
ARE METAMORPHIC
VIRUSES REALLY
INVINCIBLE?

Metamorphic viruses enjoy the apparent
invincibility because a virus writer has the
advantage of knowing the weak spots of AV
technologies. We could turn the tables if we can
identify similar weak spots in a metamorphic
virus. Indeed, Lakhotia and Singh close their
otherwise gloomy article with one bright spot:
“The good news is that a virus writer is
confronted with the same theoretical limit as anti-
virus technologies… It may be worth
contemplating how this could be used to the
advantage of anti-virus technologies.”

Arun Lakhotia, Aditya Kapoor, Eric Uday
University of Louisiana at Lafayette

SUMMARY
In the game of “hide and seek,” where a virus
tries to hide and the AV scanners tries to seek, the
winner is the one that can take advantage of the
other’s weak spot. So far a virus writer has
enjoyed the upper hand for she could exploit the
limitations of AV technologies. Metamorphic
viruses are particularly insidious in taking such
advantage. A metamorphic virus thwarts
detection by signature-based (static) AV
technologies by morphing its code as it
propagates. A virus can also thwart detection by
emulation-based (dynamic) technologies. To do
so it needs to detect whether it is running in an
emulator and change its behavior. So are
metamorphic viruses invincible?

This paper investigates the above remark and
identifies what promises to be the Achilles’ heel
of a metamorphic virus.

The key observation is that in order to mutate its
code, generations after generations, a
metamorphic virus must analyze its own code.
Thus, it too must face the limits of static and
dynamic analyses. Beyond that a metamorphic
virus has another constraint: it must be able to re-
analyze the mutated code that it generates. Thus,
the analysis within the virus, of how to transform
the code in current generation, depends upon the
complexity of transformations in the previous
generation. To overcome the challenges of static
and dynamic analyses, the virus has the following
options: do not obfuscate the transformed code in
any generation; use some coding conventions that
can aid it in detecting its own obfuscations; or
develop smart algorithms to detect its specific
obfuscations.

This paper uncovers the Achilles’ heel of a
metamorphic virus.

INTRODUCTION
When you consider all the tricks that a virus
writer can use to break AV scanners,
metamorphic viruses, such as Win32.Evol,
Metaphor, and Zmist, appear invincible. These
viruses transform their code as they propagate,
thus evading detection by analyzers that rely on
static information extracted from previously
observed virus code. The viruses also use code
obfuscation techniques to hinder deeper static
analysis. Such a virus can also beat dynamic
analyzers by altering its behavior when it detects
that it is executing under a controlled
environment.

So, are metamorphic viruses really invincible?
No, surely not as invincible, as they first seem to
appear. A metamorphic virus’ need to analyze
itself is its Achilles’ heel. If a virus can analyze
itself then an AV scanner should also be able to
analyze the virus by using whatever method a
virus uses to work around its own obfuscations. It
is then conceivable that one could create a reverse
morpher that applies the transformation rules of a
virus in reverse, thus undoing its attempt to hide
from scanners.

Lakhotia and Singh have discussed at length how
a virus writer can fool AV scanners, even those
based on the most advanced formal techniques
(Virus Bulletin, September 2003). The limits of
an AV scanner stem directly from the limits of
static and dynamic analysis techniques, the
foundation of all program analysis tools,
including optimizing compilers. For AV scanners,
the limits are debilitating for they operate in an
environment where a programmer is its
antagonist.

Is there a catch? Before one can use a virus’
methods on the virus itself, one has to extract
those methods first. You must first have a sample
of the virus in order to extract its transformation
rules, assumptions, and algorithms. This chicken-
and-egg problem is no different from that faced
by the current AV technologies for extracting
signatures and behaviors. The important thing is
that once a set of tricks are identified and
countered by the AV software, the virus writer is
forced to invent new tricks, thus raising the bar

Published in Virus Bulletin, December 2004 and
January 2005. Copyright © 2004-05 Virus Bulletin.

for the virus writer. Because of the additional
constraints, a virus writer has to be more
imaginative than the makers of AV scanners.

The rest of the article is organized as follows. The
next section provides an overview of mutation
engines. It is followed by a discussion on the
Achilles’ heel of a metamorphic virus. We then
present a case study by analyzing the
metamorphic engine of Win32.Evol. This leads
to a discussion on developing reverse morphers to
undo the mutations performed by a mutation
engine. The article closes with our conclusions
and some notes in the appendix.

MUTATION ENGINES

The heart of a metamorphic virus is a mutation
engine, the part of the virus code responsible for
transforming its program. A mutation engine
takes an input program and morphs it to a
structurally different but semantically equivalent
program.

Figure 1 identifies the three modules of any
mutation engine: disassembly module, reverse
engineering module and transformation module.
Development of each of these modules poses
different challenges and limitations.

In order to mutate its program, the virus must first
disassemble it. One of the important tasks of
disassembly is to differentiate between its code
and data. If a virus cannot distinguish between
code and data, it may transform the data, leading
to incorrect behavior. There are two known
strategies for disassembly: linear scan and
recursive traversal (Schwarz et. al. 2002, Ninth
Working Conference on Reverse Engineering,
2002). Each of these strategies has their own
limitations (Linn, Debray 2003, Conference on
Computer and Communications Security).

The third module, Transform, generates a
transformed version of the original program. It
must transform a program significantly to avoid
being detected by a signature-based AV scanner.
In the simplest case, the module may transform
one instruction at a time. On the other extreme the

module may analyze blocks of code and replace
them with equivalent code fragments. To ensure
correctness of transformation a block must be a
single entry single exit piece of code. That means,
that control should not jump into the middle of
the block, or else it becomes harder to create
semantic preserving transformations. One could
also imagine transformations that replace
segments of control flow graphs (CFGs) with
other control flow graphs.

Dissamble Reverse
Engineer Transform

Mutation Engine

Program Program

Figure 1. Stages of program transformation

The second module, Reverse Engineer (RE),
supports Transform. The challenges posed to this
module depend upon the technique chosen for
transformation. As the transformations become
more complex, so does the work of reverse
engineering. If Transform works on an
instruction at a time then the RE module does not
need to do anything. However, if Transform
works on blocks of code, the RE module must
identify blocks. Similarly, if Transform works on
CFGs, the RE module should identify CFGs.

THE ACHILLES’ HEEL
Lakhotia and Singh argue that virus writers
enjoyed the upper hand because they can exploit
the limitations of static analysis as well as
dynamic analysis to hide their code. Junk byte
insertion, jump into the middle of instruction and
self-modifying codes are few obfuscation
techniques that makes it even harder to statically
distinguish between data and code in a binary
executable. Insertion of large loops and anti-
debugging techniques tests the patience and speed
of dynamic analysis. A mutation engine that
changes the virus code with every few
generations and as well adds the complex
obfuscation techniques to the newly created virus
body might create a virus that is close to
invincible.

Figure 1 shows that the steps involved in
mutating a program are very similar to the steps
outlined by Lakhotia and Singh for checking
whether a program is malicious using program
analysis techniques. There are two differences.
First, a metamorphic virus uses the analysis of the
first two steps for creating a transformed
program. A scanner would use similar
information to determine whether a program is
malicious. Second, the output of the last step of a
metamorphic virus becomes its input, albeit in a
different execution of the program.

The feedback loop in Figure 1 has catastrophic
consequences for a virus. A metamorphic virus
has to analyze its own mutated code in order to

further mutate it. The complexity of analyzing its
own code in the next generation increases with
the complexity of mutations and obfuscations in
the current generation. This increased complexity
most likely will increase the virus’ size or its
runtime, thus making it vulnerable to detection.

To understand the problems faced in writing a
metamorphic virus, let us analyze an obfuscation
technique introduced by a non-metamorphic virus
Netsky.Z. The virus Netsky.Z introduces an
obfuscation technique called self-modifying code.
The code is shown below. Here the virus is
changing code at location 00403E6E at run time.
It is adding 28h to the opcode 90h, which
converts the NOP instruction to MOV instruction
thus changing the code, as shown in Figure 2(b).
If we try to analyze it statically we get the wrong
analysis as shown by Figure 2(a).

Location

Hex Disassembly

00403E5F B8 6E3E4000 MOV EAX, 00403E6E

…

00403E64 8000 28 ADD BYTE PTR DS:[EAX],28

…

00403E6E 90 NOP

00403E6F CB RETF

00403E70 76 DB 76

00403E71 39 DB 39

00403E72 FF DB FF

00403E73 50 DB 50

Hex Disassembly

00403E5F B8 6E3E4000 MOV EAX, 00403E6E

…

00403E64 8000 28 ADD BYTE PTR DS:[EAX],28

…

00403E6E B8 CB7639FF MOV EAX, FF3976CB

00403E6F

00403E70

00403E71

00403E72

00403E73 50 PUSH EAX

Figure 2 (a). Obfuscation through runtime code
modification

Location

Figure 2(b). Modified Code

Now suppose a metamorphic virus writer has
mutated its code such that the current generation
is self-modifying, to further mutate its code it has

to statically know the instruction that is changing
at runtime. This challenge poses a serious
limitation to the obfuscation techniques a
metamorphic virus can impose during mutation.

This then highlights the Achilles’ heel of a
metamorphic virus: A metamorphic virus must be
able to disassemble and reverse engineer itself.
Thus, a metamorphic virus cannot utilize
obfuscation techniques that make it harder or
impossible for its code to be disassembled or
reverse engineered by itself.

WIN32.EVOL: CASE STUDY
Win32.Evol is a relatively simple metamorphic
virus. Nonetheless, it is a good example for a case
study since the virus demonstrates properties
common to metamorphic viruses, i.e., it
obfuscates calls made to system libraries and it
mutates its code before propagation.

90

The rest of this section describes the details of
these methods.

Obfuscating System Calls
In order to perform any malicious act, a program
would access the disk or the network. Access to
these resources is controlled by the operating
system. Thus, a quick way to determine whether a
program is malicious is to look at the system calls
it makes.

Win32.Evol does not use ‘normal’ procedure to
make system calls. Thus, a disassembler, such as
IDAPro, cannot directly determine the system
calls it makes. It uses the following strategies to
obfuscate its calls:

1) It computes the address of the kernel32.dll
function GetProcAddress() by searching for
the 8 byte sequence [0x55 00 01 F2 51 51 ec
8b] on Windows 20001.

2) Keeps the address of GetProcAddress() in its
stack-based global data store, maintained at a
certain distance from a magic marker pushed
on the stack.

3) Uses a ‘return’ instruction to make a call to
GetProcAddress().

1 The Win32.Evol binary at http://vx.netlux.org
looks for the byte sequence [0x55 00 00 0f 51 51
ec 8b], probably for a different version of
Windows.

http://vx.netlux.org/

4) Maintains names of functions to be called as
immediate, double-word operands of multiple
instructions, not as strings in data store.

Mutation Engine
The mutation engine of Win32.Evol is a function
consisting of the Disassembly and Transform
modules of Figure 1. It does not have a Reverse
Engineering module since it transforms an
instruction at a time.

The mutation engine is located at address
00401FD7. It takes three inputs:

1. The Relocatable Virtual Address (RVA) of
loaded virus code. RVA = 401000†

2. The length of the original virus code. LEN =
arg_4 (1847)†

3. Pointer to buffer (BUF1) to store the
transformed code. (Max Size buffer = 4 *
LEN = arg_8 (7F0000)†

The output of the engine is the transformed
program, which is placed in the buffer BUF1.

Disassembly module
The disassembly module of Win32.Evol uses the
linear sweep algorithm. It checks whether a byte
starts an instruction, if it does then it gets the size
of the instruction, and disassembles the byte
following the instruction.

If during disassembly the program comes across
some byte that is not an instruction, the mutation
process is abandoned.

 Location

 Figure 3. Invalid instruction check

Instruction
0040227A cmp al, 0FEh
0040227C jz short loc_402282

; If the byte under analysis is FE
; goto 00402282

0040227E cmp al, 0FFh
; If the byte is FF goto 00402282

00402280 jnz short loc_4022B5
; compare al with next opcode.

00402282 mov al, [esi+1]
; If byte is either 0xFE or 0xFF load ModR/M
; byte in al

00402285 and al, 38h
00402287 ror al, 3
0040228A cmp al, 7
0040228C jz loc_402532

; If value of bits 3, 4, 5 of ModR/M byte are
; 1 the instruction does not exist
; Exit mutation process

Instruction
00402118 cmp al, 0Fh

 ; Checking for two - byte opcode.
0040211A jnz short loc_402152

 ;compare al with next opcode.
0040211C mov cl, [esi+1]
0040211F cmp cl, 80h
00402122 jb loc_402532

; If byte following 0x0F is less than 0x80
; then exit mutation process

00402128 cmp cl, 90h
0040212B jnb loc_402532

; If byte following 0x0F is greater tha n
; 0x90 then exit mutation process

Transform Module

Instructions
004023B0 cmp al, 0xA4

;if byte is not 0xA4 go to ne x t step
004023B2 jnz 004023CE
004023B4 add esi,1

; Increment esi to analyze next byte
004023B7 mov eax, 83068A 50
004023BC stos dword ptr es:[edi]
004023BD mov eax, 78801C 6
004023C2 stos dword ptr es:[edi]
004023C3 mov eax, 5801C783
004023C8 stos dword ptr es:[edi]

; If a l contains 0xA4 , i nsert the equivalent byte
; sequence 50 8A 06 83 C6 88 07 83 C7 01 58
; at the buffer location pointed to by edi

004023C9 jmp 00401FF8
; goto analyze next byte

The mutation engine processes only a limited
range of opcodes of the x86 instruction set. For
instance, does not process floating-point
instructions. The mutation is abandoned if an

instruction outside its accepted range is
encountered.

Figure 4 shows the code fragment from
Win32.Evol doing the instruction range check.

 Location

Figure 4. Invalid instruction ‘range’ check

The Transform module maps an instruction into
one or more instructions. A detailed list of all
transformations is given in Appendix A and B.

The transformation rules can be classified into
two categories: deterministic and
nondeterministic. A deterministic rule always
transforms an instruction to the exact same
sequence of instructions. For example, the
following rule for transforming instruction movsb
(opcode 0xA4) is a deterministic transformation
rule.

movsb Î push eax
mov al, [esi]
add esi, 1
mov [edi], al
add edi, 1
pop eax

Figure 5 shows the procedure of generating a
fixed transformation for byte 0xA4 representing
movsb.

 Location

Figure 5. Transformation of byte 0xA4.

 † Value during test run of Win32.Evol in

debugger.

A non-deterministic rule may transform an
instruction to different sequence of instructions.
The following two rules demonstrate non-
deterministic rules.
mov eax, [ebp+4] Æ push ecx
(8B 45 04) mov ecx, ebp

add ecx, 41h
mov eax, [ecx-3Dh]
pop ecx

mov eax, [ebp+4] Æ push esi
(8B 45 04) mov esi, [ebp+4]

mov eax, esi
pop esi

Whenever the code introduced by a rule modifies
a register, say reg, which was not modified by the
original instruction, the mutated code is wrapped
between a ‘push reg’ and ‘pop reg’ instructions.

Patching Relocatable Addresses
Win32.Evol does not contain any jump and call
instructions that use absolute addresses, rather all
the branching instructions uses relative jumps. It
also does not contain indirect jumps and calls,
where target address is available in a register or
some other memory location. Since the
transformations replace one instruction by
multiple instructions, the mutation engine must
also modify the relative addresses of the jump and
call instructions.

To update the relative addresses, the mutation
engine maintains another buffer, BUF2 of size 16
* length of virus code. For each instruction of the
virus program, BUF2 has four entries as shown in
Table 1. The first entry of table is Source, it
points to the address of the nth instruction in the
virus code. The second entry, Dest, points to the
address in BUF1 where the transformed virus
code is stored. (Note that mutation engine takes
BUF1 as input). The other two entries are zero
unless the instruction carries a relocatable offset.
In case the instruction carries a relocatable offset,
the third entry points to the address where the
calculated offset is to be stored. The last entry
stores the value of the current offset.

Table 1. A record in the buffer BUF2

The change in length of code results in change of
relative addresses. To update the relative offsets,
the algorithm searches for all the non-zero ‘Entry
3’ locations i.e. instructions having offsets. If an

instruction I with a non-zero offset is found, it
adds the original offset (Entry 4) to Source (Entry
1), to get address a. The address a is original
destination address in Win32.Evol code. Since
this destination address should start a valid
instruction, there should be a valid record in
BUF2 such that Source is equal to a. Note that
BUF2 has records corresponding to each valid
instruction in virus code. The difference between
values of Dest at location of instruction I and
Dest at location a gives us the new offset. This
calculated offset gives number of bytes added in
the transformed code. The offset is then patched
back to the location pointed by Entry 3 at location
of instruction I.

DEFEATING WIN32.EVOL
Win32.Evol is no longer considered a major
threat since most current AV scanners can catch it
because of its relatively simple morphing engine.
Yet, it may be worth contemplating how it could
be defeated. The insights could lead to
development of methods for defeating other such
viruses.

Win32.Evol uses some very interesting
techniques to obfuscate system calls. It is
probably beyond the scope of current static
analysis techniques to undo these obfuscations
and identify the system functions being called by
the virus. It appears to be futile to follow that
direction.

However, the limitations of the metamorphic
engine of Win32.Evol are clearly its weaknesses.

• It uses linear sweep for disassembling itself.
Hence, it can be disassembled by most
disassembler.

• It cannot use indirect jumps and calls because
it cannot correctly transform them. Thus, its
control flow graph can be created easily.
Thereby simplifying its reverse engineering.

• Its deterministic transformation rules
essentially replace a certain byte with a
certain fixed sequence of bytes. These rules
can be applied in reverse. Entry 1

(DWord)
Entry 2
(DWord)

Entry 3
(DWord)

Entry 4
(DWord)

Source

Dest

next address
following
opcode

Original
offset.

• The code generated by non-deterministic
transformation rules follows the pattern: push
reg, instructions, pop reg, where the
instructions does not contain push or pop.
The push and pop instructions form a pair of
parenthesis. All such pairs are properly
matched in the generated code. It should be

possible to undo the transformation using a
parenthesis matching algorithms.

Now consider a program Undo.Evol that does the
following: It disassembles a program using linear
sweep and then applies the transformations of
Win32.Evol in reverse. The program continues to
apply the transformations until none of the
transformations can be applied.

Will Undo.Evol program help in detecting
versions of Win32.Evol?

Since the transformations of Win32.Evol always
increase the code size, when applied in reverse
they will always decrease the code size. Thus,
Undo.Evol will always terminate. It is a matter of
further study whether Undo.Evol will always
terminate on a single program. If it can be shown
that Undo.Evol terminates on a single program,
say Min.Evol, then to detect Win32.Evol one may
apply Undo.Evol on a binary and check for the
signature of the Min.Evol.

CONCLUSIONS
Anti-virus scanner technology is constrained by
the theoretical limits of program analysis
techniques. A metamorphic virus is a
manifestation of these limits. It turns out that to
enjoy its advantage, a metamorphic virus too
depends on program analysis techniques, because
in order to mutate, a metamorphic virus must
analyze its own code. Thus a metamorphic virus
cannot use tricks that will fool its own analyzer.
This handicap of a metamorphic virus can
potentially be exploited to develop AV scanners.
However, to revert the mutations in order to
defeat a virus, the AV research community faces
several key questions, such as: How does one
extract the assumptions of a virus and the
transformations it performs? Will reverting the
transformations lead to a single result? Will the
reverse transformations terminate in polynomial
time? How does one separate virus code from the
code of the host? Answers to some of these
questions would be crucial in developing
technology that takes advantage of a virus’
Achilles’ heel.

APPENDIX
This appendix summarizes the transformations
performed by Win32.Evol. The description uses
the following symbols.

� imm Æ byte | word | dword
� A Æ <reg> | [<reg>] | [<reg>+imm]

� reg Æ al | ah | ax | eax | cl | ch | cx | ecx | dl
| dh | dx | edx | bl | bh | bx | ebx | sp | esp |
bp | ebp | si | esi | di | edi
� B Æ A – {<reg>}
� imm(i) Æ imm

The meaning of these symbols follows from x86
architecture descriptions.

Deterministic Mutations
The following table summarizes the deterministic
mutations. The first column of the table gives the
opcode(s), the second column gives the
mnemonic of the instruction(s) or describes the
instructions, and the third column gives the result
of transformation.

Opcodes
(HEX) Instruction Deterministic

Mutations

70 – 7F

Short
displacemen
t jump on
condition.

Long displacement
jump on condition.
(0x0F) 0x80 –
0x8F two byte
opcode

EB jmp byte jmp word/dword
(0xE9)

FF, FE push A mov eax, A
push eax

68, 6A push imm mov eax, imm
push eax

AA/AB stos(b/d) mov [edi], eax

add edi, (1/4)

AC/AD loads(b/d) mov al, [esi]
add esi, (1/4)

A4/A5 movs(b/ w)

push eax
mov al, [esi]
add esi, (1 or 4)
mov [edi], al
add edi, (1 or 4)
pop eax

map([0-
3] [4-5]),
map([0-
2] [C-D])
A8, A9

(add/adc/and
/xor/or/sbb/s
ub, test)
<reg>, imm

Length of
instruction
increases due to
addition of
ModR/M byte.
Instruction remains
same.

 Instruction Identity
Mutations

E9, E8

jmp
word/dword
call
word/dword

Unchanged

81 C4, add (e)sp, … Unchanged

81 EC sub (e)sp,
….

C0, C1,
D0, D3

rol, ror, shl,
sar, shr,
rcr,sal, rcl

Unchanged

C2
ret near
word / ret
near

Unchanged

CD int <byte> Unchanged
8B EC mov ebp,esp Unchanged
F3 rep Unchanged

F6, F7
test
byte/(d)wor
d

Unchanged

50 – 5F push/pop Unchanged
90 Nop Unchanged

Non-Deterministic Mutations
The non-deterministic mutations replace an
instruction by one of many alternative sequences
of instructions. The specific sequence is chosen at
random. We have extracted some sample
transformations performed by the virus.

Win32.Evol transforms the following instructions
are non-deterministically.

mov A, <reg>
 mov <reg>, A
lea <reg>, B
add/adc/and/xor/or/sbb/sub A, <reg>
add/adc/and/xor/or/sbb/sub <reg>, A
inc/dec <reg>

All of the above are register-modifying
instructions. The following strategy is used to
generate the transformed code: transfer the
register whose value is modified to another
register, perform the original computation on the
new register, transfer the value back to the new
register. To ensure that the above does not change
behavior, the new register value is saved by
pushing on the stack before changing it and is
popped back after the computation is complete.

 Here are some example transformations:
 mov [ebp+8], eax Æ push ecx

 mov ecx, ebp
 add ecx, 12h
 mov [ecx-0Ah], eax
 pop ecx

mov al, [eax-0Dh] Æ push edx
 mov dh, [eax-0Dh]
 mov al, dh

 pop edx

mov eax, [ebp+4] Æ push ecx

 mov ecx, ebp
 add ecx, 41h
 mov eax, [ecx-Dh]
 pop ecx

	SUMMARY
	INTRODUCTION
	MUTATION ENGINES
	THE ACHILLES’ HEEL
	WIN32.EVOL: CASE STUDY
	Obfuscating System Calls
	Mutation Engine
	Disassembly module
	Transform Module
	Patching Relocatable Addresses

	DEFEATING WIN32.EVOL
	CONCLUSIONS
	APPENDIX
	Deterministic Mutations
	Non-Deterministic Mutations

