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ABSTRACT 
This paper introduces the “engine signature” approach to assist in 
detecting metamorphic malware by tracking it to its engine. More 
specifically, it presents and evaluates a code scoring technique for 
collecting forensic evidence from x86 code segments in order to 
get some measure of how likely they are to have been generated 
by some known instruction-substituting metamorphic engine. A 
prototype simulator that mimics real instruction-substituting 
metamorphic engines was implemented and used to conduct 
several experiments that evaluate the goodness of the scoring 
technique for given engine parameters. The technique was also 
used to successfully help track variants of W32.Evol to their 
engine.   

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – invasive 
software; K.6.5 [Management of Computing and Information 
Systems]: Security and Protection – invasive software  

General Terms 
Measurement, Experimentation, Security. 

Keywords 
Virus Scanner, Metamorphic Engine. 

1. INTRODUCTION 
Metamorphic malware is that which propagates by creating 
transformed copies of its code. The generated code, often called a 
variant of the malware, is typically a working program which has 
the same functionalities as the original. Metamorphism has been 
used by malware authors to thwart detection by static-signature-
based anti-malware scanners and has the potential to lead to a 
breed of malicious programs that is virtually undetectable 
statically and could seriously damage the target computing 
systems and potentially cause billions of dollars in financial losses 
over a very short period of time [9]. Most commercial static anti-
malware scanners look for malware signatures (typically, a 
sequence of bytes within the malware code) to declare, with some 
measure of confidence, that the program being scanned is 
malicious. 

The main goal of metamorphism is to change the appearance of a 
malicious program while keeping its functionality and many 
metamorphic transformations can be used (or combined) to 
achieve this goal. A number of these transformations came to be 
understood thanks to analyses done by people in the anti-malware 
research community; others were simply advertised by  
metamorphic malware authors. These transformations include 
register renaming, code permutation, code expansion, code 
shrinking and dead code insertions and vary in the amount of 
effort needed to apply them and the performance/size overhead 
they impose on the new variant. Detailed discussions of these 
transformations, and others, can be found in [9]. Most 
metamorphic malware typically consist of a malicious payload 
attached to a metamorphic engine. When the engine is called, its 
algorithm mutates the payload (and sometimes the engine code as 
well) by applying a number of these transformations to it.  

This paper illustrates the engine signature approach through the 
use of an engine-specific scoring procedure that scans a piece of 
code to determine the likelihood that it is (part of) a program that 
has been generated by a known instruction-substituting 
metamorphic engine. This way, all we need to store for detection 
purposes is information about the engine rather than information 
about each possible malicious variant it can produce. 

The scoring technique is designed for metamorphic engines that 
transform their input variant of the malware using a finite set of 
transformation rules mapping instructions to code segments that 
implement their operational semantics. When such an engine is 
given as input a (typically malicious) code segment to be 
transformed, it scans the segment for occurrences of instructions 
that can be transformed. The engine sometimes needs to perform 
simple context analyses, or make assumptions about the code, to 
decide whether or not the instruction can be transformed. The 
third rule in the transformation system of Figure 3, for example, is 
semantics preserving only provided that register eax be dead at 
that point. When the engine determines that it is safe to transform 
the instruction, it probabilistically decides whether or not to 
replace it with an equivalent code segment. Evol(ve), the 
engine of W32.Evol, is an example of such an engine where 
each rule has its own application probability. 

The scoring technique was inspired by our observation that much 
(typically, over 50%) of the original variant of instruction-
substituting metamorphic malware is transformable; that is, most 
of its instructions are transformable by the engine. We use the 
phrase engine friendliness to refer to this level of transformability 
of the variant. Such engines also tend to be written such that their 
transformation rules preserve this level of transformability across 
generations; that is, high transformability (i.e., high engine  
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friendliness) usually applies to all variants of the malware. This is 
typically done, in the case of instruction-substituting engines, by 
ensuring that even the code segments that are used to replace 
other code segments contain at least one transformable region.  

Since metamorphic engines which operate on binaries are 
notoriously hard to write, not many reliable metamorphic engines 
have so far been written. But of those that were, some were made 
available as object files for malware authors to write their 
payloads and link them to these engines thus adding 
metamorphism to the new payload. The engine signature 
approach presented in this paper may then be taken in this case to 
gather enough forensic evidence to link segments of this new 
malicious payload to the engine being reused. 

Section 2 describes related work. Section 3 applies the engine 
signature approach for detecting metamorphic malware by 
presenting a scoring technique for tracking code segments to 
known instruction-substituting metamorphic engines. Section 4 
describes the experiment we conducted to evaluate the scoring 
technique. Section 5 discusses the evaluation results. Section 6 
concludes the work and lists a number of future research 
problems. 

2. RELATED WORK 
A number of definitions of malware that may be interpreted 

as describing metamorphic malware have been given and results 
about the computability and complexity of their respective 
detection problems have been established[2][3][8]. These results, 
while perfectly sound, do not apply in the context of our work: 
An approximate detection scheme of the output of some well-
known metamorphic engine. 

Industry-adopted approaches for detecting metamorphic 
malware still rely heavily on the concept of static signature 
scanning to detect the malware. Static signature scanning 
typically scans a program for the presence of sequences of bytes  

known to belong to known malware (malware which has been 
received and analyzed by anti-malware vendors). Other schemes 
run the suspect program and monitor its behaviors hoping to catch 
any unexpected or known malicious behavior (such as a sequence 
of call instructions known to be routinely used by some malware.) 
Such an approach is very impractical given that metamorphic 
malware authors tend to design it such that intractably many 
variants can be generated on each run of the engine on some 
variant. This alone represents a major impediment to static 
signature scanning. Dynamic analysis can also be thwarted by 
testing the patience of the emulator or by taking the malicious 
control flow path only rarely. 

Recent work by Karim et al. [5] views variants of malware 
that permutate and transform some or all of their code when 
propagating as related to previous variants through evolutionary 
relationships. Actually, their method also takes advantage of the 
common practice of code reuse employed by most malware 
writers. By extracting these evolutionary relationships, they built 
a phylogeny and, in a way similar to that used in biology to 
decide whether an organism is likely to be an evolved strain of 
another, they were able to classify the programs being scanned as 
being a potentially modified version of some malware. 
Chritodorescu et al. [4] built a "semantic rather than purely 
syntactic" algorithm for detecting malware. Their algorithm uses 
its knowledge of a specification of malicious behavior, described 
using a template, to detect if a given program satisfies the 
behavior. They show that their implementation, approximating a 
solution to this undecidable template-matching problem, 
outperformed McAfee® VirusScan®  by detecting a larger 
number of variants of a known malware. Walenstein et al. [10] 
take a code normalization approach to reduce variants of known 
metamorphic malware to a common normal form. They use this 
form as a signature for that malware and declare a program to be a 
variant of the malware if it eventually reduces to that form. A 
similar normalization approach was proposed by Brushi et al.  [1]. 
Kruegel approached the issue by extracting patterns from 
executables to track them to some known malicious malware [7]. 

E-friendly malware 

 release 

feedback 

 

Variant 

E 

Figure 1. The metamorphic engine E uses its transformation system to probabilistically replace instructions 
in its input with equivalent code segments. As a result, an intractably high number of new variants could be 

produced by the engine. The scoring function captures the “density” on codes segments introduced in the 
variants by the engine to track the variants to their producer: the engine.  
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These approaches either track variants of metamorphic 
malware to other variants or to some template capturing some 
abstraction of some malicious behavior. Our scoring function, 
however, not only assists in matching variants of malware to the 
malware, but also in tracking programs, or even code segments, to 
known code-substituting metamorphic engines of the kind 
described in the introduction.  

Our approach is analogous to authorship analysis when 
applied to determine the likely author of some typically high-level 
language program. A considerable amount of work on authorship 
analysis has been done [6]. It is somewhat relevant to our 
approach in that our attempt to track metamorphic malware to its 
engine is analogous to tracking code to its authors. Most of these 
forensic analyses of code assume the availability of source code, 
which is generally not available when analyzing potentially 
malicious binaries. 

3. THE SCORING TECHNIQUE 
We henceforth let E denote some instruction-substituting 
metamorphic engine as described in the introduction. We will use 
the term clue to refer to any fraction, typically a sequence of 
instructions, of any information extracted from a code segment 
and suggesting that the segment may have been generated by E. 
We denote by T the rule set carried by E. Each rule in T maps an 
instruction (the left hand side) to a sequence of one or more 
instructions. This sequence is referred to as the right hand side of 
the rule. Right hand sides are thus examples of clues. Such clues 
are chosen and assigned weights equal to their instruction count. 
This choice of weight assignment is arbitrary and may not be the 
best in all cases, but it suits our purposes. 

We say that a code segment is E-friendly if it was written “with E 
in mind”; that is, the segment has a non-zero frequency of the left 
hand sides of T (i.e., transformable instructions). The high E-
friendliness of a given variant must hold across subsequent 
generations of the malware. This is usually achieved by requiring 

10% friendly 20% friendly 

  

90% friendly 100% friendly 

  

Low E-friendliness 

Instruction Substitution 
Garbage Insertion 

Input 

Variants 

Output 
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Figure 2. An increase in the engine-friendliness of the input variant induces an increase in the density of the output 
variants with clues that have been introduced by the engine. 

Metamorphic 
Engine 

mov [esi+4], 9  mov [esi+4], 6 

       add [esi+4], 3 

mov [ebp+8], ecx  push eax 

       mov eax, ecx 

       mov [ebp+8], eax 

       pop eax 

push 4    mov eax, 4 

       push eax 

push eax   push eax 

mov eax, 2Bh 

Figure 3. At left is a subset of the transformation system of W32.Evol. When any of the left hand sides is met in 
the variant to be transformed, the engine non-deterministically replaces it with the corresponding code segment. 

The clue set is constructed from the transformation system by extracting the opcodes of the right hand sides.  

Clue Set ={mov add, 

           push mov mov pop, 

           mov push, 

           push mov} 
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at least one occurrence of a left hand side in most, if not all, right 
hand sides. 

Each rule in T is accompanied with its rule application 
probability (the probability that the rule will be applied when its 
left hand side is encountered in the segment to be transformed.) 
The set T must be explicitly carried by the engine and is assumed 
to be extractable manually, or interactively from the engine in a 
laboratory environment. This approach will of course work only 
when the static disassembly of the executable to be scanned is 
successful. Given a code segment V, suspected of being (part of) 
the output of E, we reduce each instruction in V to its opcode 
mnemonic. This abstraction of the actual instruction is actually 
needed to represent the (typically intractably large) set of possible 
right hand sides that a transformation involving variables taking 
on scalar values might generate.  

We define a scoring function that takes as input a code segment (a 
sequence of x86 opcode mnemonics) and returns a score for that 
sequence. For a given code segment V, the score of V with respect 
to E, which we denote by SE(V), is a measure of how likely V is to 
be (part of) a program generated by E. SE(V) is proportional to the 
forensic evidence linking V to E and inversely proportional to the 
instruction count of V. It can be viewed as the density of V with 
clues from the transformation rules of E. The expression of SE 
takes into account the fact that some of the clues are more 
informative than others. The scoring function is given by the 
expression  

SE(V)=∑c∑s wc ecs / |V|, 

where |V| is the instruction count of  V, wc is the weight of clue c, 
and ecs = 1 if clue c is at site s and 0 otherwise. A naïve algorithm 
computing this function would simply do a linear scan of V. For 
each instruction i visited, it would determine whether i is the 
beginning of an occurrence of one or more clues. If it is, it 
accumulates the sum of the weights of these clues in some 
variable. It would finally divide the accumulated sum by the 
instruction count of V then return the result. Figure 4 gives an 
example using the scoring function. 

4. EVALUATIONS 
We implemented a prototype simulator of an instruction-
substituting metamorphic engine and used it to run two 
experiments to evaluate the scoring function. A code segment is 
simulated by abstracting it to a list of opcode mnemonics in the 
same order in which they appear in the segment. The rule set of 
the engine is simulated using a list of pairs of such tuples. The 
simulator is restricted to mapping single-element tuples to larger 
ones, thus capturing the metamorphic transformation which 
substitutes an instruction with possibly larger code segments. The 
rule set we chose to use was that used by Evol(ve), the 
metamorphic engine of the W32.Evol malware.  

Evaluation 1 (Tracking typical engine output to the engine): The 
goal of this first experiment was to determine how well, and for 
what parameter choices, the scoring function can assist in 
discriminating the engine’s output from arbitrary code segments. 
The experiment actually consisted of a number of simulations. 
Each simulation generated a “first generation” code segment with 
fixed engine-friendliness and used the engine to produce a 
thousand each of 2nd, 3rd, 4th, 5th, 6th, and 7th generation 
descendants of the segment. The choice to go that deep in 
generating variants of the code was arbitrary but nevertheless 
sufficient to make preliminary claims about the scoring function. 
We computed the scores of the variants thus simulated and 
analyzed their frequency distributions. Figures 5 and 6 give the 
frequency distributions of the second through seventh generations 
of variants produced on input programs of engine-friendliness 5% 
and 50% respectively.  

Evaluation 2 (Tracking variants of  fixed metamorphic malware 
to the engine): The goal of this second experiment was to 
determine how well, and for what parameter choices, the scoring 
function can assist in discriminating variants of known malware 
from arbitrary code segments. For this experiment we took a 
variant of the W32.Evol malware, extracted its opcode list, and 
using the transformation rules that this malware's engine uses, 
generated a thousand each of 2nd, 3rd, and 4th generation variants 
of the opcode string. We computed the score of each of these 
variants and analyzed the frequency distribution of these scores. 
The simulation results are shown in Figure 7.  We have also 
computed the scores of real W32.Evol variants we have 
collected from infected programs. The 2nd generation, 3rd 
generation, and 4th generation variants scored 1.62, 1.95, and 2.13 
respectively. 

5. DISCUSSION 
The first evaluation shows that the scoring method 

successfully managed in several cases to score the engine’s output 
considerably higher than engine-independent segments. It can be 
seen from the simulation results that the function performed 
particularly well on all variants when the original variant 
friendliness was over 50%. For lower engine-friendliness values, 
say 5%, the function was only successful in telling later 
generation variants from engine-independent segments. For 
example, some engine-independent segments scored over 0.013 
while minimum scores of 0.009 were observed for second 
generation variants of 5% friendly segments. This implies that 
writing malware with low engine-friendliness would be one way 
to evade our approach (at least for earlier generations). But again, 
low friendliness implies that a good section of any variant of the 
malware will not be transformable hence defeating the very 

Figure 4. An illustration of the scoring approach on a code 
segment suspected of having been generated by Evol. 
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mov 2 
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pop 0 

SE = 22/13 ≈ 1.69 
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purpose of metamorphism and leaving itself open to traditional 
static signature scanning. 

Both evaluations produced a Gaussian-like score distribution. For 
the second evaluation, this suggests that segments from 
W32.Evol could be tracked to W32.Evol's engine by 
measuring their closeness to the means of the distributions 
corresponding to each generation. An inspection of the simulation 
results reveals that segment scores seem to somehow converge 
towards some small range of values as the segment mutates. We 
have observed this trend as we were experimenting with other 
friendliness, rule application probability combinations and it can 
also be clearly observed in Figure 6. This small range of values 
could then be used to give some measure of confidence of how 
likely a code segment is to be part of a later variant of some 
metamorphic malware using Evol(ve) as its engine. 

6. CONCLUSIONS AND FURTHER WORK 
We introduced a novel approach for dealing with metamorphic 
malware. This approach capitalizes on the engine’s power to track 
its output to it. More specifically, it takes advantage of the fact 
that metamorphic engines, in order to generate an output program 
that is as different as possible from the input, typically require 
their input to be highly transformable. Intuitively, an engine 
signature is forensic evidence extracted from some code segment 
and giving some measure of confidence that the segment is part of 
a program (usually malware) that was generated by the engine.  

We used a scoring function to illustrate this approach on an 
instruction-substituting metamorphic engine, that of W32.Evol. 
More analysis would perhaps be needed should the scanner wish 
to gather more evidence that the code being scanned is in fact 
from a variant of W32.Evol. As for the authorship-tracking 
dimension, the function did particularly well on all generations 
except for those variants whose original engine-friendliness is 
below 10% for the case study transformation system.  

Other flavors of weight assignment can also be explored. For 
example, a garbage segment should be given more weight than a 
right hand side segment; intuitively, odds that some random code 
segment contains a do-nothing segment, especially a large one, 
known to be routinely inserted by some engine at more than one 

location are considerably lower than those for programs generated 
by the engine on input a friendly malware. Clues that cannot be 
altered across generations should weigh more than those which 
can; for example, some clue may contain a section that is not 
transformable by the engine and hence remains in the code across 
generations.  

Some engines, such as W32.Simile (a.k.a. MetaPHOR), shrink 
code by applying transformations mapping relatively large code 
segments to smaller ones. The shrinking part (or application of 
expanding rules both ways), should adversely affect the current 
scoring function if the engine takes the shrinking direction of the 
rules (considerably) more often than it does the expanding 
direction. And, even so, in order to thoroughly defeat the 
function, most of the smaller segments must be of minimal size; 
that is, in the order of one instruction per segment, leaving the 
malware authors with fewer transformation options.  

We will also investigate the possibility of adapting this research 
to determine toolkit authorship to actually track recently released 
malware to known malware generation tookits. 

Acknowledgment. This work was supported in part by funds 
from the Louisiana Governor’s Information Technology Initiative. 
The authors thank Rachit Mathur for extracting the samples and 
rule set W32.Evol.  

Figure 5. The frequency distribution of the scores of 2nd  
to 7th generations with initial engine-friendliness 5%. 

Figure 6. The frequency distribution of the scores of 2nd  
to 7th generations with initial engine-friendliness 50%. 

Figure 7. The frequency distribution of the scores of 2nd  
to 4th generations of simulated W32.Evol variants. 
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