
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
WORM’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-551-7/06/0011...$5.00.

Using Engine Signature to Detect Metamorphic Malware
Mohamed R. Chouchane
Software Research Laboratory

The Center for Advanced Computer Studies
University of Louisiana at Lafayette

+1 337 482-5082

mohamed@louisiana.edu

Arun Lakhotia
Software Research Laboratory

The Center for Advanced Computer Studies
University of Louisiana at Lafayette

+1 337 482-6766

arun@louisiana.edu

ABSTRACT
This paper introduces the “engine signature” approach to assist in
detecting metamorphic malware by tracking it to its engine. More
specifically, it presents and evaluates a code scoring technique for
collecting forensic evidence from x86 code segments in order to
get some measure of how likely they are to have been generated
by some known instruction-substituting metamorphic engine. A
prototype simulator that mimics real instruction-substituting
metamorphic engines was implemented and used to conduct
several experiments that evaluate the goodness of the scoring
technique for given engine parameters. The technique was also
used to successfully help track variants of W32.Evol to their
engine.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – invasive
software; K.6.5 [Management of Computing and Information
Systems]: Security and Protection – invasive software

General Terms
Measurement, Experimentation, Security.

Keywords
Virus Scanner, Metamorphic Engine.

1. INTRODUCTION
Metamorphic malware is that which propagates by creating
transformed copies of its code. The generated code, often called a
variant of the malware, is typically a working program which has
the same functionalities as the original. Metamorphism has been
used by malware authors to thwart detection by static-signature-
based anti-malware scanners and has the potential to lead to a
breed of malicious programs that is virtually undetectable
statically and could seriously damage the target computing
systems and potentially cause billions of dollars in financial losses
over a very short period of time [9]. Most commercial static anti-
malware scanners look for malware signatures (typically, a
sequence of bytes within the malware code) to declare, with some
measure of confidence, that the program being scanned is
malicious.

The main goal of metamorphism is to change the appearance of a
malicious program while keeping its functionality and many
metamorphic transformations can be used (or combined) to
achieve this goal. A number of these transformations came to be
understood thanks to analyses done by people in the anti-malware
research community; others were simply advertised by
metamorphic malware authors. These transformations include
register renaming, code permutation, code expansion, code
shrinking and dead code insertions and vary in the amount of
effort needed to apply them and the performance/size overhead
they impose on the new variant. Detailed discussions of these
transformations, and others, can be found in [9]. Most
metamorphic malware typically consist of a malicious payload
attached to a metamorphic engine. When the engine is called, its
algorithm mutates the payload (and sometimes the engine code as
well) by applying a number of these transformations to it.

This paper illustrates the engine signature approach through the
use of an engine-specific scoring procedure that scans a piece of
code to determine the likelihood that it is (part of) a program that
has been generated by a known instruction-substituting
metamorphic engine. This way, all we need to store for detection
purposes is information about the engine rather than information
about each possible malicious variant it can produce.

The scoring technique is designed for metamorphic engines that
transform their input variant of the malware using a finite set of
transformation rules mapping instructions to code segments that
implement their operational semantics. When such an engine is
given as input a (typically malicious) code segment to be
transformed, it scans the segment for occurrences of instructions
that can be transformed. The engine sometimes needs to perform
simple context analyses, or make assumptions about the code, to
decide whether or not the instruction can be transformed. The
third rule in the transformation system of Figure 3, for example, is
semantics preserving only provided that register eax be dead at
that point. When the engine determines that it is safe to transform
the instruction, it probabilistically decides whether or not to
replace it with an equivalent code segment. Evol(ve), the
engine of W32.Evol, is an example of such an engine where
each rule has its own application probability.

The scoring technique was inspired by our observation that much
(typically, over 50%) of the original variant of instruction-
substituting metamorphic malware is transformable; that is, most
of its instructions are transformable by the engine. We use the
phrase engine friendliness to refer to this level of transformability
of the variant. Such engines also tend to be written such that their
transformation rules preserve this level of transformability across
generations; that is, high transformability (i.e., high engine

73

friendliness) usually applies to all variants of the malware. This is
typically done, in the case of instruction-substituting engines, by
ensuring that even the code segments that are used to replace
other code segments contain at least one transformable region.

Since metamorphic engines which operate on binaries are
notoriously hard to write, not many reliable metamorphic engines
have so far been written. But of those that were, some were made
available as object files for malware authors to write their
payloads and link them to these engines thus adding
metamorphism to the new payload. The engine signature
approach presented in this paper may then be taken in this case to
gather enough forensic evidence to link segments of this new
malicious payload to the engine being reused.

Section 2 describes related work. Section 3 applies the engine
signature approach for detecting metamorphic malware by
presenting a scoring technique for tracking code segments to
known instruction-substituting metamorphic engines. Section 4
describes the experiment we conducted to evaluate the scoring
technique. Section 5 discusses the evaluation results. Section 6
concludes the work and lists a number of future research
problems.

2. RELATED WORK
A number of definitions of malware that may be interpreted

as describing metamorphic malware have been given and results
about the computability and complexity of their respective
detection problems have been established[2][3][8]. These results,
while perfectly sound, do not apply in the context of our work:
An approximate detection scheme of the output of some well-
known metamorphic engine.

Industry-adopted approaches for detecting metamorphic
malware still rely heavily on the concept of static signature
scanning to detect the malware. Static signature scanning
typically scans a program for the presence of sequences of bytes

known to belong to known malware (malware which has been
received and analyzed by anti-malware vendors). Other schemes
run the suspect program and monitor its behaviors hoping to catch
any unexpected or known malicious behavior (such as a sequence
of call instructions known to be routinely used by some malware.)
Such an approach is very impractical given that metamorphic
malware authors tend to design it such that intractably many
variants can be generated on each run of the engine on some
variant. This alone represents a major impediment to static
signature scanning. Dynamic analysis can also be thwarted by
testing the patience of the emulator or by taking the malicious
control flow path only rarely.

Recent work by Karim et al. [5] views variants of malware
that permutate and transform some or all of their code when
propagating as related to previous variants through evolutionary
relationships. Actually, their method also takes advantage of the
common practice of code reuse employed by most malware
writers. By extracting these evolutionary relationships, they built
a phylogeny and, in a way similar to that used in biology to
decide whether an organism is likely to be an evolved strain of
another, they were able to classify the programs being scanned as
being a potentially modified version of some malware.
Chritodorescu et al. [4] built a "semantic rather than purely
syntactic" algorithm for detecting malware. Their algorithm uses
its knowledge of a specification of malicious behavior, described
using a template, to detect if a given program satisfies the
behavior. They show that their implementation, approximating a
solution to this undecidable template-matching problem,
outperformed McAfee® VirusScan® by detecting a larger
number of variants of a known malware. Walenstein et al. [10]
take a code normalization approach to reduce variants of known
metamorphic malware to a common normal form. They use this
form as a signature for that malware and declare a program to be a
variant of the malware if it eventually reduces to that form. A
similar normalization approach was proposed by Brushi et al. [1].
Kruegel approached the issue by extracting patterns from
executables to track them to some known malicious malware [7].

E-friendly malware

 release

feedback

Variant

E

Figure 1. The metamorphic engine E uses its transformation system to probabilistically replace instructions
in its input with equivalent code segments. As a result, an intractably high number of new variants could be

produced by the engine. The scoring function captures the “density” on codes segments introduced in the
variants by the engine to track the variants to their producer: the engine.

74

These approaches either track variants of metamorphic
malware to other variants or to some template capturing some
abstraction of some malicious behavior. Our scoring function,
however, not only assists in matching variants of malware to the
malware, but also in tracking programs, or even code segments, to
known code-substituting metamorphic engines of the kind
described in the introduction.

Our approach is analogous to authorship analysis when
applied to determine the likely author of some typically high-level
language program. A considerable amount of work on authorship
analysis has been done [6]. It is somewhat relevant to our
approach in that our attempt to track metamorphic malware to its
engine is analogous to tracking code to its authors. Most of these
forensic analyses of code assume the availability of source code,
which is generally not available when analyzing potentially
malicious binaries.

3. THE SCORING TECHNIQUE
We henceforth let E denote some instruction-substituting
metamorphic engine as described in the introduction. We will use
the term clue to refer to any fraction, typically a sequence of
instructions, of any information extracted from a code segment
and suggesting that the segment may have been generated by E.
We denote by T the rule set carried by E. Each rule in T maps an
instruction (the left hand side) to a sequence of one or more
instructions. This sequence is referred to as the right hand side of
the rule. Right hand sides are thus examples of clues. Such clues
are chosen and assigned weights equal to their instruction count.
This choice of weight assignment is arbitrary and may not be the
best in all cases, but it suits our purposes.

We say that a code segment is E-friendly if it was written “with E
in mind”; that is, the segment has a non-zero frequency of the left
hand sides of T (i.e., transformable instructions). The high E-
friendliness of a given variant must hold across subsequent
generations of the malware. This is usually achieved by requiring

10% friendly 20% friendly

90% friendly 100% friendly

Low E-friendliness

Instruction Substitution
Garbage Insertion

Input

Variants

Output
Variants

Figure 2. An increase in the engine-friendliness of the input variant induces an increase in the density of the output
variants with clues that have been introduced by the engine.

Metamorphic
Engine

mov [esi+4], 9 mov [esi+4], 6

 add [esi+4], 3

mov [ebp+8], ecx push eax

 mov eax, ecx

 mov [ebp+8], eax

 pop eax

push 4 mov eax, 4

 push eax

push eax push eax

mov eax, 2Bh

Figure 3. At left is a subset of the transformation system of W32.Evol. When any of the left hand sides is met in
the variant to be transformed, the engine non-deterministically replaces it with the corresponding code segment.

The clue set is constructed from the transformation system by extracting the opcodes of the right hand sides.

Clue Set ={mov add,

 push mov mov pop,

 mov push,

 push mov}

75

at least one occurrence of a left hand side in most, if not all, right
hand sides.

Each rule in T is accompanied with its rule application
probability (the probability that the rule will be applied when its
left hand side is encountered in the segment to be transformed.)
The set T must be explicitly carried by the engine and is assumed
to be extractable manually, or interactively from the engine in a
laboratory environment. This approach will of course work only
when the static disassembly of the executable to be scanned is
successful. Given a code segment V, suspected of being (part of)
the output of E, we reduce each instruction in V to its opcode
mnemonic. This abstraction of the actual instruction is actually
needed to represent the (typically intractably large) set of possible
right hand sides that a transformation involving variables taking
on scalar values might generate.

We define a scoring function that takes as input a code segment (a
sequence of x86 opcode mnemonics) and returns a score for that
sequence. For a given code segment V, the score of V with respect
to E, which we denote by SE(V), is a measure of how likely V is to
be (part of) a program generated by E. SE(V) is proportional to the
forensic evidence linking V to E and inversely proportional to the
instruction count of V. It can be viewed as the density of V with
clues from the transformation rules of E. The expression of SE
takes into account the fact that some of the clues are more
informative than others. The scoring function is given by the
expression

SE(V)=∑c∑s wc ecs / |V|,

where |V| is the instruction count of V, wc is the weight of clue c,
and ecs = 1 if clue c is at site s and 0 otherwise. A naïve algorithm
computing this function would simply do a linear scan of V. For
each instruction i visited, it would determine whether i is the
beginning of an occurrence of one or more clues. If it is, it
accumulates the sum of the weights of these clues in some
variable. It would finally divide the accumulated sum by the
instruction count of V then return the result. Figure 4 gives an
example using the scoring function.

4. EVALUATIONS
We implemented a prototype simulator of an instruction-
substituting metamorphic engine and used it to run two
experiments to evaluate the scoring function. A code segment is
simulated by abstracting it to a list of opcode mnemonics in the
same order in which they appear in the segment. The rule set of
the engine is simulated using a list of pairs of such tuples. The
simulator is restricted to mapping single-element tuples to larger
ones, thus capturing the metamorphic transformation which
substitutes an instruction with possibly larger code segments. The
rule set we chose to use was that used by Evol(ve), the
metamorphic engine of the W32.Evol malware.

Evaluation 1 (Tracking typical engine output to the engine): The
goal of this first experiment was to determine how well, and for
what parameter choices, the scoring function can assist in
discriminating the engine’s output from arbitrary code segments.
The experiment actually consisted of a number of simulations.
Each simulation generated a “first generation” code segment with
fixed engine-friendliness and used the engine to produce a
thousand each of 2nd, 3rd, 4th, 5th, 6th, and 7th generation
descendants of the segment. The choice to go that deep in
generating variants of the code was arbitrary but nevertheless
sufficient to make preliminary claims about the scoring function.
We computed the scores of the variants thus simulated and
analyzed their frequency distributions. Figures 5 and 6 give the
frequency distributions of the second through seventh generations
of variants produced on input programs of engine-friendliness 5%
and 50% respectively.

Evaluation 2 (Tracking variants of fixed metamorphic malware
to the engine): The goal of this second experiment was to
determine how well, and for what parameter choices, the scoring
function can assist in discriminating variants of known malware
from arbitrary code segments. For this experiment we took a
variant of the W32.Evol malware, extracted its opcode list, and
using the transformation rules that this malware's engine uses,
generated a thousand each of 2nd, 3rd, and 4th generation variants
of the opcode string. We computed the score of each of these
variants and analyzed the frequency distribution of these scores.
The simulation results are shown in Figure 7. We have also
computed the scores of real W32.Evol variants we have
collected from infected programs. The 2nd generation, 3rd
generation, and 4th generation variants scored 1.62, 1.95, and 2.13
respectively.

5. DISCUSSION
The first evaluation shows that the scoring method

successfully managed in several cases to score the engine’s output
considerably higher than engine-independent segments. It can be
seen from the simulation results that the function performed
particularly well on all variants when the original variant
friendliness was over 50%. For lower engine-friendliness values,
say 5%, the function was only successful in telling later
generation variants from engine-independent segments. For
example, some engine-independent segments scored over 0.013
while minimum scores of 0.009 were observed for second
generation variants of 5% friendly segments. This implies that
writing malware with low engine-friendliness would be one way
to evade our approach (at least for earlier generations). But again,
low friendliness implies that a good section of any variant of the
malware will not be transformable hence defeating the very

Figure 4. An illustration of the scoring approach on a code
segment suspected of having been generated by Evol.

push 6

mov 0

mov 0

pop 0

push 2

mov 0

mov 2

push 8

mov 2

add 0

mov 2

add 0

pop 0

SE = 22/13 ≈ 1.69

76

purpose of metamorphism and leaving itself open to traditional
static signature scanning.

Both evaluations produced a Gaussian-like score distribution. For
the second evaluation, this suggests that segments from
W32.Evol could be tracked to W32.Evol's engine by
measuring their closeness to the means of the distributions
corresponding to each generation. An inspection of the simulation
results reveals that segment scores seem to somehow converge
towards some small range of values as the segment mutates. We
have observed this trend as we were experimenting with other
friendliness, rule application probability combinations and it can
also be clearly observed in Figure 6. This small range of values
could then be used to give some measure of confidence of how
likely a code segment is to be part of a later variant of some
metamorphic malware using Evol(ve) as its engine.

6. CONCLUSIONS AND FURTHER WORK
We introduced a novel approach for dealing with metamorphic
malware. This approach capitalizes on the engine’s power to track
its output to it. More specifically, it takes advantage of the fact
that metamorphic engines, in order to generate an output program
that is as different as possible from the input, typically require
their input to be highly transformable. Intuitively, an engine
signature is forensic evidence extracted from some code segment
and giving some measure of confidence that the segment is part of
a program (usually malware) that was generated by the engine.

We used a scoring function to illustrate this approach on an
instruction-substituting metamorphic engine, that of W32.Evol.
More analysis would perhaps be needed should the scanner wish
to gather more evidence that the code being scanned is in fact
from a variant of W32.Evol. As for the authorship-tracking
dimension, the function did particularly well on all generations
except for those variants whose original engine-friendliness is
below 10% for the case study transformation system.

Other flavors of weight assignment can also be explored. For
example, a garbage segment should be given more weight than a
right hand side segment; intuitively, odds that some random code
segment contains a do-nothing segment, especially a large one,
known to be routinely inserted by some engine at more than one

location are considerably lower than those for programs generated
by the engine on input a friendly malware. Clues that cannot be
altered across generations should weigh more than those which
can; for example, some clue may contain a section that is not
transformable by the engine and hence remains in the code across
generations.

Some engines, such as W32.Simile (a.k.a. MetaPHOR), shrink
code by applying transformations mapping relatively large code
segments to smaller ones. The shrinking part (or application of
expanding rules both ways), should adversely affect the current
scoring function if the engine takes the shrinking direction of the
rules (considerably) more often than it does the expanding
direction. And, even so, in order to thoroughly defeat the
function, most of the smaller segments must be of minimal size;
that is, in the order of one instruction per segment, leaving the
malware authors with fewer transformation options.

We will also investigate the possibility of adapting this research
to determine toolkit authorship to actually track recently released
malware to known malware generation tookits.

Acknowledgment. This work was supported in part by funds
from the Louisiana Governor’s Information Technology Initiative.
The authors thank Rachit Mathur for extracting the samples and
rule set W32.Evol.

Figure 5. The frequency distribution of the scores of 2nd
to 7th generations with initial engine-friendliness 5%.

Figure 6. The frequency distribution of the scores of 2nd
to 7th generations with initial engine-friendliness 50%.

Figure 7. The frequency distribution of the scores of 2nd
to 4th generations of simulated W32.Evol variants.

77

7. REFERENCES
[1] Brushi, D., Martignoni, L., and Monga, M. Using Code

Normalization for Fighting Self-Mutating Malware. In
Proceedings of the International Symposium of Secure
Software Engineering (Arlington, VA, 2006).

[2] Chess, D. M., and White, S. R. An Undetectable Computer
Virus. In Proceedings of Virus Bulletin Conference (2000).

[3] Cohen, F. Computational Aspects of Computer Viruses.
Computers & Security, 8 (1989), 325-344.

[4] Christodorescu, M., Jha, S., Seshia, S. A., Song, D., and
Bryant, R. E. Semantics-Aware Malware Detection. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy (S&P'05) (Oakland, CA, USA, May 8-11, 2005)

[5] Karim, M. E., Walenstein, A., Lakhotia, A. ,and Parida, L.
Malware Phylogeny Generation using Permutations of Code.
European Research Journal of Computer Virology 1, 1-2
(Nov. 2005) 13-23.

[6] Krsul, I., Spafford, E. H. Authorship Analysis: Identifying
The Author of a Program. Technical Report 96-052, 1996.

[7] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna,
G. Polymorphic Worm Detection Using Structural
Information of Executables. In Proceedings of the 8th
Symposium on Recent Advances in Intrusion Detection
(RAID) (Seattle, WA, USA, September 7-9, 2005).

[8] Spinellis, D. Reliable Identification of Bounded-Length
Viruses is NP-Complete. IEEE Transactions on Information
Theory, 49, 1 (2003), 280-284.

[9] Ször, P. The Art of Computer Virus Research and Defense.
Symantec Press, 2005.

[10] Walenstein, A., Mathur, R., Chouchane, M. R., and
Lakhotia, A. Normalizing Metamorphic Malware Using
Term Rewriting. In Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM 2006) (Sheraton Society Hill,
Philadelphia, PA, USA, 2006).

78

