withdraw
from savings, deposit in checking, and deposit in savings. One could create more precise
software functions that specify whether these transactions are performed with a regular
magnetic bank card or with a chip bank card. However, for the user the difference in the
bankcards does not affect the functionality of the ATM. In turn, we decide not to change the
list of software functions.

Let us now explain the p1, p2, p3, P4, Ps, Pe, P7, @and pg shown in bold in Figure 17.
Every p; points to an M-R paths. Each M-R paths consists of a path from the beginning of the
source code until p;, which is the last executable statement of the M-R path p;. After p;, the
M-R path terminates with two vertices: the corresponding loop End followed by Global End.

To cover the eight M-R paths, we only need the four system tests in Table 6 where
the actual t;s are:

e t;: withdraw $100 from savings (with a regular magnetic bank card)
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Table 6: Exercise and Activate relationships sampled during the system tests t;s.

Input Software functions applied M-R paths exercised
ty { withdraw from savings } {...,p1, ps}
to { deposit on checking } {.. p2ps:}
t3 { withdraw from checking } {....,ps ps}
ts { deposit on savings } {...,ps P7 }

» t,: deposit $100 in checking (with a regular magnetic bank card)
* t3: withdraw $100 from checking (with a chip bank card)
» t4: deposit $100 in savings (with a chip bank card)

Table 6 also shows that the four system tests activate the four software functions,
withdraw from checking, withdraw from savings, deposit in checking, and deposit in savings.
Thus, these four system tests cover all eight M-R paths and all four software functions.

We now show that even with such coverage, our method still computes unsafe
predictions. Let us assume that a maintenance exercise proposes to modify the line of source
code indicated with the comment in bold in Figure 17. Let us refer to this source code
component as c.

Our method first identifies that t3 and t, exercised c. In turn, t3 and t, respectively
activate software functions withdraw from checking and deposit in savings. Hence, our
method infers that only these two software functions are potentially affected by a change in c.
This is incorrect since the other two software functions withdraw from savings and deposit in
checking can also potentially be affected. The execution of the two following system tests
activates withdraw from savings and deposit in checking and also exercises source code
component c.

* ts5: withdraw $100 from savings (with a chip bank card)

» t5: deposit $100 on checking (with a chip bank card)
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In conclusion, our generic and specific illustrations show that measuring single M-R
path coverage is not enough to guarantee safe predictions. In the next section, we define

another more thorough source code coverage to remedy this problem.

3.4.3.2.2 Coverage of sets of M-R paths

In order to define this new type of coverage, we first observe that a system test
exercises not a single M-R path but a set of M-R paths. Hence, our new coverage is built

using sets of M-R paths.

Definition: » A complete path in the (untransformed) ICFG is a finite sequence of
control flow edges that starts by the edge from Global Start and terminates
by the edge to Global End, and there is a corresponding string of balanced
parentheses.

* A combination of M-R paths is complete if the union of all the M-R paths

in the combination corresponds to a complete path in the (untransformed)

ICFG.
Lemma: The set of all valid combinations of M-R path is finite.
Proof: There are a finite number of M-R paths. Thus, the set of all combinations of

M-R paths (or the power set of M-R paths) is also finite. The set of all
complete combinations of M-R paths is a subset of the power set of M-R
paths; therefore, it is finite.
In this work, we limit our effort to identifying a set of properties needed for
guaranteeing that our method computes safe predictions. We leave for future work the
computation that extracts all the complete combinations of M-R paths from the power set of

M-R paths. In fact, before developing such a method, we have another problem to solve.
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Even for small systems, the number of M-R paths is huge. The number of complete
combinations of M-R paths is even larger. It is therefore totally unpractical to require a set of
system tests to exercise all complete combinations of M-R paths. One way to solve this
problem is by executing a limited number of system tests to obtain a few Potentially Affect
relationships between software functions and source code. We refer to these few
relationships as seeds. Using these seeds, heuristics would then infer new correspondences
between these software functions and the unexercised M-R paths. Developing the needed
heuristics is also left for the future. Currently, we direct our attention to identifying a
property that a set of system tests must have for the seeds to be reliable. Indeed, in order for
heuristics to infer new correct correspondences, seeds must be reliable. The work presented
in Chapter 4 is our attempt at providing a set of criteria for selecting a set of system tests that
will then be exercised to collect seeds of value.

Before giving our criterion X of source code coverage, we observe that the conditions
of different branches and different loops are sometimes related. Due to these dependences,
certain complete paths in the (untransformed) ICFG can never be executed. We say that such
complete paths are unrealizable. It is possible for a complete combination of M-R paths to be
associated only to unrealizable complete paths. Statically computing the unrealizable paths is
unsolvable, for some important information may depend on the value of inputs. As
mentioned in the paragraph above, in the future, we intend to develop heuristics for inferring
new correspondences for a few seeds. These heuristics will solve the problem of unrealizable
paths. Indeed, these heuristics will be able to associate software functions to a set of M-R
paths corresponding to unrealizable paths if needed. For the moment, we assume that

combinations of M-R paths that only correspond to unrealizable paths are removed from the
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set of complete combinations. This ensures that every complete combination of M-R paths

has a corresponding realizable path. In turn, we know that for every complete combination of

M-R paths, there must exist a system test that exercises that particular complete combination.
Therefore, our criterion X of source code coverage requires the following:

Criterion X Every complete combination of M-R paths must be exercised by the execution

of source

code of at least one system test.
coverage

3.4.4 Reaching our new goal
Showing that restriction Z and criterion X allow reaching our goal requires a proof
that

1. There exists a finite set of system tests that satisfies criterion X of source code
coverage and criterion Y of software function coverage for all software functions that
respect restriction Z. This part is shown in Section 3.4.4.1.

2. When a set T of system tests satisfies criterion X and Y, the Exercise and Activate
relationships sampled using T guarantee that our method computes safe predictions for
the category of software functions that respect restriction Z. This part is shown in Section
3.4.4.2.

Let us first recall criteria X, Y and restriction Z.

Criterion X Every complete combination of M-R paths must be exercised by at least one

of source

code system test.
coverage

Criterion Y Every software function must be activated by at least one system test.
of software

function

coverage
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Restriction Z For every software function f, every time f is activated there exists a set E of
on software
functions trace elements such that

If a system test t exercises all trace elements of E then t
activates f,

And

No execution of a system test t' exercises all trace
elements of E without activating f.

3.44.1 Satisfying the first point of our new goal

To show that there exists a finite set of system tests that satisfies criterion X of source
code coverage and criterion Y of software function coverage, we proceed as follows. First,
we show that there exists a finite set T of system tests whose execution satisfy criterion X.
Second, we show that for all software functions that respect restriction Z, satisfying criterion
X implies satisfying criterion Y. Hence, the finite set T of system tests that satisfied criterion
X also satisfies criterion Y.

Lemma: There exists a finite set of system tests whose execution
satisfies criterion X of source code coverage.

Proof: Criterion X specifies that
Every complete combination of M-R paths must be
exercised by at least one system test.

1. We know that there exists a finite number of valid combinations of M-
R paths.

2. By definition, we also know that for every valid combination C of M-R
paths, there exists a system test whose execution exercise C.

3. From 1 and 2, there exists a finite set of system tests that exercise all
complete combinations of M-R paths.

86



Lemma: For all software functions that respect Z, the set T of
system tests that satisfies criterion X also satisfies
criterion Y.

Proof: Criterion Y specifies that
Every software function must be activated by at least
one system test.

1. By contradiction, let us assume there exists a software function f that
was not activated by T.
2. From restriction Z, we know that every software function f is

associated to at least one set E of trace elements. Moreover, every e in E is
a node (source code components), a branch (pair of source code
components), a B-L path (an acyclic intra-procedural sequence of source
code components), or a M-R path (an inter-procedural sequence of source
code components). We also know that for every node, branch, and B-L
path there exists an M-R path that contains it.

Let Ey,..., E, be the sets of trace element associated with f.

CASE 1: For aset E; in E;, .., Ep, there exists a valid combination C of
M-R paths that contains all trace elements of E;. In such a case, from our
restriction Z and criterion X, we know f must have been activated. This
contradicts our assumption in point 1.

5. CASE 2: For every set E;, all trace elements of E; are never found in a
valid combination C of M-R paths.

1. Insuch a case, there is no realizable path for which software
function f is activated. In other words, every set E;’s describes an
unrealizable path.

2. Hence, software function f can actually never be performed by the
system.

3. By definition of software function, software function f must be a
task performed by the system.

4. From point above, f is not a software function. This contradicts our
assumption in point 1 that states that f is a software function.

6. Both cases above contradict point 1; hence, the set T of system tests

must satisfy criterion Y.

~w

From the two lemmas above, we can infer that the first point of our goal is satisfied.
In other words, there always exists a finite set T of system tests that satisfies criterion X of
source code coverage, and criterion Y of software function coverage for all software

functions that respect restriction Z.
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3.44.2 Satisfying the second point of our new goal

We now must show that:

IF a set T of system tests satisfies criterion X of source code coverage
and criterion Y of source code coverage

THEN when Exercise and Activate relationships are sampled using T, our

method computes safe predictions for all software functions that respect

restriction Z.

In our proof, we assume that the set T of system tests that satisfies criteria X and Y is
provided and that the Exercise and Activate relationships resulting from the execution of T
have also been sampled. Thus, our attention focuses on the latter part of the statement above.
That is, we want to show that our method computes safe predictions for all software
functions that respect restriction Z.

Instead of showing that every prediction is safe, we use a proof by contradiction. In
other words, we suppose that our method computes an unsafe prediction for a particular spot
in a source code component c. Then, we show that our supposition cannot be true.

In order for our method to compute an unsafe prediction, the following scenario must
take place. Our method computes a set A of software functions as being potentially affected
by a change to source code component c. However, a software function f that respects

restriction Z is also potentially affected by a change to ¢, and f is not in set A.
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Assumptions:

1. The execution of set T of system tests satisfies criterion X, that is, it all
complete combinations of M-R paths are exercised.

2. The implementation participation assumption is true. That is, if a
source code component ¢ participates in the implementation of software
function f then there must exist a system test t that exercises ¢ and activates
f.

3. Set T is used to sample Exercise and Apply relationships, and then,
Potentially Affect relationships are inferred by joining the Exercise and
Apply relationships sampled.

Theorem: When a set T of system tests satisfies criterion X and Y, then the Exercise and
Activate relationships sampled using T guarantees that our method computes
safe predictions for the category of software functions that respect restriction
Z.

Proof: We proceed by contradiction.

1.

Let set A of software functions be a prediction computed using the
Potentially Affect relationships for a source code component c. Moreover,
let us assume that A does not contain a software function fand f is
potentially affected by a change in source code component c.

If f is potentially affected by a change in ¢ then source code component
¢ must participates in the implementation of f.

From assumption 2, there must exist a system test i that activates
software function f and exercises source code component c.

From restriction Z, we know that if i activates f, there must exist an
associated set E; of trace elements such that /e[JE; are exercised when i is
executed.

From 3 and 4 above, i exercises all the trace elements ers[E; and
exercises c. Hence, there must exist a realizable complete path that
contains every trace element in E; and also contains c.

Hence, there exists a complete combination C of M-R paths where each
trace element in E; is found in at least one M-R path of C and where c is
also found in at least one M-R path of C.

From assumption 1, our set T of system tests must contain a system test
j that exercised C. j may or may not be equal to i. In any case, j exercises
C, which exercised every trace element in E; ; hence, j must activate f.

From 7, based on a system test j, our method must have included f in its
prediction.

Point 8 contradicts point 1; hence, under the stated assumptions, our
method must compute safe predictions for all software functions that
respect restriction Z.
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3.5 Assessment of our solution

In Chapter 2, we point out that the quality of a solution is determined by safety,
precision, and practicality. In particular, does the solution allow our method to compute safe
predictions? Precise predictions? Are the criteria required by the solution practical?

Concerning the first factor of safety of predictions, we find that our solution is
satisfying. In fact, we have found a set of conditions under which our method computes safe
predictions for a well-defined, broad set of software functions.

Our restriction on software functions seems adequate for our solution to be
considered practical. That is, many software functions of many software systems naturally
respect the restriction. On the other hand, a further analysis of the coverage conditions
required by our solution shows that it is currently not practical. In particular, the source code
coverage criterion requires that the system tests exercise all complete combinations of M-R
paths. Although the number of complete combinations of M-R paths is finite, their number is
large, even for small systems. It is therefore unrealistic to require the exercise of all these
possibilities.

Although currently impractical, our solution provides a finite bound to the problem of
computing Potentially Affected relationships. As mentioned earlier in this chapter, we plan on
developing a technique where a limited number of system tests are first executed to collect
some Potentially Affect relationships (seeds) between software functions and source code.
Then, some heuristics will use the seeds to infer new Potentially Affect relationships between
software functions and unexercised complete combination of M-R paths. For heuristics to
compute reliable relationships, the seeds must provide reliable information. In other words,

before developing the heuristics needed for inferring new Potentially Affect relationships, we
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must first find a technique to obtain safe and precise seeds. The next chapter works in that
direction. It specifies a set of criteria for selecting a few system tests that will hopefully
provide safe and precise Potentially Affect relationships between software functions and
source code.

The last qualitative factor of a solution is whether or not it enables finding precise
predictions. The solution developed in this chapter neither focuses nor mentions precision of
predictions. Its objective was only geared toward computing safe predictions. Nevertheless, if
all valid combinations of M-R paths are related to software functions, we know that much of
the precision of predictions will be lost. Hence, the heuristics mentioned above will not only
have to infer new Potentially Affect relationships, but they will also have to be tailored to
maintain an acceptable level of precision for predictions. In particular, instead of inferring
new Potentially Affect relationships for all complete combinations of M-R paths, the
heuristics will need to eliminate the complete combinations of M-R paths whose exercise
decrease precision while not adding to safety of predictions.

In conclusion, our solution shows that our method computes safe predictions for a
well-defined, broad set of software functions using only coverage information. On the
positive side, the coverage needed for computing safe predictions is reachable by a finite set
of system tests. However, that set of system tests is of unpractical size. Moreover, our current
solution makes no guarantee as to the precision of predictions.

In the next chapter, we propose a new solution that remedies the disadvantages of our
current solution. In particular, our new solution wants to improve on the precision of
predictions and makes sure that these results can be obtained using a small number of system

tests. We concede that our new solution cannot guarantee safe prediction; however, safety
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remains acceptable. This new solution can be used directly by our method for computing
Potentially Affect relationships. However, the original indent is for this new solution to
provide a few reliable Potentially Affect relationships (seeds). Then, these seeds can be used
by heuristics for inferring new Potentially Affect relationships of high reliability for the entire

source code, even the one not covered by the seeds.
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4 A practical application of our method

In this chapter, we define criteria for selecting a few system tests that provide reliable
Potentially Affect relationships. We know that with just a few system tests, the safety and the
precision of predictions are not guaranteed. However, we want the information captured in
the sampled Potentially Affect relationships to be as safe and as precise as possible. In any
case, applying our method this way is practical since it only requires a few system tests. The
information obtained by these few system tests may be used directly. However, the original
intent is for these system tests to provide seed information that heuristics will be able to use
to infer new reliable Potentially Affect relationships.

This chapter is organized as follows. First, we present a set of criteria for selecting
system tests. Then, we perform a case study to evaluate the criteria in the context of our

method.

4.1 Criteriafor system test selection

When identifying the criteria needed for system test selection, the guidelines are the

following:
1. Few system tests must be needed to satisfy these criteria.
2. We prefer qualitative over quantitative coverage. By quality, we mean coverage that

allows our method to compute safe and precise predictions.
The second point applies specifically to source code coverage. For software function
coverage on the other hand, we know that every software functions must be activated at least
once. In fact, given the way our method computes predictions, we know that nothing can be

predicted about nonactivated software functions. In contrast, for source code coverage, we



know that a few system tests can only exercise a limited amount of paths in the source code.
Instead of trying to spread out the source code coverage achieved by these system tests, like
software testing often requires, we prefer that the source code components exercised by the
system test stay concentrated. This would usually guarantee safer and precise prediction by
our method. Therefore, instead of trying to maximize coverage of source code components,
we prefer that the exercise of source code remains focused.
Consequently, we specify our criteria for system test selection as follows.
1. Every software function of the system must be activated during at least one system
test. When using Sonar to compute predictions, this criterion translates to the following:
each software function found in Sonar’s software function specification file must be

activated by at least one system test.

2. When possible and appropriate, different system tests must reuse the same data
values.
3. System tests must avoid composition of software functions as much as possible; i.e.,

they should only activate one software function when possible. However, we know that
some software functions require the prior activation of other software functions. In such
case, software function composition is acceptable and required in order to satisfy
criterion 1.

4. Criteria 1 above must be satisfied with the least amount of system tests possible.

Criteria 1 and 2 increase the size of the set of system tests that will be used for
sampling Exercise and Activate relationships. In contrast, criteria 3 and 4 restrict the number

of system tests that will be selected. Using such guidelines, we make the set of system tests a
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controlled dependent variable of our studies. We refer to the set of four criteria above as the

test selection criteria.

4.2 Assessing our test selection criteria through case study

We now assess the level of prediction safety and correctness when computed by our
method with the Exercise and Activate relationships sampled from a set of system tests that
satisfy our test selection criteria. A prediction is correct or exact if it is 100% safe and 100%
precise. This study uses Sonar to compute the predictions. We repeated the study on two
software systems, in particular scalc and bool.

We present our case study as follows. In Section 4.2.1, we state our objective. In
Section 4.2.2, we explain the protocol followed for the study. In Section 4.2.3, we present the
two software systems, scalc and bool. Moreover, we enumerate a broad list of software
functions for both systems. In Section 4.2.4, we present our results, and in Section 4.2.5, we

draw conclusion of our studies.

4.2.1 Objectives of the study

In our study, we measure whether or not predictions are safe and if they are exact.
Therefore, concerning safety, we find that a prediction is safe or unsafe. Similarly, we find
that a precision is either correct or incorrect. In other words, in our study, to be considered
safe and exact, a prediction must be 100% safe and 100% exact respectively.

When conducting the case study, it is unpractical to verify whether all of Sonar’s
predictions are safe and exact. In fact, even for small systems the number of source code
components exercised is in the hundreds. Hence, we compute predictions for a pool of

twenty-five randomly selected source code components, and then we infer the results for the
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rest of the exercised source code components. The fact that we do not compute predictions

for all exercised source code components introduces some level of uncertainty in our claims.

We want this uncertainty factor to remain very low, 1% or less. In turn, we now state our

goal for the case study of scalc and of bool as follows.

Goal: We want to determine with more that 99% certainty that for software system
Z, Sonar computes X% of safe predictions and Y% of exact predictions when
Exercise and Activate relationships are sampled with a set of system tests that
satisfy our test selection criteria.

Assumption: We assume that our study does not contain any error of the following type: A
result computed by Sonar is said to be unsafe (or unprecise) when it is actually

safe (or precise.) Thus, we are assuming a 0% [3 error factor.

Dependent variables
The dependent variable is the set of system tests used to sample Exercise and Activate
relationships. However, thanks to our test selection criteria, we specify some control on this

dependent variable.

4.2.2 Protocol used in the study

Here are the steps followed during the study:
1. For the software system selected, we do the following:
a. Compile the selected software system in order to produce an instrumented
executable version.
b. Create a list of software functions for the software system selected.
C. Identify a set of system tests that satisfies our test selection criteria and then

execute each system test with the instrumented executable.
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2. Collect the set of all source code components covered then randomly select twenty-
five of these source code components. Finally, we identify the file name and the
beginning line-column position of each of the twenty-five source code components.

3. Perform an initial manual analysis for each of the twenty-five positions. In particular,
for a position p, we refer to the list of software functions and mark each software function
we believe is potentially affected by a change at p. For this initial analysis, we do not run
the system. We only read the source code and use the grep command to navigate in
source code files.

4. Let Sonar compute its prediction for each of the twenty-five positions.

5. Compare the manual predictions with those computed by Sonar. For a particular
position, if for a given source code position a manual prediction and Sonar’s prediction
are the same, we assume that they are both correct (that is, safe and precise). If two
predictions are different then we perform the next two steps of the protocol.

6. Perform a second more thorough manual analysis. During this second manual
analysis, we are permitted to execute the system, instrumented manually with print
statements in order to determine an execution’s dynamic behaviors. If needed, we adjust
the first manual predictions. At this point, we believe that all of the manual predictions
are exact.

7. Given the second manual exact prediction, we now determine whether or not Sonar’s
predictions are safe and then whether or not they are exact.

These last two steps do not need to be performed when the first manual predictions
agree with Sonar’s predictions. In fact, in such cases, we assume that Sonar’s prediction was

safe and precise; hence, it is correct. On the other hand, for the other cases where step 5 finds
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that two predictions are different then, we now compare Sonar’s prediction to our second
manual prediction. After all these steps, we are able to determine whether or not Sonar’s
predictions are safe and whether or not they are exact for each of the twenty-five source code
components.

One may argue that our second manual analysis is influenced by Sonar’s prediction
since we already compared the prediction of a first manual analysis with that of Sonar’s.
However, this influence is irrelevant. In this case, the important factor is that we do not
change Sonar’s predictions. In fact, in step 7, we compare the new manual predictions to
Sonar’s predictions created in step 4. In other words, during steps 6 and 7, manual
predictions may be changed in order to correct them, but Sonar’s prediction may not be
changed by sampling additional Exercise and Activate relationships.

The only valid argument on the validity of our study is that our second manual
analysis may still be incorrect and that further adjustment of the manual predictions must be
performed. This reasoning might be true for large systems. However, as we will see in the
next section, the two software systems selected for the study have source code of small size
(between 2,000 and 5,000 lines of source code including comments). We therefore believe
that the assumption that ““predictions obtained by our second manual analysis are correct” is

fair for small size source code.

4.2.3 The two software systems studied: scalc and bool

4231 scalc
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scalc is an interactive spreadsheet program that uses the curses library to allow the
user to move around the spreadsheet with the arrow keys. scalc is written in C++ and is
based on a well-crafted object-oriented design that separates the GUIs from the core
computation of the spreadsheet. Furthermore, the computation is separated between the
calculator engine and the spreadsheet document. The source code size is about two thousand
lines including comments.

scalc provides the software functions to perform the following tasks: (1) move around
the spreadsheet, (2) load an existing spreadsheet, (3) save a spreadsheet, (4) clear a
spreadsheet, (5) recalculate (or reevaluate) a spreadsheet, (6) toggle the auto reevaluation of a
spreadsheet between on and off, and finally (7) edit cell of the spreadsheet.

scalc distribution comes with the file READIVE. t xt , which | used for creating the list
of software functions presented in Table 7. The left column of the table lists the names of the
software functions and presents them in a tree-like format. For example, the software
function right appears as a child of motion meaning that right is a particular type of motion.

The right column provides a short description of each software function.

Table 7: List of software functions of the scalc software.

Software functions Description of the software functions
SCALC

1 + Moti on Function that refers to notion
fromcell to cell in the
spr eadsheet.

2 + Ri ght Motion associated to the right
arrow key.

3 + Left Motion associated to the left
arrow key.

4 + Down Motion associated to the down
arrow key.

5 + Up Mbtion associated to the up
arrow key.

6 + Load Function that refers to the
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| oadi ng of an existing
spr eadsheet.

+ Load Process

Once the user has selected the
function | oad spreadsheet, the
user decides to proceed with

| oadi ng an exi sting spreadsheet.

+ Load Cancel

Cancel | oadi ng of spreadsheet
and return to current
spr eadsheet.

+ Save

Function that refers to the
saving of the current
spr eadsheet.

10

+ Save Process

Once the user has selected the
function save spreadsheet, the
user decides to proceed with

saving the current spreadsheet.

11

+ Save Cancel

Cancel saving of the current
spreadsheet and return to it.

12

+ C ear

Clear all cells of the current
spr eadsheet.

13

+ Process

Proceed with clearing the
current spreadsheet.

14

+ Cancel

Cancel the clearing operation.

15

+ Recal cul ate

Recal cul ate the content of each
cell of the spreadsheet.

16

+ Toggle Auto calc

Toggl e the auto recal cul ate of
the spreadsheet to ON or OFF
When this switch is QN, the
spreadsheet updates all the
required values after the
edition of a cell. It only

cal cul ates the val ue of the
current cell if the switchis
OFF.

17

+ Cell edit

Enter in the cell edition node

18

+ Cancel edition

Cancel any edition to this cell,
restore its old val ue, and
return to current spreadsheet.

19

+ Process Edition

Update the value of the cell to
the newy edited val ue.

20

+ Text

The format of the new value is
TEXT.

21

+ Mat h.
expr essi on

The format of the new value is a
mat hemat i cal expression that
requi res eval uation.

22

+ Nunber

The expression contains a nunber

23

+ Arith.
Exp

The expression is an arithmetic
expression (contains +, -, /[, or
* operators).
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24 + Function The expression contains a
function such as sin, cos, tan,
atan, sqrt, etc.

25 + Cell ref. The expression contains a cell
r ef erence.

4.2.3.2 bool

bool Version 0.1.1 can be downloaded from the GNU Software Foundation website

(http://www.gnu.org/directory/Bool.html). bool is command-line driven and allows the user

to search for a Boolean-expression pattern in a list of files. bool is written in C, and its source

code size is about five thousand lines including comments. The implementation is procedural

in nature. The man page, which was used to create the list of software functions in Table 8,

specifies that bool takes three types of parameters:

1. Flags (or options) allow the user to activate different software functions such as
ignore case, count number of matches, etc.

2. A pattern in the form of a Boolean expression made of character strings grouped
using Boolean operators AND, OR, plus NEAR (default 10 words a part).

3. A series of files that are matched against the Boolean pattern. Files may be in text or
html format.

These three parameters may be used when creating a list of software functions for
bool. Furthermore, the man page explains that in addition to performing regular matching of
patterns, bool also performs special matching when a pattern is split on different lines. In
particular, for a text file, when a pattern starts at the end of one line and terminates at the
beginning of the next line, bool finds a match. However, if there are several new lines that
split the pattern in a text file then bool considers there to be no match. For html files, the
rules are different. The determinant factors are html tags. For example, a pattern that is split

by text formatting tags such as bold <B> and new line will still be considered matches;
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however, when the pattern is found in the file but split by tags such as new paragraph (<P>)
or new heading, there is no match. For example, for the pattern ‘Pattern’, bool finds a match
for the html excerpt <B>P<\B>attern; however, there is no match with <P>Pat</P>tern.

Given that the man pages explain these different type of matching, one may define
software functions in relation to regular matching and special matching (pattern found on
several lines). These software functions are special because they embed the notion of
success. In other words, the software functions find a pattern with a regular match or find a
pattern with a special match, which means that the pattern must be found in the input files.
So, unlike software functions based on the three types of input parameters accepted by bool,
these last types of software functions are not directly visible from the command line. This
explains why we have found that the manual analyses involving regular and special matches
were much harder than for the other types of software functions. In addition, since both
regular and special match imply success, we also list the software function fail search.
However, we find that it does not make sense to differentiate between a fail search of regular
pattern and a fail search of special pattern (a failure is a failure regardless).We briefly explain
how software functions can be specialized with an example, and then we present the software
functions in Table 8. When creating a list of software functions for bool, one may be more or
less precise by specifying a software function in terms of one, two, or all three of the types of
parameters plus whether it is a regular or a special match. For example, going from general to
specific (1) the software function find regular match, (2) find regular match in an html file,
(3) find regular match in an html file with a case insensitive search, and (4) find regular

match in an html file with a case insensitive search for an ANDed Boolean expression.

Table 8: List of software functions of the bool software.

\ Software functions \ Description of the software
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functions

Bool

+ One-word pattern
search

Successful search file(s) for
a one-word pattern

+ Text file

Successful search text
file(s) for a one-word
pattern.

+ Regular file

Successful search text
file(s) for a one-word
pattern and the file(s) do
not contain split patterns.

+ Count

Successful search text
file(s) for a one-word
pattern and print the nunbers
of mat ches.

+

| gnore case

Successful case-insensitive
search of text file(s) for a
one-word pattern

+

N mat ches

Successful search text
file(s) for N first
occurrence of a one-word
pattern.

+ Fi xed string

Successful search text
file(s) for a fixed one-word
pattern (ignore the
particul ar meani ng of and,
or, near).

+ Special file

Successful search of text
file(s) for a one-word
pattern where the file
contains the particul ar
pattern split on two |ines.

+ Fail

Unsuccessful search of text
file(s) for a one-word
pattern.

10

+ Hnm file

Successful search htni
file(s) for a one-word
pattern.

11

+ Regular File

Successful search htn
file(s) for a one-word
pattern and the files do not
contain split patterns

12

+ Count

Successful search htm

file(s) for a one-word
pattern and print the numnbers
of mat ches.

13

+ I gnore case

Successful case-insensitive
search of htm file(s) for a
one-word pattern.

14

+ N nat ches

Successful search htni
file(s) for N first
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occurrence of a one-word
pattern.

15

+ Fi xed string

Successful search htm
file(s) for a fixed one-word
pattern.

16

+ Special file

Successful search htm
file(s) for a one-word
pattern where the file
contains the particul ar
pattern split on two |ines.

17

+ Fail

Unsuccessful search of htni
file(s) for a one-word
pattern.

18

+ AND ed Search

Successful search for an
AND ed pattern.

19

+ Text file

Succssful search a text file
for an AND ed pattern.

20

+ Hnm file

Successful search a htm file
for a AND ed pattern.

21

+ OR ed Search

Successful search for a OR ed
pattern.

22

+ Text file

Successful search a text file
for an OR ed pattern.

23

+ HmM file

Successful search a htnd file
for a OR ed pattern.

24

+ NEAR ed Search

Successful search for a
pattern that contains a
NEARed expressi on.

25

+ Text file

Successful search a text file
for a NEAR ed pattern.

26

+ HmM file

Successful search a htnmd file
for a NEAR ed pattern.

4.2.4 Result of the study on scalc and on bool

After our set of system tests, nineteen system tests for scalc and twenty-one system

tests for bool, we found that 419 and 508 source-code components were exercised for scalc

and for bool, respectively. We then randomly selected twenty-five source-code components

for each of the two systems. Finally, we identified the file name and the beginning line-

column position of each of these twenty-five randomly selected source-code components.

Table 9 presents the two lists of twenty-five spots of source code.




Table 9: List of spots in the source code used for our case study.

scalc bool
1 Calculator.cpp, 185, 5 Kw.c, 545, 17
2 Document.cpp, 271, 21 Ac.c, 348, 7
3 Document.cpp, 231, 5 Ac.c, 205, 11
4 Textview.cpp, 114, 9 Ac.c, 318, 3
5 Document.cpp, 272, 2 Kw.c, 657, 23
6 Document.cpp, 286, 5 Kw.c, 440, 5
7 Calculator.cpp, 235, 26 Ac.c, 327, 11
8 Textview.cpp, 83, 25 Kw.c, 619, 54
9 Textview.cpp, 87, 18 Sgml.c, 554, 3
10 Calculator.cpp, 307, 3 Html.c, 531, 3
11 Textview.h, 59, 23 Kw.c, 574, 19
12 Textview.cpp, 60, 1 Html.c, 404, 11
13 Textview.cpp, 492, 5 Kw.c, 334, 3
14 Textview.cpp, 632, 5 Sgml.c, 180, 7
15 Textview.cpp, 243, 5 Kw.c, 178, 7
16 Calculator.cpp, 172, 1 Mem.c, 127, 1
17 Textview.cpp, 84, 25 Sgml.c, 555, 27
18 Textview.cpp, 437, 9 Kw.c, 452, 7
19 Calculator.cpp, 454, 5 Kw.c, 680, 23
20 Textview.cpp, 628, 5 Kw.c, 421, 11
21 Calculator.cpp, 558, 5 Text.c, 124, 11
22 Document.cpp, 84, 25 Ac.c, 407, 3
23 Textview.cpp, 220, 1 Html.c, 453, 3
24 Textview.cpp, 75, 5 Ac.c, 122, 1
25 Calculator.cpp, 364, 16 Ac.c, 368, 1
424.1 Results for scalc

After performing a first manual analysis, we run Sonar. Table 10 presents the results

of our first manual analysis as well as those computed by Sonar. Each row starts with a

number that cross-references to the particular source code position of interest listed in Table

9. An empty cell in the Sonar column means that Sonar’s prediction is the same as the

manual prediction. The rows in bold indicate a discrepancy in the two predictions.

Table 10: Comparison of the results of a manual analysis and of Sonar for scalc.

Pos. Manual Results Sonar’s results that help correct manual
results
1 Whole cell editing sub tree + Recalculate | Whole cell editing sub tree
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2 Load processed

3 Save processed

4 Visual display affected All software functions

5 Load processed

6 Load processed

7 Edit cell reference + Edit function Edit cell reference + Edit function +
Edit cell with text

8 Motion up

9 Whole Cell editing subtree

10 Edit number Edit number + edit arith. exp

11 Visual display affected

12 Visual display affected

13 Toggle auto-recalculate All software functions

14 Whole load subtree Only Load processed affected

15 All visual display affected All software functions

16 Load processed + Recalculate

17 Motion down

18 Visual display affected Only Visual display after a cell
edition

19 Whole edit expression processed sub- Whole edit expression processed sub-

tree tree except edition of cell reference

20 Load processed

21 Whole edit expression processed subtree

22 Clear sheet processed Clear sheet processed+ Load
processed

23 Motion right

24 Visual display affected All software functions

25 Whole edit expression processed subtree | Whole edit expression processed

subtree except edition of cell
reference

Table 10 shows that there are twelve discrepancies and thirteen predictions that are

the same between the manual analysis and Sonar’s. As indicated in our protocol, we assume

that the thirteen same predictions are exact. However, for the inconsistent predictions, we

now perform a second manual analysis to determine whether Sonar’s predictions are unsafe

or safe and exact or inexact. Conversely, this also helps determine when the first manual

analysis is unsafe or safe and exact or inexact. In Table 11, rather than only showing the case

of discrepancies, we present Table 10 with all the correct results, and then we indicate

whether Sonar’s predictions are CORRECT, UNSAFE, or SAFE. For safe and unsafe results,
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we also give the extra and missing software functions, respectively. Moreover, to indicate a
change in a manual result from the first to the second analysis, we italicized the results in
Table 11. In other words, this points out when our first manual analysis was wrong. It

happened in four cases, respectively in rows 7, 14, 18, and 22.

Table 11: Estimation of Sonar’s results for scalc.

Pos. Correct Results from second analysis Sonar’s results
1 Whole cell editing sub tree + Recalculate UNSAFE: Missing recalculate
2 Load processed Correct
3 Save processed Correct
4 Visual display affected Correct: indicates all affected
5 Load processed Correct
6 Load processed Correct
7 Edit cell reference + Edit function + Edit | Correct
cell with text
8 Motion up Correct
9 Whole Cell editing sub-tree Correct
10 Edit number SAFE: indicates edit arith. Exp affected
11 Visual display affected Correct (none affected)
12 Visual display affected Correct (none affected)
13 Toggle auto-recalculate SAFE: indicates all affected
14 Load processed Correct
15 All visual display affected Correct: indicates all affected
16 Load processed + Recalculate Correct
17 Motion down Correct
18 Visual display of cell edition affected Correct: indicates all edit cell sub-tree
19 Whole edit expression processed sub-tree | UNSAFE: Missing edit cell reference
20 Load processed Correct
21 Whole edit expression processed sub-tree | Correct
22 Clear sheet processed + Load processed Correct
23 Motion right Correct
24 Visual display affected Correct: indicates all affected
25 Whole edit expression processed sub-tree | UNSAFE: Missing edit cell reference

First, we note that three of Sonar’s predictions are unsafe (1, 19, and 25). Second, two
predictions (10 and 13) are safe but not exact. Finally, the remaining twenty predictions made
by Sonar are correct. For results (4, 15, 18, and 24), we find that the results are correct;

however, some additional interpretation is needed. The correct results indicate that only the
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visual display of the application is affected. Currently, Sonar cannot make the difference
between the visual and the computational aspect of a software function. Hence, Sonar
highlights a software function independent of whether its computational or visual aspect is
affected. Programmers do not usually have problems determining if the source code they are
analyzing deals with the computational part or the user interface (Ul) part of a system. The
tough part of the programmer’s job is to determine the particular software functions to which
a particular source code component relates. Consequently, in these four cases, we find that
Sonar’s predictions are safe and correct.

The results above only provide information for 25 of the 419 source-code components
exercised. However, we can use the binomial distribution to estimate what the predictions
would be for the remaining 396 source-code components. The binomial distribution can be
used when a trial, in this case a prediction computed for a source code component, is
independent of the others. This is also known as Bernoulli trials. In our case, predictions are
independent of the proximity between source code components. Two source code
components may generate different predictions whether they are near each other or not.
Hence, predictions for different source code components are Bernoulli trials.

Finally, using the binomial distribution, we can determine the X and Y of our

objective.

Goal: We want to determine with more that 99% certainty that for software system

Z, Sonar computes X% of safe predictions and Y% of exact predictions when
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Exercise and Activate relationships are sampled with a set of system test that
satisfy our test selection criteria.
We may say that for the scalc software and our 19 system tests that satisfy our test
selection criteria
o X =70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the
remaining 396 source code components would be safe
* Y =60%. We know with more than 99% certainty that 60% of Sonar’s predictions for the

remaining 396 source code components would be exact.

4242 Results for bool

As for scalc, we first performed a first manual analysis on bool for each of the
twenty-five source-code components. Second, we let Sonar compute its predictions for the
same source code components. Table 12 presents the results of both predictions using the

same convention than for scalc, in particular, discrepancies in predictions are in bold.

Table 12: Comparison of the results of a manual analysis and of Sonar for bool.

Pos. Manual Results Sonar’s results that help correct
manual results

1 All but 2 unsuccessful search (text/ntml Fail)

2 All

3 All

4 All

5 Text & Html count number of matches

6 Text & Html find a fixed string

7 All

8 OR all sub-tree

9 All Html search

10 All Html search Except unsuccessful Html
search, and count number of
matches in Html file

11 All Except count number of matches All Except count number of
matches and failed search

12 All Html search All Html search except failed
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html search

13 All but search a fixed string

14 All Html search

15 All but search a fixed string

16 None

17 All Html search

18 Text & Html find a fixed string

19 Text & Html find n matches

All except unsuccessful search,
and count number of matches

20 All

All but count number of
matches

21 All text search

22 Text find a special match + failed text search

Text find a special match

23 All Html search

All Html search except count
number of matches in Html file

24 All

25 All

Table 12 shows that there are seven discrepancies and eighteen predictions where our

first manual analysis gives the same predictions as Sonar’s. As indicated in our protocol, we

assume that the eighteen same predictions are exact. On the other hand, for the inconsistent

predictions, we now perform a second manual analysis to determine whether Sonar’s

predictions are unsafe or safe and exact or inexact. Rather than providing the results for the

inconsistent predictions, we give Table 13 with all twenty-five results computed after our

second analysis. These results are now assumed to all be exact. We can then compare them

with Sonar’s. For safe and unsafe results, we also give the extra and missing software

functions. Moreover, to show that a prediction from our first manual analysis has been

changed by our second analysis, we italicized it. In other words, this points out when our first

manual analysis was wrong. It happened in four cases, in rows 10, 19, 20, and 23.

Table 13: Estimation of Sonar’s results for bool.

Pos. Correct Results Sonar’s results that help correct
manual results

1 All but failed text/html search Correct

2 All Correct
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3 All Correct

4 All Correct

5 Text & Html count number of matches Correct

6 Text & Html find a fixed string Correct

7 All Correct

8 OR all sub-tree Correct

9 All Html search Correct

10 All Html search except unsuccessful Html search, | Correct

and count number of matches in Html file

11 All Except count number of matches UNSAFE: Missing text/html
failed search

12 All Html search UNSAFE: Missing failed html
search

13 All but search a fixed string Correct

14 All Html search Correct

15 All but search a fixed string Correct

16 None Correct

17 All Html search Correct

18 Text & Html find a fixed string Correct

19 All except failed search, and count number of Correct

matches

20 All but count number of matches Correct

21 All text search Correct

22 Text find a special match + failed text search UNSAFE: Missing failed text
search

23 All Html search except count number of matches | Correct

24 All Correct

25 All Correct

First, we note that three of Sonar’s predictions are unsafe (11, 12, and 22). Second,

the remaining twenty-two predictions are exact. Surprisingly, all twenty-two predictions are

safe and imprecise.

The results above only provide information for 25 of the 508 source-code components

exercised. However, we can use the binomial distribution to estimate what the predictions

would be for the remaining 483 source-code components. In particular, we can determine the

X and Y that make our hypothesis below correct.

Goal:

We want to determine with more that 99% certainty that for software system
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Z, Sonar computes X% of safe predictions and Y% of exact predictions when
Exercise and Activate relationships are sampled with a set of system tests that
satisfy our test selection criteria.
We may say that for the bool software and our 21 system tests that satisfy our test
selection criteria
o X =70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the
remaining 483 source code components would be safe
e Y =70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the

remaining 483 source code components would be exact.

4.2.5 Conclusion of study

Although scalc and bool are very different in nature—the first is object-oriented and
interactive while the second is procedural and command-line driven—the results of our study
remain very similar. In both cases, safety of predictions is around 70%, and the level of
correctness varies of only 10% (between 60% and 70%) between the two systems. Thus,
when Exercise and Activate relationships are sampled with a set of system tests that satisfy
our test selection criteria, the safety and the correctness of predictions does not vary
dramatically between the two systems selected. This is encouraging. If these results repeated
on several other systems, we would be able to infer that the way a system is implemented
does not influence Sonar’s predictions (when system tests satisfy our test selection criteria).

However, the current rate of safety (70%) and correctness (between 60 and 70%)
must be improved before we can use these results as a basis for inferring new Potentially
Affect relationships. Our future work will therefore not only focus on testing Sonar and our

test selection criteria with other software systems but also on developing a technique to
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improve the current level of safety and of correctness of predictions. This may be done
through refinement. After Exercise and Activate relationships are first sampled with a set of
system tests that satisfy our test selection criteria, more system tests are selected for further
refinement of the sampled Exercise and Activate relationships. Another solution is to create
new test selection criteria.

A particular area that needs help from Sonar is that of large software systems.
However, currently we have no way to guarantee the correctness of manual results when
systems are large. For such systems, assuming the correctness of predictions is not
acceptable. A promising direction is to study the help provided by Sonar’s predictions instead
of studying the rate of safety and correctness of Sonar’s predictions. In other words, although
we cannot guarantee the safety and the correctness of Sonar’s results, can we determine if
Sonar’s predictions teach new information to the programmer? The information below shows
that such studies are in fact possible, and they are likely to produce very useful results.

Our case study has a very interesting side effect. In fact, if we look back at our first
and second manual predictions, we find that for systems scalc and bool four predictions
manually computed during our first analysis are wrong; therefore, they were updated by our
second manual analysis. In many environments, programmers can only investigate the source
code using the technique used by our first manual analysis. In particular, programmers do not
have the time to manually instrument the source code (with print statements) and execute the
system to determine certain dynamic behaviors. In these environments, programmers are
limited to code review assisted with text search tools (such as grep) in order to determine the
ripple effect of a source code change on the software functionality. As the results of our case

studies on scalc and bool show, results of the first manual analysis were wrong four times.
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When further analyzing these results, we observe that when the first manual analyses
are wrong, those of Sonar are correct. This is true for the four cases of both scalc and bool.
We definitely want to find out if that trend generalizes. If it does generalize, it will indicate
that when the manual analysis is difficult and the programmer has a greater risk to commit an
error, Sonar has a high probability to compute the correct predictions, or at least a safe
prediction. Hence, the use of Sonar with Exercise and Activate relationships sampled from
system tests that satisfy our test selection criteria would be computing predictions of great
assistance to programmers. This approach of studying the usefulness of Sonar’s predictions

seems to be a promising direction, especially for large systems.
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Figure 18: E-R diagram of software components and their relations.

5 Related Works

To introduce related works, we reuse the E-R diagram presented in Chapter 1. Several
researchers have worked on relating software specifications to source code. From Figure 18,
we see three possible ways to relate software specification to source code: (1) one direct
approach, (2) two transitive approaches through design and constraints, or (3) using system
tests.

Antoniol et al. propose a direct approach. They directly map the functional
requirements to the source code. Their technique uses the similarity between the
requirements document vocabulary and the names of identifiers in the source code in order to
relate software functions (or functional requirements) to source code components [Antoniol
et al. 2000]. They performed a case study on a real-world system that showed that their
method traded off quite a bit of precision to get safe results. They found that to get safe

predictions they had to allow for a very low level of precision (12%). In other words, all




software functions affected are part of the predictions; however, only one out of eight
predictions is truly affected. When they tried to improve the precision, the safety of
predictions suffered dramatically. For example, when predictions are safe at 50% (half of the
affected software functions are not in the prediction), they found that the precision of the
prediction is at 54% (half of the software functions in a prediction are really not affected).
These percentages indicate that their method does not currently produce good results on real-
world systems. Moreover, their method can only study its reliability through empirical
studies. That is, there is no framework to study the general theoretical reliability of their
method. On the other hand, our method has enabled us to theoretically study the safety of
predictions. Moreover, from our case study, we found that our method seems to be more
accurate than that of Antoniol et al. However, their method has less setup costs than our
method since system tests are not required. Furthermore, with their method, a programmer
can query from any part of the source code, independent of whether this source code is
executable or not. In our case, the programmer can only query the source code components
that were exercised by a system test.

A second technique for relating software specifications to source code uses design
and/or formal constraints. In Figure 18, the two relations of interest are Satisfy and
Implement. Commercial companies such as Rational " or TogetherSoft™ have pushed this
approach. Gates et al. also propose a similar model where formal constraints in the form of
logic rules enable inferring relationships from source code to requirements [Gates and Della-
Piana 1997, Gates and Li 1998, Gates and Teller 2000]. When correctly applied, these
methods are sound and give good predictions. The downside is the setup cost. These methods

require the existence of a well-defined software development process where design and/or
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logic rules are created during the initial software development cycle and, more importantly,
are maintained in subsequent cycles of development and maintenance. Such maintenance
must not only update the design and/or logic rules but also update their Satisfy relationships
with software requirements. The manual effort of maintaining Satisfy relationships requires
tedious work. Over time, errors are likely to be introduced, which compromises the integrity
of Satisfy relationships. Developing a method that automates computing Satisfy relationships
may prove to be very challenging. In contrast, our method can be applied to software projects
that did not start with a rigorous process requiring design and logic rules to be created. In our
case, only system tests are needed to enable the application of our method. Currently, it is
still more common to find companies with up-to-date test suites for their software products
rather than with up-to date requirements document, design, and source code all in-sync. In
any case, product and practice suggested by Rational are gaining acceptance in the software
industry. Thus, in the future, our method may be combined with that of the Rational Unified
Process. Our method for predicting Potentially Affect relationships can then help verify the
integrity of Satisfy relationships. In particular, after a software maintenance has been tested
with an instrumented version of the system, the Potentially Affect relationships computed by
system testing can be used to point out the Satisfy relationships that need updating between
requirements and design components.

The third method, which is ours, requires system tests. Several efforts prior to ours
have used system tests to relate software functions to source code. However, they all
compute relationships between software functions and source code to go from a software
function to source code. In particular, they provide heuristics to locate the implementation of

a particular software function in the source code. In other words, the query starts from a
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software function, and the result predicts the source code components that implement that
software function. These methods do not answer the same question as ours. However, since
they also relate software functions to source code using system tests, it is important for us to
present them.

Parikh and Zvegintzov were the first to propose comparing the execution traces of
system tests to find information with potential relevance to specific software maintenance
[Parikh and Zvegintzov 1983]. In particular, they proposed to compare the exercise traces of
system tests that activate the software functions directly related to the proposed maintenance
with the exercise traces of similar system tests that do not activate the software functions
related to the maintenance. Segments of source code related to the first exercised trace but
not to the second are potential locations where the maintenance could take place. A
programmer can start investigating the source code from these segments. Wilde and Scully,
Reps et al., and Wong et al. implemented a tool to facilitate using this approach [Wilde and
Scully 1995, Reps et al. 1997, Wong et al. 1999]. Wilde and Scully implemented Software
Reconnaissance, and Wong et al. implemented xSuds. Both tools represent exercised traces
using node profiles. Reps et al.’s technique proposed to represent exercised traces using
acyclic intraprocedural paths (B-L paths) to identify Y2K related problem in the source code.
Only Wilde and Scully studied issues related to the theoretical aspect of their heuristics, but
to do so, they assumed the existence of an infinite number of system tests. On the other hand,
we have proposed a method to compute safe results for a large category of software functions
where only a finite number of system tests is required. Hence, unlike Wilde and Scully’s

method, our analysis remains tractable.
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6 Conclusion and future directions

This research has explored a method to identify the software functions potentially
affected by a change at a selected spot of the source code. This method uses system tests to
infer relationships between software functions and the source code of a software system. In
particular, the system tests sample Exercise and Activate relationships between the system
tests and the source code components and between the system tests and the software
functions, respectively. Our method then consists of joining the Exercise and Activate
relationships information to detect the ripple effects from a change in the source code on
software functions.

We found the conditions needed for our method to guarantee safe predictions for a
large class of software functions. Some of these conditions specify the source code coverage
that the system tests must achieve; in particular, all complete sets of interprocedural paths as
defined by Melski and Reps (M-R paths) must be exercised. Although a finite number of
system tests can achieve this coverage, no practical number of system tests can do it.
However, this source code coverage criterion proposes a finite limit to our problem of safely
predicting the software functions potentially affected by a source code change. Later works
may use this limit as a stopping criterion for their algorithm. Since there are a finite number
of complete sets of M-R paths, solutions will always be tractable. For example, we plan to
develop a method where a few system tests are used to compute seeds Exercise and Activate
relationships. These seeds will then be used to propagate information pertaining to software
function to all complete sets of M-R paths. Actually, further research is needed to reduce the

complete sets of M-R paths so that the predictions will remain safe and the level of precision



will improve. In fact, when all complete sets are covered, we know that the predictions will
be safe but highly imprecise.

We developed Sonar, a prototype tool that implements our method. Our case studies
used Sonar on small real systems. For these studies, we created a new set of test selection
criteria that were always satisfied by a few system tests. These criteria are generic; therefore,
more case studies on different software systems can be done to further test our test selection
criteria. Although our results are better than the method of Antoniol et al., they are still not
good enough to be used as seeds by a propagation technique such as the one described in the
previous paragraph. In fact, seeds relationships may only be used if we are highly confident
that the information propagated is safe and fairly precise. Currently, our two case studies
have shown that predictions are safe only 70% of the time. The percentage of safe predictions
would need to be in the upper nineties in order to qualify as good seeds.

Although our results are not good enough for programmers to rely only on them, our
case studies have shown that programmers’ manual analyses would benefit from our
predictions. In particular, a side effect of our studies has illustrated that each time the
programmer made an error in the manual predictions Sonar computed safe predictions. If this
tendency generalizes, it would definitely show that our method is useful to programmers
when they are manually performing difficult crucial analyses on how a change at a particular
spot of the source code impacts a software application’s functionality.

We now develop three types of future works. The first task is to improve Sonar. We
intend to tailor a program profiling technique that helps compute the Exercise relationships
between a partial execution of a system test and a partial exercise trace. Indeed, Exercise now

relates a system test to its complete exercise trace. In the case of interactive programs, a
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system test often activates a sequence of several unrelated software functions. It may be
useful to partition the execution of such a system test and only relate each partial execution to
its corresponding partial exercise trace. Such partitioning will likely improve the precision of
Sonar’s results. Creating a relation between the partial execution of system tests and partial
exercise traces would be fairly straightforward for systems that run as single-process, but, in
the case of multiprocess or multithreaded programs, it becomes much harder to create
relationships between partial execution. Since interactive programs with GUI often run in
multiple threads, it would be crucial for the new profiling technique to handle such cases.
Annotated grammar used to compute Activate relationships may assist the partitioning of a
system test into segments that correspond to its unrelated software functions. Recursion in
the rules of a feature grammar such as the one of the bank ATM presented in Chapter 2 may
help indicate the cycles in source code that determine the break points, that is, where a
software function terminated and another started executing.

We are also interested in implementing Sonar for analyzing Java programs. At the
moment, it is limited to the study of C and C++ programs. In the case of Java programs, we
could use the built-in profiling interface JVMPI to help compute Exercise relationships.

The second task is to improve on our current method for computing predictions by
not only using dynamic analysis but also using static analysis. We already mentioned this
direction earlier in this chapter when describing the use of seeds relationships and a
propagation technique. In particular, the goal is to dynamically obtain a few seeds
relationships that compute predictions with a high degree of safety and precision for a limited

number of source code components. In parallel, we can develop heuristics to propagate the
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information of seeds relationships throughout the rest of the source code based on static
analysis.

The third future task consists of conducting more experiments with Sonar to verify if
our claims generalize on large systems. In particular, we would like to collaborate with the
software industry and verify whether our claims remain true on real-world systems.
However, when studying the application of our method on a large project, it may not be
feasible to determine whether predictions are safe and precise. A more relevant question is:
are predictions providing new information to programmers? And is the new information
important to the point that it will avoid the introduction of bugs in a future release of a
software system? In parallel, we plan to perform a comparative study on the effort required
for particular maintenance in relation to the coupling between software functions in source
code. This could then define software metrics to be incorporated in Sonar.

Our desire is to help programmers in the process of modifying a program. So far,
programmers determine the ripple effect of source code modification on software function
using ad hoc techniques made of code and documentation review and, when possible, of
exercise traces review. Currently, we know that our method may not be capable of
guaranteeing safe and precise predictions when using only a reasonable set of system tests.
However, we find it important that we can bring new information to the table. In particular, if
the new information is important to the point that it will avoid the introduction of bugs in a

future release of a software system then our method is worth applying.
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ABSTRACT

When changing a line of source code, a programmer needs to know how changing
that line may affect the end-user functionality of the software system. In this dissertation, we
explore a method that uses system tests to relate software functions (units of software
functionality) to source code. This method can be used to predict the software functions
potentially affected by a change at a particular spot in the source code. The quality of a
prediction is measured in terms of its safety and its precision. These two attributes are
respectively addressed by answering the following questions: Are all potentially affected
software functions predicted, and are all software functions predicted potentially affected?

We define a source code coverage criterion in terms of sets of inter-procedural paths.
When a system test that satisfies this criterion is used, our method guarantees safe predictions
for a large class of software functions. For most systems achieving such source code
coverage may require an exponential number of system tests. Moreover, the precision of
predictions is not guaranteed. Consequently, we create a new set of test selection criteria on
the basis that all these new criteria must always be satisfied by a small number of system
tests. Case studies on two software systems, namely scalc and bool, show that sets of system
tests that satisfy our new criteria enable our method to compute safe predictions 70% of the

time and safe and precise predictions between 60—70% of the time.



These results are not at a level where our method would supersede a programmer’s
manual analysis. However, they complement manual predictions by improving a
programmer’s confidence in the result of her/his manual analysis. Incidentally, during our
two case studies, we observed that our method always corrected the programmer when he

made a wrong manual prediction.
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