
 

K. Julisch and C. Kruegel (Eds.): DIMVA 2005, LNCS 3548, pp. 1 – 18, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Analyzing Memory Accesses in Obfuscated x86 
Executables 

Michael Venable, Mohamed R. Chouchane, Md Enamul Karim, 
 and Arun Lakhotia 

Center for Advanced Computer Studies, University of Louisiana at Lafayette, LA 
{mpv7292, mohamed, mek, arun}@louisiana.edu 

Abstract. Programmers obfuscate their code to defeat manual or automated 
analysis. Obfuscations are often used to hide malicious behavior. In particular, 
malicious programs employ obfuscations of stack-based instructions, such as 
call and return instructions, to prevent an analyzer from determining which 
system functions it calls. Instead of using these instructions directly, a 
combination of other instructions, such as PUSH and POP, are used to achieve 
the same semantics. This paper presents an abstract interpretation based 
analysis to detect obfuscation of stack instructions. The approach combines 
Reps and Balakrishnan’s value set analysis (VSA) and Lakhotia and Kumar’s 
Abstract Stack Graph, to create an analyzer that can track stack manipulations 
where the stack pointer may be saved and restored in memory or registers. The 
analysis technique may be used to determine obfuscated calls made by a 
program, an important first step in detecting malicious behavior. 

1   Introduction 

Programmers obfuscate their code with the intent of making it difficult to discern 
information from the code. Programs may be obfuscated to protect intellectual 
property and to increase security of code (by making it difficult for others to identify 
vulnerabilities) [1, 2]. Programs may also be obfuscated to hide malicious behavior 
and to evade detection by anti-virus scanners [3]. The concern here is detecting 
obfuscated malicious code. 

Malicious code writers have many obfuscating tools at their disposal such as 
Mistfall and CB Mutate (provided by the BlackHat community) as well as 
commercially available tools such as Cloakware and PECompact. They may also 
develop their own tool. Some known obfuscation techniques include: variable 
renaming, code encapsulation, code reordering, garbage insertion, and instruction 
substitution [2]. We are interested in instruction substitution of codes performed at the 
assembly level, particularly for call obfuscations. 

A common obfuscation observed in malicious programs is obfuscation of call 
instructions [3]. For instance, the call addr instruction may be replaced with two push 
instructions and a ret instruction, the first push pushing the address of the instruction 
after the ret instruction (the return address of the procedure call), the second push 
 



2 M. Venable et al. 

 

 
 
 
 
pushing the address addr (the target of the procedure call). The third instruction, ret, 
causes execution to jump to addr, simulating a call instruction.  Fig. 1 illustrates 
another form of obfuscation.  In this example, Line L3 pushes the return address onto 
the stack and line L4 jumps to the function entry.  No call statement is present. The 
code may be further obfuscated by spreading the instructions and by further splitting 
each instruction into multiple instructions. 

Metamorphic viruses are particularly insidious because two copies of the virus do 
not have the same signature.  A metamorphic virus transforms its code during each 
new infection in such a way that the functionality is left unchanged, but the sequence 
of instructions that make up the virus is different [4].  As a result, they are able to 
escape signature-based anti-virus scanners [5, 6]. Such viruses can sometimes be 
detected if the operating system calls made by the program can be determined [7]. For 
example, Symantec’s Bloodhound technology uses classification algorithms to 
compare the system calls made by the program under inspection against a database of 
calls made by known viruses and clean programs [8]. 

The challenge, however, is in detecting the operating system calls made by a 
program. The PE and ELF formats for binaries include a mechanism for informing the 
linker about the libraries used by a program, but there is no requirement that this 
information be present. For instance, in Windows, the entry point address of various 
system functions may be computed at runtime via the Kernel32 function 
GetProcAddress. The Win32.Evol worm uses precisely this method for obtaining the 
addresses of kernel functions and also uses call obfuscation to further deter reverse 
engineering. 

Obfuscation of call instructions breaks most virus detection methods based on 
static analysis since these methods depend on recognizing call instructions to (a) 
identify the kernel functions used by the program and (b) to identify procedures in the 
code. The obfuscation also takes away important cues that are used during manual 
analysis. We are then left only with dynamic analysis, i.e., running a suspect program 
in an emulator and observing the kernel calls that are made. Such analysis can easily 
be thwarted by what is termed as a “picky” virus—one that does not always execute 
its malicious payload. In addition, dynamic analyzers must use some heuristic to 
determine when to stop analyzing a program, for it is possible the virus may not 
terminate without user input. Virus writers can bypass these heuristics by introducing 

Main:    Max: 
L1: PUSH 4  L6: MOV eax, [esp+4] 
L2: PUSH 2  L7: MOV ebx, [esp+8] 
L3: PUSH offset L5 L8: CMP eax, ebx 
L4: JMP Max  L9: JG L11 
L5: RET    L10: MOV eax, ebx 
     L11: RET 8 

Fig. 1. Sample use of call obfuscation 



 Analyzing Memory Accesses in Obfuscated x86 Executables 3 

 

a delay loop that simply wastes cycles. It is therefore important to detect obfuscated 
calls for both static and dynamic analysis of viruses. 

To address this situation, this paper incorporates the work from [9] with the work 
discussed in [3]. In particular, the notion of Reduced Interval Congruence (RIC) will 
be employed to approximate the values that a register may hold. However, unlike in 
[9], registers such as esp will hold values that specifically represent some node or 
group of nodes in an abstract stack graph. Since graph nodes are not suitable to be 
represented by RIC, we maintain both the stack location and RIC information when 
performing our analysis. 

This paper is organized as follows.  Section 2 discusses work related to the area of 
static analysis.  Section 3 defines the domain that encompasses this work.  Sections 4 
and 5 consist of formal specifications of various functions used during the analysis.  
Section 6 contains an example demonstrating the analysis process.  Section 7 
describes our future goals in this area and section 8 concludes this paper. 

2   Related Work 

In [1], Linn and Debray describe several code obfuscations that can be used to thwart 
static analysis.  Specifically, they attack disassemblers by inserting junk statements at 
locations where the disassembly is likely to expect code.  Of course, in order to 
maintain the integrity of the program, these junks bytes must not be reachable at 
runtime.   

Linn and Debray take advantage of the fact that most disassemblers are designed 
around the assumption that the program under analysis will behave “reasonably” 
when function calls and conditional jumps are encountered.  In the normal situation, it 
is safe to assume that, after encountering a call instruction, execution will eventually 
return to the instruction directly following the call.  However, it is easy for an attacker 
to construct a program that does not follow this assumption, and by inserting junk 
bytes following the call, many disassemblers will incorrectly process the junk bytes as 
if they were actual code.  Another obfuscation technique involves using indirect 
jumps to prevent the disassembler from recovering the correct destination of a jmp or 
call, thereby resulting in code that is not disassembled. 

The authors show that, by using a combination of obfuscation techniques, they are 
able to cause, on average, 65% of instructions to be incorrectly diasassembled when 
using the popular disassembler IDA Pro from DataRescue.  To counter these 
obfuscations, it would be necessary to (1) determine the values of indirect jump 
targets and (2) correctly handle call obfuscations.  Doing so will help avoid the junk 
bytes that confound many disassemblers.  

Balakrishnan and Reps [9] show how it is possible to approximate the values of 
arbitrary memory locations in an x86 executable.  Their paper introduces the Reduced 
Interval Congruence (RIC), a data structure for managing intervals while maintaining 
information about stride.  Previous work in this area, such as [10], discuss how 
intervals can be used to statically determine values of variables in a program, but the 
addition of stride information makes it possible to determine when memory accesses 
cross variable boundaries, thus increasing the usefulness of such an approach. 



4 M. Venable et al. 

 

The paper, however, assumes that the executable under analysis conforms to some 
standard compilation model and that a control-flow graph can be constructed for the 
executable under analysis. Incorrect results may arise when applied to an executable 
consisting of obfuscations typically found in malicious programs.  

Kumar and Lakhotia [3] present a method of finding call obfuscations within a 
binary executable.  To accomplish this, they introduce the abstract stack graph, a data 
structure for monitoring stack activity and detecting obfuscated calls statically. The 
abstract stack associates each element in the stack with the instruction that pushes the 
element. An abstract stack graph is a concise representation of all abstract stacks at 
every point in the program. If a return statement is encountered where the address at 
the top of the stack (the return address) was not pushed by a corresponding call 
statement, it is considered an obfuscation attempt and the file is flagged as possibly 
malicious. 

The limitation of this approach is that the stack pointer and stack contents may be 
manipulated directly without using push and pop statements.  Doing so bypasses the 
mechanisms used in [3] for detecting stack manipulation and may result in an 
incorrect analysis.  Also, indirect jumps cannot be properly analyzed, since there is no 
mechanism for determining jump targets of indirect jumps. These limitations may be 
overcome by combining their stack model with the work in [9] for analyzing the 
content of memory locations. 

3   Definitions 

The domain of our analysis method consists of RICs, stack-locations, values, and a 
state.  They are briefly discussed below. 

3.1   RIC 

A Reduced Interval Congruence (RIC) is a hybrid domain that merges the notion of 
interval with that of congruence. Since an interval captures the notion of upper and 
lower bound [10] and a congruence captures the notion of stride information, one can 
use RIC’s to combine the best of both worlds. An RIC is a formal, well defined, and 
well structured way of representing a finite set of integers that are equally apart. 

For example, say we need to over-approximate the set of integers {3,5,9}. An 
interval over-approximation of this set would be [3,9] which contains the integers 3, 
4, 5, 6, 7, 8, and 9; a congruence representation would note that 3, 5, and 9 are odd 
numbers and over-approximate {3,5,9} with the set of all odd numbers 1,3,5,7,…. 
Both of these approximations are probably much too conservative to achieve a tight 
approximation of such a small set. The set of odd numbers is infinite and the interval 
[3,9] does not capture the stride information and hence loses some precision. 

In the above example, the RIC 2[1,4] +1, which represents the set of integer values 
{3, 5, 7, 9} clearly is a tighter over-approximation of our set. 

Formally written, an RIC is defined as: 

RIC := a×[b,c]+d = {x | x = aZ+d where Z∈[b,c]} 



 Analyzing Memory Accesses in Obfuscated x86 Executables 5 

 

3.2   Stack-Location 

A stack-location is an abstract way of distinguishing some location on the stack. It is 
“abstract” in the sense that no attempt is made to determine the location’s actual 
memory address.  Instead, each stack-location is represented by a node in an abstract 
stack graph.  Each stack-location stores a value, discussed next. 

3.3   Value 

Each stack-location and register stores a value.  A value is an over approximation of 
the location’s run-time content and may be a stack-location, RIC, or both.  If an RIC 
or stack-location is ⊤, its value is either not defined or cannot be determined.  Also, a 
stack-location may be given the value ⊥, which represents the bottom of the stack. 

More formally, 

VALUE := RIC⊤ × P(STACK_LOCATION)⊤ 

3.4   State 

The state represents the overall configuration of the memory and registers at a given 
program point.  The state consists of a mapping from registers to values, a mapping 
from stack-locations to values, and the set of edges in the stack graph. 

Formally, 

STATE := (REGISTER → VALUE,  
   STACK_LOCATION → VALUE,  
   STACK_LOCATION × STACK_LOCATION) 

4   Operations 

4.1   Arithmetic Operations 

Functions are defined for performing various arithmetic operations on values.  The 
result of each operation depends on whether the value represents a stack-location or 
RIC.  For instance, adding two RICs results in a new RIC, where the new RIC is an 
over-approximation of the sum of the two RICs given as input.  Addition of an RIC 
and a stack-location outputs a set of stack-locations.  These stack-locations are 
obtained by traversing the abstract graph, starting from the stack-location given as 
input, and stopping after n nodes have been traversed, where n is a number included 
in the RIC given as input.  This is equivalent to adding some number to a stack 
address and getting some other stack address as output (Fig. 2).  Adding two stack-
locations is the same as adding two stack addresses, and since we make no attempt to 
determine the addresses of locations on the stack, we are unable to perform the 
addition.  Thus, addition of two stack-locations results in an undefined value.  The ⊔ 
operator, seen in the definition of +, returns the union of two values. 

 



6 M. Venable et al. 

 

Fig. 2. Possible abstract stack (a) before adding to esp (b) after adding to esp 

add: VALUE × VALUE × STATE → VALUE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) × s → (+(a, c), ⊤) 

(a, ⊤) × (⊤, d) × s  → (⊤, +(a, d, s)) 

(a, ⊤) × (c, d) × s  → (+(a,c), +(a, d, s)) 

(⊤, b) × (c, ⊤) × s  → (⊤, +(c, b, s)) 

(a, b) × (c, ⊤) × s  → (+(a,c), +(c, b, s)) 

Anything else  → (⊤,⊤) 

+: RIC × RIC → RIC 

+(R1, R2) = ⊔ R1 ⊞ a, where a ∈ R2 

+: RIC × STACK_LOCATION × STATE → P(STACK_LOCATION)  

+(R, s, state) = ⊔ rth successor of s, where r ∈ R 

The ⊞ operator shifts an RIC by a specified amount and, in effect, adds a number 
to an RIC. 

⊞: RIC × ℕ → RIC 

(a[b,c]+d) ⊞ x = (a[b,c]+d+x) 

Subtraction is similarly defined.  Two RICs can be subtracted to produce another 
RIC.  A stack-location minus an RIC results in new un-initialized nodes being added 
to the graph (Fig. 3).  Also, since an RIC can represent multiple numbers, the 
subtraction operation may result in multiple stack-locations as the result.  This means 
that there is more than one possible stack configuration at that program point. 

 
  

 
 
 
 
 
 
 
 
 (a)   (b) 

⊥ 

N1 

N2 

esp 

⊥ 

N1 

N2 

esp+4 



 Analyzing Memory Accesses in Obfuscated x86 Executables 7 

 

 

Fig. 3. Possible abstract stack (a) before subtracting from esp (b) after subtracting from esp 

Adding new nodes, however, may not always be the best approach.  For instance, if 
some number is subtracted from register esp, then it is referencing some location 
above the top of the stack.  In this case, adding new un-initialized nodes to the stack 
graph is probably the correct approach.  However, if some number is subtracted from 
register eax and eax points to some stack-location, should new nodes be added to the 
graph or is it simply trying to access some stack-location that has been previously 
created?  Further work in this area will help determine the best answer. 

Moving on, an RIC minus a stack-location is undefined, since this would require 
knowing the actual address of the stack-location, something that we do not know.  For 
similar reasons, a stack-location minus a stack-location results in an undefined value. 

The function -* is provided to assist in adding multiple nodes to the abstract stack 
graph.  It takes as input a stack-location, RIC, and state and recursively adds nodes, 
starting from the given stack-location and stopping once the specified number of 
nodes have been added.  The function also tracks the set of stack-locations that arise 
as a result of the subtraction.  For example, esp minus the RIC 4[2,3] is equivalent to 
esp minus 8 and esp minus 12, and would cause three nodes to be added: esp - 4, esp - 
8, esp - 12.  Of these nodes, esp - 8 and esp - 12 are in the set of stack-locations 
resulting from the subtraction. 

sub: VALUE × VALUE × STATE → VALUE × STATE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) × s → (-(a, c), ⊤) × s 

(⊤, b) × (c, ⊤) × s → (⊤, r) × s2,  where (r, s2) = -(b, c, s) 

(a, b) × (c, ⊤) × s → (-(a, c), r) × s2,  where (r, s2) = -(b, c, s) 

Anything else → (⊤,⊤) × s 
 

-: RIC × RIC → RIC  

-(R1, R2) = ⊔ R1 ⊞ -a, where a ∈ R2 
 

 
 
 
 
 
 
 
 (a)   (b) 

⊥ 

N1 

N2 

esp 

⊥ 

N1 

N2 

esp-4 

N3 



8 M. Venable et al. 

 

-: STACK_LOCATION × RIC × STATE → P(STACK_LOCATION) × STATE 
-(s, R, state) =  -*(s, R, state, ∅) 
 
-*: STACK_LOCATION × RIC × STATE × P(STACK_LOCATION) → 

 P(STACK_LOCATION) × STATE 
-*(s, R, state, result) =   let (s2, state2) = add-node(s, state) in  

 –*(s2, -(R,1), state2, (1∈R) → (result ∪ {s2}) ▯ result)  
   if some member of R is > 0 

 result × state  if no member of R is > 0 
 
The add-node function, which appears in the definition of -*, assists other 

functions by providing an easy mechanism to add new nodes to the stack.  The nodes 
added are not initialized.  This is useful in situations where some number is subtracted 
from esp.  In these cases, new nodes are added to the stack with undefined values.  
The add-node function returns a new state along with the stack-location that is at the 
top of the stack. 

add-node: STACK_LOCATION × STATE → STACK_LOCATION × STATE 

add-node(loc, state) = m × (state↓1, [m ↦ (⊤,⊤)]state↓2, (m, loc) ∪ state↓3) ) 
 
Multiplication of two RICs results in an RIC that over-approximates the 

multiplication of each number expressed by the two RICs.  Clearly, without knowing 
the actual address of a stack-location, it is not possible to multiply an RIC by a stack-
location or multiply two stack-locations.  Thus, these operations result in an 
undefined value. 

mult: VALUE × VALUE → VALUE 

INPUT RESULT 

(a, ⊤) × (c, ⊤) → ( *(a,c), ⊤) 

Anything else → (⊤,⊤) 
 

*: RIC × RIC → RIC  

*(R1, R2) = ⊔ R1 × r, where r ∈ R2 
 
Division is even more restricted than multiplication.  Any division attempt results 

in an undefined value, regardless of input.  This is because division may result in a 
floating-point number, and the RIC structure does not yet handle floating-point 
numbers. 

div: VALUE × VALUE → VALUE  

INPUT RESULT 

Anything → (⊤,⊤) 



 Analyzing Memory Accesses in Obfuscated x86 Executables 9 

 

4.2   Memory Operations 

The contents of arbitrary locations on the stack may be accessed and manipulated 
using the load, store, top, pop, and push functions. 

The load function takes as input a stack-location and a state and returns the value that 
is located at the given stack-location.  A future extension to this work will add a similar 
function for retrieving values stored at arbitrary memory locations such as the heap. 

load: STACK_LOCATION × STATE → VALUE 
load(location, state) = state↓2(location) 

 
The store function takes as input a stack-location, a value, and a state and returns an 
updated state that holds the new value at the specified stack-location.  Like the load 
function, this function will be improved to also update arbitrary memory locations in 
future versions. 

store: STACK_LOCATION × VALUE × STATE → STATE 

store(loc, value, state) = (state↓1, [loc ↦ value]state↓2, state↓3) 
 
The top function can be used to easily retrieve the value stored at the top of the stack.  
Since there may be more than one stack-location at the top of the stack at any given 
time, the union of these locations is returned as the result. 

top: STATE → P(VALUE) 

top(state) = ⊔ state↓2(m), where m ∈ state↓1(esp) 
 
Push and pop behave as one would expect.  Push adds a value to the top of the stack 
and returns an updated state.  Pop removes the value from the top of the stack and 
updates the state. 

push: VALUE × STATE → STATE 

push(value, state) = ([esp ↦ m]state↓1, [m ↦ value]state↓2, [∪ (m, n)] ∪ state↓3) 
where n ∈ (state↓1(esp)) ↓2 

 
pop: REGISTER × STATE → STATE 
pop(reg, state)=  

 ([reg ↦ top(state), esp ↦ ⊔ succ(1, n, state↓3)]state↓1, state↓2, state↓3)  
 where n ∈ state↓2(esp) 

4.3   Miscellaneous Operations 

The following functions have been created to perform various necessary tasks or to 
work as helper functions.   

Reset is provided to easily create a new stack.  In some cases, the analysis may not 
be able to determine which stack-location is the correct stack top.  In these cases, a 
new stack is created.  This involves simply setting the stack top (the esp register) 
equal to ⊥ (the bottom of the stack).  



10 M. Venable et al. 

 

reset: STATE → STATE 

reset(state) = ([esp ↦ (⊤, {⊥})]state↓1, state↓2, state↓3) 

The make-value function provides an easy way to convert some input, such as a 
constant, into a value. 

make-value: ℕ → VALUE 

make-value(c) = (0×[0,0]+c, ⊤) 

5   Evaluation Function 

The evaluation function, ℰ, formally specifies how each x86 instruction is processed.  
It takes as input an instruction and a state and outputs a new state. 

ℰ: INST × STATE → STATE 
 
Processing a push or pop instruction is fairly easy.  For push, a new value is created 
that represents the value being pushed and the state is modified such that the stack top 
points to the new value.  Pop modifies the state such that the stack top points to the 
next node(s) in the abstract stack graph, effectively removing the old stack top. 

ℰ [m: push c], state = ℰ (next(m), push(make-value(c), state)) 

ℰ [m: push reg], state = ℰ (next(m), push(state↓1(reg), state)) 

ℰ [m: pop reg], state = ℰ (next(m), pop(reg, state)) 
 
Anytime a hard-coded value is moved into register esp, the abstract stack graph is 
reset.  Since the analysis does not track the addresses of stack-locations, we are 
unable to determine where the hard-coded value may point.  Thus, analysis continues 
from this instruction with a new stack graph. 

ℰ [m: mov esp, c], state = ℰ (next(m), reset(state)) 
 
Encountering an add or sub instruction requires performing the requested operation 
and updating the specified register in the state.  Mult and div instructions are handled 
similarly. 

ℰ [m: add reg, c], state = let v = add(state↓1(reg), make-value(c), state) in 

 ℰ (next(m), ([reg ↦v]state↓1, state↓2, state↓3)) 

ℰ [m: add reg1, reg2], state = let v = add(state↓1(reg1), state↓1(reg2), state) in  

 ℰ (next(m), ([reg1 ↦v]state↓1, state↓2, state↓3)) 

ℰ [m: sub reg, c], state = let (v, state2) = sub(state↓1(reg), make-value(c),state) in  

 ℰ (next(m), ([reg ↦ v]state2↓1, state2↓2, state2↓3)) 

ℰ [m: sub reg1, reg2], state =  
let (v, state2) = sub(state↓1(reg1), state↓1(reg2), state) in  

 ℰ (next(m), ([reg1 ↦v]state2↓1, state2↓2, state2↓3)) 



 Analyzing Memory Accesses in Obfuscated x86 Executables 11 

 

When a call instruction is encountered, the address of the next instruction (the return 
address) is pushed onto the stack and analysis continues at the target of the call.  In 
the case of an indirect call, the target of the call is determined by using value set 
analysis. 

ℰ [m: call c], state = ℰ (inst(c), push(next(m), state)) 

ℰ [m: call reg], state = ℰ (inst(state↓1(reg)), push(next(m), state)) 
 
Jump instructions are handled in a manner similar to calls. When processing 
conditional jumps, each branch is analyzed and the results are merged.  In the 
presence of indirect jumps, the value of the register being jumped to is retrieved and 
used as the target. 

ℰ [m: jmp c], state = ℰ (inst(c), state) 

ℰ [m: jmp reg], state = ℰ (inst(state↓1(reg)), state) 

ℰ [m: conditional jump to c], state = ℰ (next(m), state) ∪ ℰ (inst(c), state) 

ℰ [m: conditional jump to reg], state =  

 ℰ (next(m), state) ∪ ℰ (inst(state↓1(reg)), state) 
 
Processing a ret instruction involves retrieving the return address from the top of the 
stack and continuing analysis from there.  Since the value retrieved from the stack 
may represent multiple addresses, each possible address is analyzed and the results 
are merged. 

ℰ [m: ret], state = ∪ ℰ (inst(x), pop(state)), where x ∈ top(state) 
 
Handling a mov instruction is relatively straightforward.  In all cases, some value 
needs to be stored at some location.  That value is either immediately available in the 
instruction or must first be retrieved from some other location. 

ℰ [m: mov reg, c], state =  

 ℰ (next(m), ([reg ↦ make-value(c)]state↓1, state↓2, state↓3)) 

ℰ [m: mov [reg], c], state = ℰ (next(m), store(state↓1(reg), make-value(c), state)) 

ℰ [m: mov reg1, reg2], state =  

ℰ (next(m), ([reg1 ↦ state↓1(reg2)]state↓1, state↓2, state↓3)) 

ℰ [m: mov reg1, [reg2]], state=  

 ℰ (next(m), ([reg1↦load(state↓1(reg2))]state↓1, state↓2, state↓3)) 

6   Examples 

The following sections contain examples demonstrating the analysis of various 
obfuscation techniques.  Section 6.1 contains a rather detailed example intended to 



12 M. Venable et al. 

 

explain the analysis process.  The remaining sections briefly describe how this 
approach can be used to analyze other obfuscations. 

6.1   Using Push/Jmp 

Fig. 4 contains a sample assembly program that will be used as an example for the 
remainder of this section.  The program consists of two functions: Main and Max.  
Max takes as input two numbers and returns as ouput the larger of the two numbers. 

The function Main pushes the two arguments onto the stack, but instead of calling 
Max directly, it pushes the return address onto the stack and jumps to Max.  Code 
such as this can cause problems during CFG generation and thus may cause analysis 
methods that rely on them to behave unpredictably.  

Upon entry, all registers are initialized to ⊤, signaling that their values have not yet 
been determined.  The stack is currently empty as is the mapping of stack-locations to 
values, since there is no stack content yet (Fig. 5a). 

Instruction L1 pushes a value onto the stack.  The value pushed is the RIC 0[0,0] + 
4, or simply 4.  A new stack-location is created to hold this value and is added to the 
set of edges in the abstract stack graph that connects the new stack-location to the 
bottom of the stack (Fig. 5b).  Notice that register esp is modified so that it references 
the stack-location that is the new top of the stack. 

Instructions L2 and L3 perform in a manner similar to L1. L3, however, pushes an 
instruction address onto the stack.  In this example, we will represent the addresses of 
instructions by using the instruction’s label.  However, in practice, the actual address 
of the instruction is used instead and can easily be represented using an RIC (Fig. 5c).   

L4 is an unconditional jump.  Control is transferred to the destination of the jump 
and the state is left unchanged.  

The next instruction evaluated is the target of the jump, or L6 in this case.  L6 is a 
mov instruction that moves the value located at esp+4 into register eax (Fig. 5d). 

Instruction L7 performs in a manner similar to L6. Instruction L8 has no effect on 
the state.  

Instruction L9 is a conditional jump and does not change the state.  During 
evaluation, each possible target will be processed and each resulting state is joined 
once the two execution paths meet. 

Fig. 4. Obfuscated call using push/jmp 

Main:   Max: 
L1: PUSH 4 L6: MOV eax, [esp+4] 
L2: PUSH 2 L7: MOV ebx, [esp+8] 
L3: PUSH offset L5 L8: CMP eax, ebx 
L4: JMP Max L9: JG L11 
L5: RET  L10: MOV eax, ebx 
    L11: RET 8 



 Analyzing Memory Accesses in Obfuscated x86 Executables 13 

 

Instruction L10 copies the value from ebx to eax (Fig. 5e). 
The ret 8 instruction at L11 implicitly pops the return address off the top of the 

stack and continues execution at that address.  It also adds 8 bytes to esp.  This causes 
esp to be incremented by 2 stack-locations (since each stack-location holds 4 bytes). 
However, since L11 can be reached from L9 and L10, the results of evaluating the 
two paths must be joined before processing L11.  Creating the union of the two states 
is easy in this case.  The only difference between the two is the value of eax.  At 
instruction L9, eax is 2, whereas at instruction L10, eax is 4.  The union of the two is 
the set {2, 4}, or the RIC 2[1,2]+0 (Fig. 5f). 

Evaluation continues at L5, which ends the program.   
Looking at the final state, we see that eax may hold either 2 or 4 and ebx equals the 

constant 4.  Note that a quick scan of the code reveals that eax will actually always 
equal 4 at L5.  The analysis assumed that the jump at L9 might pass execution to 
  

Fig. 5. Contents of the state at various points in the example program (see Fig. 4) 

eax→(⊤, ⊤) eax→(⊤, ⊤)  eax→(⊤, ⊤) 

ebx→(⊤, ⊤)  ebx→(⊤, ⊤)  ebx→(⊤, ⊤) 
esp esp   esp 
 
 
 
 
 
 
 
 
(a) At Program Entry (b) After L1 (c) After L3 
 
 

eax→(2, ⊤) eax→(4, ⊤)  eax→(2[1,2], ⊤) 

ebx→(⊤, ⊤) ebx→(4, ⊤)   ebx→(4, ⊤) 
esp esp 
 
 
 
 
 
 
    esp 
 
(d) After L6 (e) After L10 (f) After L11 

⊥ (4,⊤)

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 

(L5,⊤)

(2,⊤)

(4,⊤)

⊥ 

(L5,⊤) 

(2,⊤) 

(4,⊤) 

⊥ 



14 M. Venable et al. 

 

Fig. 6. (a) Call obfuscation using push/ret (b) State at instruction L5 

instruction L10 or L11.  However, execution will always continue at L10, because eax 
is always less than ebx at L8.  This does not mean the analysis is incorrect.  One goal 
of VSA is to play it safe and over-approximate the actual values, hence the 
discrepancy.  Applying techniques used in compilers, such as dead code elimination, 
may assist in providing more accurate results. 

6.2   Using Push/Ret 

Fig. 6a shows the same code, but using the push/ret obfuscation.  Instructions L3 and 
L4 push the return address and the target address onto the stack.  L6 consists of a ret 
that causes execution to jump to the function Max.  Analysis methods that rely on the 
correctness of a CFG will surely fail when analyzing such code. 

During the analysis, at instruction L5, there are four nodes in the abstract stack, as 
shown in Fig. 6b.  At the top of the abstract stack is the address of the function Max.  
When the ret is encountered, analysis continues at this address and esp is incremented 
so that it points to the node containing (L6, ⊤).  Thus, L6 becomes the return address 
of the Max procedure. 

6.3   Using Pop to Return 

In Fig. 7a, the function Max is invoked in the standard way, however it does not 
return in the typical manner.  Instead of calling ret, the function pops the return 
address from the stack and jumps to that address (lines L10-L12). 

 

Main:    eax→(⊤, ⊤) 

L1: PUSH 4   ebx→(⊤, ⊤) 
L2: PUSH 2   esp 
L3: PUSH offset L6 
L4: PUSH offset Max 
L5: RET 
L6: RET 
 
Max: 
L7: MOV eax, [esp+4] 
L8: MOV ebx, [esp+8] 
L9: CMP eax, ebx   
L10: JG L12 
L11: MOV eax, ebx 
L12: RET 8 

 (a) (b) 

(L6,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(Max,⊤) 



 Analyzing Memory Accesses in Obfuscated x86 Executables 15 

 

Fig. 7. (a) Obfuscation using pop to return. (b) State at L10. (c)State at L12 

At instruction L10, the stack contains four nodes, as shown in Fig. 7b.  L10 
removes the value from the top of the stack and places it in ebx.  L11 adds eight to 
esp, which causes esp to point to the bottom of the stack.  L12 is an indirect jump to 
the address in ebx.  Looking at the stack at instruction L12 (Fig. 7c), ebx contains  
(L4, ⊤), thus analysis continues at instruction L4, the original return address. 

6.4   Modifying Return Address 

In Fig. 8a, the procedure Max pops the original return address and replaces it with an 
alternate address to transfer control to a function other than the caller.  In this 
example, control transfers to L30, which is not shown. 

At instruction L10, the top of the stack originally contains (Max, ⊤).  L10 removes 
this value from the stack and L11 pushes the value (L30, ⊤) onto the stack.  Fig. 8b 
shows the resulting state.  The ret statement at L12 causes analysis to continue at 
instruction L30. 

7   Future Work 

Currently, this work approximates only the values stored in registers or on the stack.  
No effort is taken to determine the values that may be stored at any arbitrary location 
on the heap.  Future work will involve extending the architecture to handle this 
additional task and the ability to handle other kinds of obfuscations.  We will also 
construct a prototype for testing how well the proposed solution performs at detecting 
metamorphic viruses with call obfuscations. 

Main:   eax→(2[1,2], ⊤) eax→(2[1,2], ⊤) 

L1: PUSH 4 ebx→(4, ⊤) ebx→(L4, ⊤) 
L2: PUSH 2 esp 
L3: CALL Max 
L4: RET 
 
Max: 
L5: MOV eax, [esp+4] 
L6: MOV ebx, [esp+8] 
L7: CMP eax, ebx  esp 
L8: JG L10 
L9: MOV eax, ebx 
L10: POP ebx 
L11: ADD esp, 8 
L12: JMP ebx 
 (a) (b) (c) 

(L4,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(L4,⊤) 

(2,⊤) 

(4, ⊤) 

⊥ 



16 M. Venable et al. 

 

 
Fig. 8. (a) Obfuscation by modifying return address (b) State at instruction L12 

Fig. 9. Manipulation of the abstract stack graph 

Having looked at how the abstract stack is used, one can construct new forms 
of obfuscations that can circumvent this approach.  For instance, the code shown 
in Fig. 9a pushes the value five onto the stack and removes that value from the 
stack immediately after.  Instruction L3 subtracts from the stack pointer, which 
effectively places the five at the top of the stack again.  At L4, the value five is 
placed into eax. 

The stack graph that would be created is shown in Fig. 9b.  At instruction L4, esp 
points to a value that has not been initialized.  It is this value that is placed into eax, 
not the value five.  Thus, the analysis is incorrect for this piece of code.  The cause is 
the assumption that subtracting from register esp implies a new node should be 
created in the stack graph.  While this assumption may be correct for compiler-

Main:    eax→(2[1,2], ⊤) 

L1: PUSH 4   ebx→(Max, ⊤) 
L2: PUSH 2   esp 

 L3: CALL Max 
L4: RET 

 
Max: 
L5: MOV eax, [esp+4] 
L6: MOV ebx, [esp+8] 
L7: CMP eax, ebx 
L8: JG L10 
L9: MOV eax, ebx 
L10: POP ebx 
L11: PUSH offset L30 
L12: RET 8 

 (a) (b) 

L1: PUSH 5 
L2: ADD esp, 4  esp 
L3: SUB esp, 4 
L4: MOV eax, [esp] 
 
 

 (a) (b) 

(L4,⊤)

(2,⊤)

(4, ⊤)

⊥ 

(Max,⊤) (L30,⊤)

(⊤, ⊤) (5, ⊤) 

⊥ 



 Analyzing Memory Accesses in Obfuscated x86 Executables 17 

 

generated code, hand-crafted assembly need not follow this convention.  Other 
variations of this theme exist. 

Another possible attack is in the over-approximation of the values.  If the analysis 
over-approximates a value too much, the analysis is less useful.  Code can be crafted 
to intentionally force the analysis to over-approximate important values, such as the 
targets of indirect jumps.  In future work, we will study these attack vectors and 
determine how these obstacles can be overcome. 

8   Conclusion 

By using an abstract stack graph as an abstraction of the real stack, we are able to 
analyze a program without making any assumptions about the presence of activation 
records or the correctness of the control-flow graph. 

The method presented here can be used to statically determine the values of 
program variables.  The method uses the notion of reduced interval congruence to 
store the values, which allows for a tight approximation of the true program values 
and also maintains stride information useful for ensuring memory accesses do not 
cross variable boundaries.  The reduced interval congruence also makes it possible to 
predict the destination of jump and call instructions. 

The potential for this approach is in statically detecting obfuscated calls.  Static 
analysis tools that depend on knowing what system calls are made are likely to report 
incorrect results when analyzing a program in the presence of call obfuscations.  The 
consequences of falsely claiming a malicious file as benign can be extremely 
damaging and equally expensive to repair, thus it is important to locate system calls 
correctly during analysis.  The techniques discussed in this paper can be applied to 
help uncover obfuscated calls and provide for a more reliable analysis. 

Acknowledgements 

We are grateful to Eric Uday Kumar for his very helpful discussions and contribution 
to this paper. 

References 

1. C. Linn and S. Debray, "Obfuscation of Executable Code to Improve Resistance to Static 
Disassembly," in 10th ACM Conference on Computer and Communications Security 
(CCS), 2003. 

2. C. Collberg, C. Thomborson, and D. Low, "A Taxonomy of Obfuscating 
Transformations," Technical Report 148, Department of Computer Science, University of 
Auckland, 1997. 

3. A. Lakhotia and E. U. Kumar, "Abstract Stack Graph to Detect Obfuscated Calls in 
Binaries," in Fourth IEEE International Workshop on Source Code Analysis and 
Manipulation(SCAM'04), Chicago, Illinois, 2004. 

4. P. Ször and P. Ferrie, "Hunting for Metamorphic," in Virus Bulletin Conference, Prague, 
Czech Republic, 2001. 



18 M. Venable et al. 

 

5. A. Lakhotia and P. K. Singh, "Challenges in Getting 'Formal' with Viruses," Virus 
Bulletin, 2003 

6. P. Ször, "The New 32-Bit Medusa," Virus Bulletin, pp. 8-10, 2000. 
7. J. Bergeron and M. Debbabi, "Detection of Malicious Code in Cots Software: A Short 

Survey," in First International Software Assurance Certification Conference (ISACC'99), 
Washington DC, 1999. 

8. Symantec, "Understanding Heuristics: Symantec's Bloodhound Technology," 
http://www.symantec.com/avcenter/reference/heuristc.pdf, Last accessed July 1, 2004. 

9. G. Balakrishnan and T. Reps, "Analyzing Memory Accesses in X86 Executables," in 13th 
International Conference on Compiler Construction, 2004. 

10. P. Cousot and R. Cousot, "Static Determination of Dynamic Properties of Programs," in 
2nd Int. Symp. on Programming, Dumod, Paris, France, 1976. 


