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Malware Phylogeny Using Maximal πPatterns 

Abstract 
Construction of malware phylogeny could help in analyzing new malware samples as they arrive.  
However, the generated phylogenies must be accurate and be able to contend with the changes and 
obfuscations the malware writers create in the codes.  We present our approach of using maximal 
πpattern, a PQ tree based feature, as a basis for comparing and classifying malwares.  We argue 
that the πpattern approach is capable of dealing with certain obfuscations imposed in malware 
evolution process and demonstrate this possibility using examples of known viruses.  We also 
suggest this scheme be used for automated naming of malware variants. 

Introduction 
Systematic code reuse has been an elusive goal for software engineering practice since the term was 
first coined, yet in certain respects it is an everyday practice for “malware” authors. The term 
“malware” here is being used as the generic name for the class of code that is malicious, including 
viruses, trojans, worms, and spyware.  Malware authors use generators, incorporate libraries, and 
borrow code from others—there exists a robust network for exchange, and some malware authors 
take time to read and understand prior approaches (Arief & Besnard, 2003).  Malware also 
frequently evolves due to rapid modify-and-release cycles, creating numerous strains of a common 
form.  The result is a tangled network of derivation relationships between malicious programs. 

In biology such a relationship network is called a “phylogeny”; significant recent efforts in 
bioinformatics involve automatically constructing meaningful phylogeny models based on 
information in nucleotide, protein, or gene sequences.  Reconstructing malware phylogenies using 
similar techniques is expected to help in forensic malware analysis.  It could provide clues for the 
analyst, particularly in terms of understanding how new samples relate to previously seen samples.  
Useful phylogenies could also serve as a principled basis for naming malware.  Despite a 1991 
agreement on an overall naming scheme and several papers proposing new schemes, malware 
naming continues to be a problem in practice (Raiu, 2002).   

The question remains, though, as to how useful phylogeny models can be built by studying the 
bodies of malware samples.  The method should be able to account for the types of evolutionary 
change that occurs in malware.  Malware authors may try to hide the derivation relationships by 
several techniques, including garbage insertion, code reordering, and instruction substitution.  Some 
metamorphic worms are known to modify their own code between generations; some shuffle the 
order of their code (Szor & Perrie, 2001). 

We propose to use patterns of permuted code as comparison features for building malware 
phylogenies.  In particular, we explore the use of so-called “maximal πpatterns”.  Methods based on 
maximal πpatterns have already proven to be promising in bioinformatics applications (Eres, 
Landau & Parida, 2003). These methods may also be well suited to application in malware 
phylogeny generation since malware can evolve through code rearrangements such as instruction 
reordering and code block shuffling.  Matching potentially permuted sequences relaxes 
requirements for sequencing that are found in many other approaches for matching strings, 
including sequence alignment and large-n n-grams.  In addition, the maximal πpattern approach 
formalizes a preference for large matches, a matching approach similar in spirit to the use of longest 
common subsequence (LCS) for finding minimal edit distances. 
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The following describes our approach of using maximal πpatterns and provides the results from a 
case study that suggests the automatically extracted phylogeny model grossly agrees to manual 
analysis. 

A Maximal πPattern Approach 
There have been several attempts to build malware phylogeny models. Goldberg, Goldberg, Phillips 
& Sorkin(1998) used 20-grams to generate directed acyclic graphs whose nodes are the viruses and 
whose edges map ancestors to descendants.  They argued the sensibility of this approach by 
suggesting that malicious programs that are descendents of another are likely to have long byte 
sequences in common.  Carrera & Erdelyi (2004) took a different approach of using a similarity 
measure based on static call graphs, and generating an X-tree using a hierarchical clustering 
algorithm.  Wehner (2005) also used hierarchical clustering, but used an information theoretic 
similarity measure computed using a block-sorting compressor (bzip2). 

These technique are expected to be at least occasionally problematic.  The method by Carerra et. al. 
requires accurate call graphs, and these can be expensive and difficult to generate.  The other 
methods rely on sequence information and, in general, we can expect methods that are strongly 
reliant on strict sequences to be suboptimal in cases where evolutionary steps involve significant 
permutations.  For instance a rearrangement on a 20-byte sequence could hide a derivation 
relationship from large-n n-gram techniques. On the other hand small-n n-gram techniques are more 
likely to generate false positives. 

It may be valuable, therefore, to have an alternative technique that could potentially capture longer 
collections of related words (as in LCS), but without absolutely requiring ordering (as in term-
vector techniques like n-grams). One possible avenue for improving the matching of evolved code 
is to match on code that can possibly be permuted, i.e., rearranged.  It would be desirable to allow 
for matching of long permutations, where they exist, yet also match smaller ones where they have 
been chopped up, moved around, and changed.  The approach through maximal πpatterns matching 
is one possible approach. 

Maximal πpatterns 
Maximal πpatterns were introduced in (Eres et. al., 2003) as a method for finding motifs in protein 
sequences.  It is defined as a restriction on a collection of permutation patterns called πpatterns.  
Given an integer K, a pattern p is πpattern on string S if |p|>1 and p or its permutation appears at 
some k≥K distinct locations in S.  Parameter K makes it possible to remove infrequent permutations, 
a filtering practice reminiscent of infrequent n-gram trimming.  Nonetheless the number of possible 
πpatterns is O(n2), so without significant filtering, using πpatterns can be intractable for long 
sequences, or for matching within many files. 

In response to this hurdle, the concept of a maximal πpattern was introduced. It is defined as 
follows: let P be the set of all πpatterns on string S.  p(a)∈P is non-maximal if there exists p(b)∈P 
such that (1) each appearance of p(a) (or its permutation) is covered by p(b) (or its permutation), 
and (2) each appearance of p(b)on S covers a minimum of one p(a).  A p(b) that is not non-maximal 
is maximal.  An instance of pattern q covers an instance of p if p appears in q.  For example in the 
string S=abba with K=2, the permutation of pattern ‘ab’ appears twice (positions 0 and 2) and is 
covered by the permutation of pattern ‘abb’, which also appears twice. Thus ‘ab’ is non-maximal 
and ‘abb’ is maximal in S given K=2. 
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Maximal πpatterns are known to be equivalent to minimal consensus PQ trees (Eres, Landau & 
Parida, 2005).  A PQ-Tree (Booth & Lueker, 1976) is a rooted, ordered tree with two types of 
internal nodes: P-nodes and Q-nodes. A P-node is known to be a consecutive block of elements, but 
with the order of the blocks unknown. A Q-node represents consecutive blocks appearing in a fixed 
order or exactly reversed.  Effectively, the set of πpattern includes both P and Q nodes. 
Interestingly, since P-nodes are not ordered, code reordering is well captured in P-nodes. If inserted 
or deletion is performed in the code, P or Q nodes will be split; however, there will still be a match 
on effective codes. 

Restricting focus to maximal πpatterns reduces the size of the feature space, yet searching for 
arbitrarily maximal πpatterns could be expensive.  Eres et. al (2003) presented a two-phase 
algorithm to compute the collection of maximal πpatterns. The algorithm takes O(Ln log |Σ| log n) 
time in the first phase to generate πpatterns of length ≤ L for a  sequence of length n.  The number 
of πpatterns ρ is bounded by O(n2). Assuming the maximum length of a location list is associated 
with a πpattern is l, phase 2 runs in O(ρ2l) time. A newer, more efficient algorithm has also been 
developed for phase 2 in (Landau, Parida, & Weimann, 2005) which has a time complexity of O(k 
m), given k permutations each of length m.  Both of these algorithms are two stages and neither 
avoids the cost of first generating all of πpatterns. 

We used a single stage algorithm based on the following observations: (i) if (Pb covers Pa) and (Pc 
covers Pb) then Pc covers Pa. and (ii) if Pb covers Pa then |Pb| > |Pa|. Our algorithm for finding all 
maximal πpatterns till length l proceeds as follows: 

1. Construct an empty list, Max, of maximal πpatterns. 
2. For w=n-K+1 downto l do : 

Slide a window of length w along the string and check if the pattern in the window is a 
πpattern and is covered by any larger pattern in Max , i.e., by any of the larger maximal 
πpatterns generated so far; if yes continue onto the next window, else add this to list of 
maximal πpatterns. 

This stores only O(n) πpatterns and the m maximal πpatterns at any instance instead of O(n2) 
πpatterns and reduces O(ρ2l) time complexity to O(ρml).  

Phylogeny Model Generation Method 
One way to use maximal πpatterns for building phylogeny models is as follows.  First prepare the 
raw malware samples, if necessary (e.g., by filtering, disassembling, or abstracting), and then 
catenate the resulting strings together using unique separation markers.  Then extract the collection 
of maximal πpatterns. This collection can be viewed as a set of non-redundant features contained in 
the malware samples modulo reordering.  These can be used for feature-based model building or, if 
one defines a distance using the features, for distance-based model building. 

Given the maximal πpatterns, the remaining issue is the method for phylogeny extraction.  A simple 
method is to use the maximal πpatterns as binary features, represent the programs as binary vectors, 
and compute similarity as the number of bits set after exclusive-NOR-ing them.  This technique has 
been used to construct phylogenies from gene sequences.  The intuition behind using XNOR 
instead of, say, AND (which counts only features in common) is that both common features and 
mismatched features count towards these core.  Call this the ``XNOR'' approach. 

An alternative method is real-vector similarity measure, such as cosine similarity (e.g., see (Zobel 
& Moffat, 1998)).  We have employed CLUTO (Karypis, 2003) to build phylogeny models using 
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both XNOR and cosine similarity measures.  CLUTO implements cosine similarity comparisons 
directly, and we provided it similarity matrices for clustering using XNOR similarity.  We used its 
agglomerative clustering functionality to build dendograms, meaning the phylogeny models being 
generated cannot capture multiple inheritance relationships. Although in general this may be a 
limitation our experiences suggest the trees are a good and simple starting point for exploring the 
underlying maximal πpattern similarity technique. 

Malware Naming 
A useful naming scheme would ensure that as new malware samples arrive, the previously assigned 
names do not change.  This requires stability in the tree, and implies that the initial tree should be 
built with a complete database of known malware.  Here we provide a method for attempting to 
build and maintain a suitable phylogeny, although it falls short of actually generating human-
readable names for the malicious programs. 

To add an unknown virus u to the existing tree we follow the following algorithm,  

• Find the best match to the stored list of πpatterns down to the leaf. 

• If the match exceeds a threshold k at leaf l, do the following:  

• Split l to two new leaves l1 and l2. 

• Store l to l1 and u to l2. 

• Store the consensus πpatterns of l1 and l2 at the node joining them. 

• Name u as a new variation of l1. 

Else, do the following:  

• Add a new root rn with two children: the old root r and a new leaf ln. 

• Store u to ln. 

• Store the consensus πpatterns of r and ln at rn. 

• Assign u a new name. 

Case Study 
We performed a small study to investigate the potential in using maximal πpatterns, and to develop 
some initial feedback as to the relative merits of XNOR and cosine similarity measures. 

Materials and Procedure 
We selected several Windows-based malicious programs taken from an online database 
(vx.netlux.org) of malware. .  We selected two worms and a virus and chose samples that were not 
encrypted or packed, and could thus be disassembled.  We collected groups of samples known be in 
the same family so that we could evaluate how well family ties are reconstructed.   9 different 
samples of Win32.Alcaul (0-8), 3 of Win32.Belial (9-11), and 6 of Win32.Eva (12-17) were used.  
For three of the variants we also used a second disassembler, yielding 18 different code sequences. 
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Figure 1b.  Results using XNOR similarity 

 
Figure 1a.  Results using cosine similarity 

These worms were disassembled and only the opcodes were selected as characters. The character 
sequences representing the worms were then catenated together, and maximal πpatterns were 
extracted. The 18 samples generated 1570 maximal πpatterns.   

Results 
According to the existing naming, the phylogeny structure should look like, ((0-8),((12-17),(9-11))).  
Phylogenies we generated are shown in Figures 1a and 1b. 

Discussion 
In the figures, the multiple disassemblies (named with suffix “.0”) of the same code are grouped by 
pairs as they should be. The phylogeny creates new questions to be investigated. It suggests 
Win32.Alcaul.h and Win32.Belial.2609 may have stronger phylogenic relationship through they are 
known to be two different species. It also shows that current variant sequencing may not be right, 
e.g., the phylogeny says Win32.Eva.a and Win32.Eva.d have a closer relationship than 
Win32.Eva.a and Win32.Eva.b or Win32.Eva.c and Win32.Eva.d. Hand investigation shows that 
our sample of Win32.Alcaul.h is significantly different from the other Win32.Alcaul variants. 

The two different similarity measures do make a difference in the dendograms generated.  For 
instance Win32.Belial.2609 is in an unrelated subtree in the XNOR dendogram (Figure 1(b)), 
whereas it is considered to be more closely related to Alcaul according to cosine similarity 
measures.  Thus given that Win32.Alcaul.h is known to be substantially different, the XNOR 
appears to generate a more accurate phylogeny model, at least in this case. 

Conclusions 
We propose the use of maximal πpatterns for building phylogenies for forensic analysis, and 
provide efficient algorithms for generating the features for clustering. Our case study is limited and 
does not allow us to generalize about how well the techniques can be expected to work.  
Nonetheless the study suggests that permutation-based matching and, in particular, maximal 
πpattern-based matching may be a viable alternative to other phylogeny model generation methods.  
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The study also illustrates that the similarity methods used for phylogeny generation can make a 
difference to the quality of the results, and suggests that the XNOR approach of counting both 
matches and mismatches may have value for generating phylogenic models of malware evolution. 

The study also suggests avenues for further investigation.  In the present work we used exact 
matching of πpatterns, i.e., in order to match two πpatterns should have exactly same set of 
elements. We like to investigate how approximate matching of πpatterns affects the making of the 
tree/evolutionary relationship.  We also need to study on determining the right value of the 
threshold to decide whether a virus is a variant or is independently developed.  
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