
Theory and algorithms for slicing unstructured programs

Mark Harmana,*, Arun Lakhotiab, David Binkleyc

aDepartment of Computer Science, King’s College, Strand, London WC2R 2LS, UK
bUniversity of Louisiana at Lafayette, Lafayette, LA 70504, USA

cLoyola College, 4501 North Charles Street, Baltimore, MD 21210, USA

Received 21 January 2005; revised 31 May 2005; accepted 10 June 2005

Available online 30 August 2005

Abstract

Program slicing identifies parts of a program that potentially affect a chosen computation. It has many applications in software

engineering, including maintenance, evolution and re-engineering of legacy systems. However, these systems typically contain programs

with unstructured control-flow, produced using goto statements; thus, effective slicing of unstructured programs remains an important topic

of study.

This paper shows that slicing unstructured programs inherently requires making trade-offs between three slice attributes: termination

behaviour, size, and syntactic structure. It is shown how different applications of slicing require different tradeoffs. The three attributes are

used as the basis of a three-dimensional theoretical framework, which classifies slicing algorithms for unstructured programs. The paper

proves that for two combinations of these dimensions, no algorithm exists and presents algorithms for the remaining six combinations.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Program slicing; Amorphous slicing; Unstructured control-flow
1. Introduction

Mark Weiser first defined a program slice in the context

of debugging [35]. Since then program slicing has found

many applications besides debugging [17,24,27,31] includ-

ing program integration [23], comprehension [14,18] and

reuse [3,12]. There also has been an active body of work in

computing various types of slices resulting in a rich

nomenclature for classifying slicing algorithms: intraproce-

dural vs. interprocedural; static vs. dynamic; backward vs.

forward; executable vs. non-executable; and syntax-preser-

ving vs. amorphous [6,7,13,21,33].

In short, intraprocedural slices consider a single

procedure in isolation, while interprocedural slices con-

sider multiple procedures with procedure calls. Static slices

are computed from a program using static analysis while

dynamic slices are computed from a program and an input
0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.06.001

* Corresponding author. Fax: C44 1895 251 686.

E-mail address: mark@dcs.kcl.ac.uk (M. Harman).
and thus take into account a single execution of the

program. A backward slice identifies program components

that might affect a given computation. Its dual, a forward

slice, identifies program components affected by a given

component. An executable slice is an executable program

that captures a subset of the original program’s compu-

tation, while a non-executable (or closure) slice simply

identifies the elements that affect (or are affected by) a

given computation. These are often the same, but not

always [4]. Finally, a syntax-preserving slice contains only

portions of the original program’s text, while an

amorphous slice allows semantics-preserving transform-

ations [18].

Slicing has found many applications because it allows

the programmer to focus on a sub-computation; extracting it

in the form of an executable subprogram—the slice. The

sub-computation of interest may be one that the original

author of the program had not considered and so the

computation which denotes it may be arbitrarily scattered

throughout the source code of the original program. The task

of constructing the slice is thus the task of locating these

scattered components and the supporting computations

upon which they depend. It is a demanding problem because
Information and Software Technology 48 (2006) 549–565
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

M. Harman et al. / Information and Software Technology 48 (2006) 549–565550
it requires a deep semantic analysis in order to ensure that

the slice extracted preserves the behaviour of the original

program with respect to the computation of interest.

The problem of slicing unstructured programs is

important because many of the applications of slicing

involve maintenance, evolution, and re-engineering of

legacy systems, often written in programming styles

which make heavy use of unstructured control flow [3,9,

10,26]. Even recent systems contain a significant proportion

of goto statements. For example, an inspection of Linux

Kernel version 2.6.8.1 revealed that approximately 0.86%

of the statements are goto statements. Finally, some

programming languages (e.g. C), require the use of break
statements in common constructions (such as the switch
statement). The break statement denotes a limited form of

unstructured control flow.

Ottenstein’s Program Dependence Graph (PDG) based

algorithm is currently the best known algorithm for

intraprocedural slicing of structured programs [15,28]. This

algorithmwas not designed to compute slices of unstructured

programs. Consequently, it fails to include any goto
statements in a slice because a goto statement is neither

the source of data nor control dependence. The literature

contains several algorithms that extend Ottenstein’s algor-

ithm to compute slices of unstructured programs [1,2,11,

20,25]. These algorithms are discussed in Section 6.

This paper focuses on the computation of static,

backward, intraprocedural, executable slices of unstructured

programs, henceforth simply referred to as slices. It makes

the following contributions:

(1) Framework: The paper introduces the framework

shown in Fig. 1 for classifying slicers of unstructured

programs along three independent dimensions: termin-

ation behaviour, syntactic structure, and size. It is

shown that slicing algorithms for two of the eight

combinations within the framework, though desirable,
Fig. 1. The three dimensional framework.
simply do not exist. This non-existence result is not due

to the familiar non-computability results relating to

slice minimality [35]. Rather, it is a direct result of the

particular properties of unstructured programs and their

slices.

(2) Slicing algorithms: The paper presents slicing

algorithms1 for the remaining six combinations. These

algorithms are built using common data structures,

thereby facilitating examination of the tradeoffs present

between the different possibilities. Finally, existing

algorithms for slicing unstructured programs are placed

into the framework. Interestingly, this reveals that, of

the six possibilities, only three have been considered in

previous slicing literature.

The rest of the paper is organized as follows. Section 2

contains some necessary definitions. Section 3 presents the

three-dimensions of the framework. Section 4 proves that

two classes within the framework do not exist. Section 5

presents the new slicing algorithms. Section 6 discusses

related work, places it into the framework, and compares it

to the algorithms from Section 5. Finally, conclusions are

presented in Section 7.
2. Definitions

This section defines the properties of the abstract syntax

trees, control-flow graphs, and program dependence graphs

required in subsequent sections. The language considered is

essentially C, however the focus of the paper is on

intraprocedural control issues; thus, the definitions and

examples consider primarily assignment, if-then-
else, while, do-while, sequence, goto, and ‘special’
statements. Interprocedural control issues (e.g. those

introduced by exit(), longjmp(), or exceptions), and
pointers, arrays, and other data dependence related features

are mostly ignored.
2.1. Abstract Syntax Tree

The Abstract Syntax Tree (AST) is used to treat issues

related to the order of statements in a program. This section

defines the AST and two operators used to relate the ASTs

of programs and their slices.

Definition 1. (Abstract Syntax Tree [16]). Each procedure P

is represented by a standard Abstract Syntax Tree, denoted

by AST(P). The relevant core of which is described as

follows wherein bold text indicates the node kind (lower

case) and contents (upper case), subordinate nodes appear
1 The algorithms focus on the issue of unstructuredness and so issues to

do with other language features (for instance pointer aliasing) are not

considered.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 551
between ‘[’ and ‘]’, ‘-list’ is the postfix list operator, and ‘;’

is the list construction operator.

Procedure

TZprocedure [Statement-list]

Statement

TZif C

[Statement-list; “(implicit)goto endif”]

[Statement-list; label “endif”]

TZwhile C [label “top”;

Statement-list;

“(implicit) goto top”]

TZdo-while C [Statement-list]

TZgoto Label
TZskip

TZassignment Assignment-Expression

TZlabel Name

Note that AST(P) differs from the standard definition in

two respects. First, the condition of a branch node is

maintained within the node, not as a child. Thus, an if-
then-else statement has two children: a then child and

an else child. All other control statements (e.g. while
and do-while statements) have a single child: the body of

the loop. Second, the AST includes implicit goto
statements that are not part of the original source code.

These represent two kinds of implicit control transfers: (a)

the transfer from the end of the then part to the statement

following an if-then-else statement, and (b) the

transfer from the end of a loop body to the loop condition.

Example. The following code shows a program and a text

representation of its AST including an implicit goto

statement (appearing in italics).

Original program Text representation of AST

if (x) if (x)
aZ1 aZ1

goto endif
else else

bZ2 bZ2
endif:
This ‘core’ AST is used in all the formal parts of the

paper. The results, however, apply to any larger language

that contains this core AST.

Definition 2. (Syntax Order). Syntax order of AST(P),

denoted by SO(P), orders the nodes of AST(P) in the order

resulting from a left-to-right, top-to-bottom scan of P’s

source code.

Definition 3. (Projection of a Syntax Order). For a set of

AST nodes N, the N projection of SO(P), denoted by SO(P)

jN, is the sequence created by retaining (projecting out)

from SO(P) only those nodes in N.
2.2. Control flow graph

The definition of a program’s Control Flow Graph (CFG)

given below is atypical in that it relaxes two reachability

constraints. This definition is followed by two definitions

based on the CFG. The first is used in the next section to

formalize the size of a slice and the second is used to define

the slicing algorithms in Section 5.

Definition 4. (Control Flow Graph [16]). The Control Flow

Graph for program P, denoted by CFG(P), is a 4-tuple (NP,

EP, nentry, nexit), where NP is a set of nodes, EP4NP!NP

a set of edges, and nentry and nexit are unique start and end

nodes, respectively, belonging to NP. Herein, the standard

definition is relaxed by removing the requirements that (1) a

path exists from nentry to every node in the CFG and (2) a

path exists from every node to nexit.

Definition 5. (Jumps). For a program P, JP4NP denotes the

set of goto (jump) nodes in CFG(P).

Definition 6. (Post Domination):

† CFG Node x post dominates node y iff all paths from y to

nexit contain x.

† CFG node x immediately post dominates node y iff all

other post dominators of y also post dominate x.
2.3. Program dependence graph

Ottenstein and Ottenstein first noted that intraprocedural

slices could be computed from the PDG using a simple

graph traversal [28]. In essence, the statements that affect

the computation represented by node n are those whose

nodes are connected to n by paths of edges in the PDG. In

the absence of goto statements, Reps and Yang demon-

strate that projecting out the statements of the original

program reached in this way, produces a syntactically

correct program that captures a subset of the original

program’s semantics [30].

Definition 7. (Program Dependence Graph [28]). The PDG

of a program P, denoted by PDG(P), contains essentially the

same nodes as CFG(P) and edges that represent data

dependences and control dependences (rather than the flow

of control as in the CFG).

Definition 8. (Ottenstein Slice [28]). For program P and

PDG node n, OttensteinSlice(P, n)Z{x j there is a path in

PDG(P) from x to n}.

For program P and set of PDG nodes N, OttensteinSli-

ce(P, N)Z
S

n2N OttensteinSlice(P, n).

Definition 9. (Executable Slice [30]). For program P and

statement s, an executable slice of P taken with respect to s

is a program obtained by projecting those statements of P

whose nodes are in OttensteinSlice(P, PDG node for s).

M. Harman et al. / Information and Software Technology 48 (2006) 549–565552
3. The framework for slices and slicers

This section introduces the framework for classifying

slices and slicing algorithms for unstructured programs. The

framework has three orthogonal dimensions: termination

behaviour, syntax, and size. In short these dimensions are

described as follows:

Termination Behaviour. A slice is strong iff it terminates

when the original program does, it is weak otherwise.

Syntax. A slice is syntax preserving, or syntactic, iff it is

obtained solely by deleting statements from the original

program. It is amorphous if it contains statements not in the

original program.

Size. A slice is Ottenstein-less, Ottenstein-equal, or

Ottenstein-more iff its size is less than, equal to, or more

than the size of the slice produced by Ottenstein’s PDG

based slicing algorithm.

To simplify the sequel, slices are assumed to be taken

with respect to the final value of a variable (represented in

the PDG by a final-use vertex). These slices are referred to

as being taken with respect to the variable. This treatment

does not affect the results; it merely simplifies their

presentation [30,8].
3.1. Termination

The termination dimension concerns the termination of P

and its slices. Along this dimension a slice S may be either

strong or weak. Informally, S is strong if it terminates for all

inputs on which P terminates. It is weak if it may fail to

terminate for some input on which P terminates. When P

fails to terminate it is acceptable for S to also fail to

terminate or for it to terminate. In the latter case the non-

termination has, in essence, been ‘sliced out.’ The

termination dimension is formalized in the following two

definitions:

Definition 10. (Strong Equivalence). Program Q is strongly

equivalent to program P with respect to a variable v iff for all

initial states, whenever P terminates Q also terminates and

both have the same final value for v.

Definition 11. (Weak Equivalence). Program Q is weakly

equivalent to program P with respect to a variable v iff for all

initial states, whenever P and Q both terminate they produce

the same final value for v.
3.2. Syntactic

Along the framework’s syntactic dimension, a slice may

be syntax-preserving or amorphous. A syntax-preserving

slice is created from the original program by simply deleting

statements. Deletion of statements in a program does not

change the syntactic order of the remaining statements.

Thus, a syntax-preserving slice can be expressed using

syntactic order as follows:
Definition 12. (Syntax Preserving). A program S is a syntax-

preserving version of a program P iff SO(S)ZSO(P)jNS.

An amorphous slice may contain statements not in the

original program. The use of the term ‘amorphous’ in the

following definition deserves some clarification.

Amorphous slicing was introduced by Harman and Danicic

[19] and has since been developed by others [5,34]. A fully

amorphous slice need bear no relation to the original

program. In this ‘fully amorphous’ paradigm, the problem

of slicing unstructured programs disappears; a program can

simply be transformed into a goto free equivalent program,

which can always be produced [29]. The transformed

program can then be sliced using existing algorithms for

structured programs. However, in this paper the degree of

‘amorphous freedom’ is highly restricted: an amorphous

slice may only introduce goto statements not present in the

original program.

Definition 13. (Amorphous). A program S is an amorphous

version of a program P iff SO(S)j(NS\JS)ZSO(P)j(NS\JS).
3.3. Size

Along the size dimension, a slice may be Ottenstein-less,

Ottenstein-equal, or Ottenstein-more. Ottenstein-less slices,

though an interesting classification, are not considered

further as their computation requires algorithms capable of

producing smaller slices even for structured programs.

Therefore, they are a separate issue. Of the two remaining

sizes, a slice is Ottenstein-equal when it is the same size as

an Ottenstein slice and Ottenstein-more when it is larger. As

the Ottenstein algorithm never includes jump statements,

they are factored out when comparing sizes. In the following

definition, the size of X is denoted by jXj.

Definition 14. (Ottenstein-Equal). Let S be a slice of P taken

with respect to variable v and OZOttensteinSlice(P, v). S is

Ottenstein-equal if jNOjZjNS\JSj. (Recall that by construc-

tion JO is empty.)

Definition 15. (Ottenstein-More). Let S be a slice of P taken

with respect to variable v and OZOttensteinSlice(P, v). S is

Ottenstein-more if jNOj!jNS\JSj.
3.4. The framework

The slicing classification framework has three dimen-

sions based on the preceding six definitions. Using the

following to denote these definitions (S) Strong (W)

Weak (P) syntactically Preserving (A) syntactically

Amorphous (E) Ottenstein-Equal, and (M) Ottenstein-

More, slices and slicing algorithms are identified using

the following lexicon to indicate the choice of each of

the three dimensions.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 553
S

W

()
P

A

()
E

M

()
Slicing

Note that since an algorithm that produces strong

slices, by definition, produces weak slices, and an

algorithm that produces syntax-preserving slices, by

definition, produces amorphous ones, SP{EjM} slices

represent the most tightly constrained possibilities. In

other words they are expected to be the most

algorithmically challenging. In general, the smaller the

slice the better for all applications of slicing. Therefore,

of these two, it is clearly advantageous to have no

additional nodes over-and-above those identified by the

Ottenstein slice. This makes the most desirable choice

SPE slicing. Unfortunately, as the next section shows, for

unstructured programs SPE slicers do not exist. Further-

more, as will be shown, WPE slicers do not exist either.
3.5. Applications of the different dimensions

As this paper shows, there is a trade-off between possible

properties of a program slice. These choices are reflected in

the algorithms that the paper introduces for producing forms

of slice which favour one property over another. The

preferred choice of slicing algorithm depends on the target

application. In this section, three possible choices of slicing

are considered and their possible applications described.

As the example applications in these three sub-sections

illustrate, there is a choice to be made when considering the

precise form of slicing to apply. The choice involves a trade-

off as it is impossible to have a slice which is always syntax-

preserving, termination preserving and has no more nodes

than the Ottenstein slice. However, in each case, there is a

case to be made concerning which property can be conceded

and why the other two are more important.
3.5.1. Applications of WAE slicing

For debugging applications [24,27], Weak, Amorphous,

Ottenstein-Equal (WAE) slices are likely to be the most

acceptable. This is because the use of slicing in debugging is

geared towards reducing the number of nodes which have to

be considered by the (human) debugger in order to identify

the location and cause of the fault.

In debugging, the original program is executed. When an

error is observed the first task is to identify the part of the

program which may have caused the error to manifest itself.

Slicing can help in this activity because it reduces the size of

the program, allowing the debugging activity to focus upon

those lines which may have caused the error. Therefore, for

this application, it will be most important to limit the size of

the slice, but less important to be able to execute it (the

original program having already been executed and having

produced an error).

Since the slice will not be executed, but merely inspected

by a human, it is not important that the slice preserve
termination (so it may be weak), nor will it matter if the slice

introduces some goto nodes to direct control flow (so it

may be amorphous). It will matter more, should the slice

add too many additional nodes. Therefore, WAE slicing

would seem most suitable, because the strong version (the

Strong, Amorphous Ottenstein-Equal slice) will generally

require more additional goto nodes in order to guarantee

that it is Strong.

3.5.2. Applications of SAE slicing

In re- and reverse- engineering applications [3,10,26],

Strong, Amorphous, Ottenstein-Equal (SAE) slices would

appear to be the most suitable form of slicing. This is

because reverse engineering involves extraction of reusable

components to be re-integrated into the reverse engineered

system.

Clearly, as the slice will become part of a system to be

executed, it must preserve termination (must be strong) and

(as with all slicing applications) it would be desirable to

have as few additional nodes as possible (must be Ottenstein

Equal). However, since re-engineering a system involves

changing its syntax, there would appear to be no reason to

require that the slice be completely faithful to the syntax of

the original, so it may be amorphous.

In reverse engineering, the trade off is size for

amorphousness. However, it is not possible to concede

termination behaviour, so in order to ensure that the slice is as

small as possible, it may be necessary to concede syntax

preservation. That is, the slice will be as small as possible

(while preserving termination characteristics), but may not

preserve syntax. Since reverse engineering involves chan-

ging the syntax of the program in any case, this concession to

amorphousness (lack of syntax preservation) is acceptable.

3.5.3. Applications of SPM slicing

For program integration [8,23], Strong, syntax-Preser-

ving, Ottenstein-More (SPM) slices are most likely to be

suitable. This is because the integration of two versions of a

program must be understood by the original programmers.

However, it will be also executed, so it must preserve

termination (so must be strong). As the framework shows,

this leaves no alternative but to allow the slice to be

Ottenstein-More, even though this is undesirable. Though

undesirable, it is the least of three evils. As this paper shows,

it is sometimes necessary for a Strong, syntax-Preserving

slice to be Ottenstein-More.
4. Non-existence of SPE and WPE slicers

This section demonstrates that two classifications within

the framework simply do not exist. These two are WPE

(Weak, syntax-Preserving, Ottenstein-Equal) slicers and

SPE (Strong, syntax-Preserving, Ottenstein-Equal) slicers.

This section also shows that there exist programs and slicing

criteria for which WPE slices exist, but SPE slices do not.

Fig. 2. A program and its CFG for which WPE slices do not exist.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565554
These results show that it is necessary to choose between

these three desirable properties: one simply cannot have a

slice which is both syntax and termination preserving and

which contains no more nodes than the Ottenstein slice.

Proposition 1. WPE slicers do not exist.

Proof 1. Consider the program fragment and its CFG shown

in Fig. 2. The Ottenstein slice taken with respect to the final

value of x is {1, 6, 7, 8} (shown in bold in the figure).

Clearly the goto nodes at Lines 2 and 3 need to be included

in order for the slice to have the correct semantics.

However, their inclusion alone makes the resulting set of

nodes neither a WPE slice nor an SPE slice. The problem

occurs because of the transfer of control from Node 6. In the

original program, control transfers from Node 6 to Node 8.

Without the inclusion of Node 4, the transfer of control (an

‘implicit goto’) will not occur. Node 4 does not control

anything other than a goto node, and therefore, no criterion

which will lead to its inclusion using the Ottenstein

Algorithm. In such a situation, there are two choices:

† Include the predicate node that directly contains the

implicit goto.
This will produce a slice that is not Ottenstein-equal.

(In this case, Nodes 2, 3 and 4 would be added to the

Ottenstein slice, making it an SPM slice.)

† Add a new goto to make the implicit transfer of control

explicit.

This will produce a slice which is not syntax preserving.

(In this case, the new node ‘goto end’ would be added

immediately after Node 6, making the slice SAE.) ,

Given that Line 4 of Fig. 2 is a predicate which controls

only goto nodes, one might conclude that this result is only
of theoretical interest because it holds only when unrealistic

branch nodes are involved. This is in fact not the case, nor is

it the case with other examples in this section. For example,

the following code, from the Linux Kernel open file routine,

includes such a goto node. The conditional ‘if
(IS_ERR(f))’ controls only ‘goto out_error;’.

if (!IS_ERR(tmp)){
lock_kernel();
fd Zget_unused_fd();
if (fd OZ0) {

struct file (fZfilp_open(tmp,
flags, mode);
error ZPTR_ERR(f);
if (IS_ERR(f))

goto out_error;
fd_install(fd, f);

}
out:

unlock_kernel();
putname(tmp);

}
return fd;
out_error:

put_unused_fd(fd);
fd Zerror;
goto out;

Corollary. SPE slicers do not exist.

Proof 2. Since the set of strongly equivalent programs is

contained within the set of weakly equivalent programs, the

non-existence of WPE slicers implies the non-existence of

SPE slicers. In Fig. 2, all syntactic subsets of the program

Fig. 3. A program with CFG for which no SPE slice exists, but for which WPE slices does exist.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 555
terminate, so all weak slices are, by definition, also strong

slices. ,

This section closes by considering the question of

whether there are programs for which SPE slices (not

slicers) do not exist, but for which WPE slices do exist. The

answer is ‘yes’, as the following theorem demonstrates.

Proposition 2. There exist programs for which WPE slices

exist, but SPE slices do not.

Proof 3. Consider the program shown in Fig. 3. The

Ottenstein slice of this program at the final use of x is

{1, 3, 6, 10}. Suppose an attempt is made to construct a slice

using only the nodes of the Ottenstein slice and the goto

nodes from the original program. The crucial node is

Node 9. The various options are

† Include Node 9, the branch controlling the loop, and all

its transitive dependences. This will include Nodes 7 and

9 in the slice, making it SPM.

† Replace the goto at Node 9 by a new goto node,

goto end. This makes the slice SAE.

† Include Node 9 in the slice. The resulting slice will fail to

terminate, where the original program would have

terminated, making it WPE.

† Do not include Node 9 in the slice. The resulting

program is not a slice because from Node 9 execution

will pass (incorrectly) from Node 6 to Node 10.
For this program, any slice taken with respect to the final

use of x must either be weak, Ottenstein-more, or

amorphous. In particular, note there is a WPE slice and

yet no SPE slice. ,
5. Slicing algorithms

As shown in the previous section, a slicer has to produce

either amorphous or Ottenstein-more slices because

Proposition 1 demonstrates that WPE and SPE slicers do

not exist. Furthermore, the existence of WAE and SAE

algorithms, presented in this section, obviates the need to

consider WAM and SAM algorithm. The latter can be

produced by simply adding the Ottenstein slice taken with

respect to any node not in the WAE or SAE slice,

respectively, which has the effect of unnecessarily increas-

ing slice size without affecting the semantics of the original

slice. These two observations reduce the framework’s eight

possible classifications for slicing algorithms to the four

interesting classifications considered in this section.

Each of the four algorithms is presented in a declarative

style. This makes it easier to understand and clarifies the two

key choices: determining how to handle termination and

implicit gotos. Each algorithm consists of two stages. The

first stage, described in Section 5.2, produces a projection

4-tuple. The second stage, described in Section 5.1, uses this

M. Harman et al. / Information and Software Technology 48 (2006) 549–565556
4-tuple to create theAST of the resulting slice. The algorithm

for the second stage is described first, since it motivates the

construction of the 4-tuple. A projection 4-tuple identifies

four sets of statements and is defined as follows:

Definition 16. (Projection 4-tuple). A projection 4-tuple (S,

G, M, X), denoted by j, contains

† S, the nodes of an Ottenstein slice (recall that an

Ottenstein slice never includes a goto node).

† G, a set of goto nodes to be preserved in the slice.

† M, a set of branch nodes to be morphed (transformed into

goto statements by Phase 2).

† X, a set of branch nodes to be retained in the slice, but

which are not members of the Ottenstein slice.

The respective elements of a 4-tuple are denoted by j.S,

j.G, j.M, and j.X. Note that each pairwise intersection of

these four sets is empty.
Fig. 4. An Algorithm fo
5.1. AST Projection

The second stage, the AST projection algorithm, is

shown in Fig. 4. Informally, the j-projection of AST(P),

denoted by AST(P)j j, is the AST resulting from

performing the following:

† replace with a skip node all nodes not in

j.S
S
j.G

S
j.M

S
j.X, and

† replace m2j.M with the node goto ipd, where ipd is the

immediate postdominator of m.

The AST projection algorithm does not remove nodes

from the tree. It merely replaces the nodes to be deleted with

skip statements, which is semantically equivalent to

deleting the statement. Replacing a branch statement by

skip does not involve the deletion of its children. Instead,

they are replaced by a subtree in which implicit goto’s
r AST Projection.

Fig. 5. Examples of AST Projection.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 557
have been made explicit. For example, an if-then-else
node is replaced by a sequence that composes its then
subtree and its else subtree separated by a, now-explicit,

goto statement. The newly explicit goto statement

prevents an inadvertent transfer of control from the end of

the then subtree to the start of the else subtree.

The following three examples help to illustrate the

projection algorithm. The first two are based on the program

fragment shown in the top left section of Fig. 5. The

program has one branch (Line 1) and one implicit goto
(Line 3). Consider its projection with jZ(S, G, M, X) Z
({5, 6}, {2, 4}, {1}, :). The AST produced by projecting

this program fragment with respect to j is depicted in the

center column. In this projection, the branch (Line 1) is in

the ‘morph branch’ set j.M, so AST projection ‘rewires’ the

control flow of the program so that control passes from Line

1 to its immediate post dominator (Line 5) via the freshly

introduced goto statement ‘goto L’. The only other
modification performed by the projection is the replacement

of the implicit goto (Line 3), which is not in j.G, with

skip. The resulting program is a SAE slice.

As a second example, consider the AST projection of the

same program with jZ({5, 6}, {2, 4}, :, :). The AST

produced by projecting the original code fragment with

respect to j is depicted in the rightmost column of the

figure. In this projection, the ‘morph branch’ set j.M is

empty, which leads to Line 1 being replaced with skip.
Replacing this branch by skip creates a non-terminating

cycle consisting of Lines 1 and 2; thus the resulting program

is a weak slice. As with the first example, the implicit goto
(Line 3) is not included in j.G and so it is replaced by skip

in the projected AST. This is an example of WAE slice.

As an example of a WPM slice (and also a SPM slice),

consider the program in Fig. 6. Its AST Projection for jZ
({1, 3, 10, 11, 12}, {2, 4, 6, 8}, :, {5}) mostly follows

the same pattern as the above examples. However, with

Fig. 6. An example for WPM slice.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565558
j.XZ{5}, Line 5 is kept in the projected program even

though it is not in the Ottenstein slice. The resulting

projected slice include Lines {1, 2, 3, 4, 5, 6, 8, 10, 11,

12}. Because Ottenstein slice of Line 5 is not in j.S, if

there were any statement that controlled Line 5 those

statements may not be in the projection. Hence, if control

reaches Line 5 the program’s state may not be consistent

with what is expected at Line 5. That makes the slice

weak, in the general case, because the program may

terminate abnormally or not terminate at all.
5.2. Building j

The algorithms for building j must account for certain

liveness properties. Correctly accounting for these allows

the slicing algorithms to avoid including unnecessary

program components. The following three definitions are

used to capture the required liveness conditions.

Definition 17. (Live Edges). Given a set of CFG nodes S, an

edge from a branch node b to its non-syntactic successor

(e.g. the first statement in the else block of an if-then-else) is

live only if b2S. All other CFG edges are always live.

Definition 18. (Inward Goto [29]). A goto statement is said

to be inward if it jumps into a control structure.

For example, the statement ‘goto out’ at the end of the
Linux code shown in Section 4 is an inward goto.

Definition 19. (Live goto Nodes). Given a program P and

a collection of non-goto nodes S from CFG(P), the set of

live goto nodes, denoted by LiveGotos(P, S), is the union

of the following two sets:
(1) those explicit goto nodes reachable from a node in S

by a path composed only of edges live with respect to S.

(2) those implicit goto nodes g reachable from a node in S

by a path composed of edges live with respect to S such

that this path contains an inward goto g 0 that is not

(transitively) nested within the same branch of the

conditional or the loop directly enclosing g.

The program in Fig. 7 gives examples of the two kinds of

live goto nodes. The goto statements at Lines 7 and 12 are

implicit gotos, explicitly represented in the program for

exposition purposes. Of these, Line 12 is live with respect to

Ottenstein slice, but Line 7 is not. Line 12 is live because (a)

the path (1, 3, 4, 11, 12) consists of live edges (b) this path

contains Line 4, an inward goto, and (c) Line 12 is nested

in the true branch of Line 9, but Line 4 is not (transitively)

nested in this branch. Line 7 is not live because no path

leading to it contains an inward goto.

5.2.1. Weak, amorphous, Ottenstein-equal (WAE) slices

The first of the four slicing algorithms computes WAE

slices. A WAE slice is created by adding certain goto nodes

to an Ottenstein slice. Simply adding all the goto nodes

would suffice, but would be a somewhat facile course of

action. Instead, the set of live gotos captures a sufficient

subset of the goto nodes. The first stage of a WAE slice is

computed by Function WAESlice(P, V) (see Fig. 8), which

yields the 4-tuple j described by the following equations:

j.SZOttensteinSlice(P, V)

j.GZLiveGotos(P, j.S)
j.MZØ

j.XZØ

Fig. 7. A program, its AST, and its CFG used to illustrate explicit and implicit live gotos. In the AST and CFG dashed edges are the false branches of

conditionals and implicit gotos (Lines 7 and 12) are shown in gray. In the CFG, bold nodes are in the Ottenstein Slice taken with respect to x at Line 16 and

nodes for gotos that are not live are shown dotted.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 559
For example, in the slice illustrated in Fig. 7, the explicit

goto statement at Line 13 is not live because the false
branch in which it is contained is not live and this goto
statement cannot be reached without traversing that branch.

As a consequence, the goto statement at Line 13 (like the

non-live goto at Line 7) will not be retained in the WAE

slice. The resulting slice is weak because the goto
statement in Line 10 creates a loop after the if statement

at Line 9 is replaced by skip.

The semantic guarantee of an Ottenstein slice [30] holds

for those statements represented inj.S provided that the slice
preserves projections of paths from the original program’s

CFG. The set j.G contains the necessary goto nodes to

ensure the preservation of these paths and thus the semantic

correctness of the statements represented in j.S. The slice is

weak because paths that traverse the false edge of an if
statement are not preserved in the slice and their absence

leads to non-termination. For example, the right column of

Fig. 5 demonstrates this. The slice is amorphous as the set

j.G may contain implicit goto nodes whose corresponding

branch node is not inj.S. These implicitgoto nodesmust be

made explicit in the slice; thus, introducing statements that

Fig. 8. An Algorithm for WAE Slicing.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565560
were not in the original program. Finally, the only non-goto

nodes in the slice are those in j.S which, by construction,

contains the same nodes as OttensteinSlice(P, V). Therefore,

the slice is Ottenstein-equal.
5.2.2. Strong, amorphous, Ottenstein-equal (SAE) slices

To avoid the non-termination potentially present in a

WAE slice, the SAE algorithm identifies certain branch

nodes from the original program and replaces them with

gotos. This transformation of branch nodes into goto nodes

is termed ‘morphing’. The nodes to be morphed are

identified by the following definition:

Definition 20. (Morph Branches). For programP, set of non-

goto nodes S, and set of goto nodes G, Node b is an element

of MorphBranches(P, S, G) iff all of the following hold:

(1) b is a branch node of CFG(P),

(2) b is not in S,

(3) b cannot reach its immediate postdominator by

traversing only edges live with respect to S, and

(4) there exists a node in SgG that is an AST descendant

of b.

An example that includes morph branches appears in

Fig. 5. In the centre column, the value of the function

MorphBranches(P, {5, 6}, {2, 4}) is {1}. In relation to the

definition, Node 1 is a branch statement (Condition 1); it is

not contained in the set {5, 6} (Condition 2); it cannot reach

its postdominator because its else branch, which is needed

to reach its postdominator, is not live (Condition 3); and

Node 2, a member of {5, 6} g {2, 4}, is a descendant of

Node 1 (Condition 4).

The first stage of an SAE slice is computed by Function

SAE/Slice(P, V) (see Fig. 9), which yields the 4-tuple j

described by the following equations:

j.SZOttensteinSlice(P, V)

j.GZLiveGotos(P, j.S)
Fig. 9. An Algorithm for SAE slicing.
j.MZMorphBranches(P, j.S, j.G)

j.XZ:

For essentially the same reason as with the WAE

algorithm, the semantic guarantee of an Ottenstein slice

[30] holds for those statements represented in j.S.

Furthermore, the slice is strong because the set j.M

identifies each branch node b that, when replaced with

gotos that target each branch’s immediate postdominator d

(done by Stage 2), ensures that execution passes directly

from node b to node d. This avoids the cycles introduced by

Function WAE-Slice, and thus, avoids the possible non-

termination introduced by the WAE algorithm. For

example, in the center column of Fig. 5, the immediate

postdominator of Line 1 is Line 6. Phase 2 replaces Line 1

with the statement ‘goto L’, thereby avoiding the cycle

present in the WAE slice (shown in the right column).

Finally, the sets j.S and j.G are the same as those computed

by WAE/Slice(P, V). Thus, an SAE slice is amorphous and

Ottenstein-equal for the same reasons that a WAE slice is

amorphous and Ottenstein-equal (recall that Ottenstein-

equal requires the same number of non-goto nodes).
5.2.3. Weak, syntax-preserving, Ottenstein-more

(WPM) slices

In order to preserve syntax, implicit gotos cannot be

made explicit. This is accomplished by including (in j.X)

the branch associated with each implicit goto. Inclusion of
a branch may make live additional implicit gotos, and
consequently, this process is iterated until no implicit gotos

remain. The required branches are identified by the

following definition:

Definition 21. (Exposed Branches). For program P, set of

non-goto nodes S, and set of goto nodes G, Exposed-

Branches (P, S, G) Z{b(b;S and b is AST parent of an

implicit goto node from G}.

The program in Fig. 6 motivates the definition of exposed

branches. Consider SZ{1, 3, 10, 11, 12}, the Ottenstein

slice of the program taken with respect to the final-use of x.
In particular, Statement 5 is not in S and it controls the
Fig. 10. An Algorithm for WPM Slicing.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 561
implicit goto at Statement 8 (LiveGotos Z{2, 4, 6, 8}).

Therefore, ExposedBranches(P, {1, 3, 10, 11, 12}, {2, 4, 6,

8}) is {5}. Note that ‘goto S7’ at Line 9 is not live since

the else-edge of the ‘if (pOq)’ is not live. While no

iteration was required for this example program, if

Statement 5 of Fig. 6 was nested in an additional condition

that could be bypassed via a goto statement then iteration

would be required.

The first stage of a WPM slice is computed by Function

WPM_Slice(P, V) (see Fig. 10), which yields the 4-tuple j

described by the following equations:

j.SZOttensteinSlice(P, V)

j.GZLiveGotos(P, j.S g j.X)

j.MZ:
j.XZj.X g ExposedBranches(P, j.S g j.X, j.G)

The equations are recursive since j.G and j.X are

defined in terms of themselves. The algorithm computes the

least fixed point solution to these equations. That the least

fixed point exists, and consequently the algorithm termi-

nates, follows from the observation that the set of live

gotos is monotonically increasing and bounded from

above, and the following property of exposed branches:

ExposedBranches(P, S, G) ZX0ExposedBranches(P,

SgX, G)Z:.

Note that the iteration ensures that the solution is

minimal, in the sense that no live goto so-included could

be removed without loss of correctness.

The resulting slice a WPM slice. First, observe that, as

with a WAE slice, when the slice and the program

terminate, the behaviour of the statements represented in

j.S is the same in the slice an the Ottenstein slice. Thus, the

statements represented by j.S have the desired semantics.

However, also as with a WAE slice, statements outside j.S

may introduce non-termination; thus, the slice is weak.

Next, observe that there is no morphing required, so the slice
Fig. 11. An Algorithm for SPM Slicing.
is syntax preserving, and finally, by including additional

branches the slice is Ottenstein-more.
5.2.4. Strong, syntax-preserving, Ottenstein-more

(SPM) slices

Like the WPM algorithm, the SPM algorithm iteratively

expands the set of statements in the slice. The primary

difference is that it includes the Ottenstein slice taken with

respect to each exposed branch and morph branch, thereby

ensuring that the slice terminates when the original program

does. The first stage of an SPM slice is computed by

Function SPM_Slice(P, V) (see Fig. 11), which yields the

4-tuple j described by the following equations:

j.SZOttensteinSlice(P, Vgj.SgMgX)

where MZMorphBranches(P, j.S, j.G), and

XZExposedBranches(P, j.S, j.G)

j.GZLiveGotos(P, j.S)

j.MZ:
j.XZ:

Although at first glance the equation for j.S may seem

incorrect as no union is present in the computation of j.S, its

correctness follows from the equivalence of ‘Ottenstein-

Slice(P, SgX)’ and ‘SgOttensteinSlice(P, SgX)’.

Once again, these equations are recursive and the

algorithm computes the least fixed point. The existence of

least fixed point (and hence termination of the algorithm)

follows from the following properties of ExposedBranches

and MorphBranches:

ExposedBranches(P, S, G)ZX0ExposedBranches(P,

SgX, G)Z:, and MorphBranches(P, S, G)Z
M0MorphBranches(P, SgM, G)ZØ

To see that the slice is an SPM slice, first observe that by

construction j.S equals OttensteinSlice(P, j.S). Thus, the

statements represented in j.S inherit the semantic guarantee

of an Ottenstein slice including its termination properties. As

a result, the slice is strong. Finally, the algorithm is syntax-

preserving and Ottenstein-more for the same reasons that the

WPM algorithm is syntax-preserving and Ottenstein-more.
5.3. Complexity discussion

In the following discussion, let P represent the size of the

program. In addition to the complexity of the two stages

described in Section 5, a preprocessing stage (Stage 0) is

also considered. Stage 0 builds the immediate postdomi-

nator relation, the CFG, the AST, and the PDG. The

complexity of these steps is O(P), O(P), O(P), O(P2),

respectively [15,16,28]. The PDG construction complexity

is dominated by the computation of data-dependence edges.

This cost is highly dependent on precision. For example, a

range of pointer analysis with varying complexities exist

[22,32].

M. Harman et al. / Information and Software Technology 48 (2006) 549–565562
The complexity of each Stage 1 algorithm is considered

separately. For a WAE slice, computing an Ottenstein slice

takes O(P) time [28]. Live gotos may be computed in O(P)

time by traversing the CFG 4 times. The first pass identifies

live edges while the second identifies vertices reachable

from the nodes of the Ottenstein slice using only live edges.

Both of these passes are linear traversals of the CFG.

The results are sufficient to identify those live goto nodes

from the first clause of the definition. For the second clause,

two additional traversals are required. The first simply

labels nesting level so that the second clause’s nesting

requirement can be tested in constant time. The final

traversal again starts from the nodes of the Ottenstein slice

and considers only live edges, but stops at inward goto
statements that fail the nesting requirement. As each of the

four traversals and the Ottenstein slice require linear time,

the complexity of Stage 1 of a WAE slice is O(P).

The first two steps of the SAE algorithm are identical to the

WAE algorithm; thus, for the same reasons they can be

computed in linear time. The definition ofMorphBranches has

four parts. The first two parts can be checked in constant time.

The remaining two can be tested in linear time by

precomputing two pieces of information. First, identify the

branch nodes that cannot reach their postdominator ignoring

false edges in the CFG.Using this approach, Condition 3 of

Definition 21 can be computed in constant time per branch.

(When a branch node is not in the slice, all nodes along all

paths to the postdominator, excluding the postdominator, are

not in the slice. The false edges along paths to the

postdominator will not be live when a branch statement is not

in the slice.) Second, identify the statements that are not

control dependent on theirASTparent.Using this,Condition 4

of Definition 21 can be computed in constant time per branch.

Thus, the complexity of Stage 1 of an SAE slice is O(P).

For the WPM algorithm, as with the first two algorithms,

the set j.S can be computed in linear time. At first the

computation of live gotos appears more complex as it is

computed on each loop iteration. However, the set is

monotonically increasing and can be computed incremen-

tally by caching old results. Exposed branches can also be

computed in linear time given that the set j.G is

monotonically increasing: first, the AST parent of new

implicit gotos added to j.G are identified. If a previous

implicit goto is encountered during this identification, the

graph walk may terminate, as further traversal would be

redundant. Finally, exposed branches are identified during

this walk by checking if branches encountered are in j.S. As

this test takes constant time, the construction of Exposed-

Branches and consequently Stage 1 of the WPM slicing

algorithm requires O(P) time.

Finally, like WPM, the SPM slicing algorithm involves

iteration. Also like WPM, information from previous

iterations may be cached or incrementally computed. Thus,

the time required to compute Ottenstein Slice, live gotos,

exposed branches, and morph branches remains O(P).
Combined this yields a complexity for Stage 1 of a SPM

algorithm of O(P).

For all four slicing algorithms, Stage 2, the AST

projection, takes O(P) time since each node is visited only

once. During each visit, the set membership tests can be

done in constant time assuming Stage 1 labels each node

with its memberships.
6. Classification and comparison with prior work

The problem of slicing unstructured programs is detailed

and subtle. There has been a steady study of this problem in

the literature [1,2,11,20,25]. In this section existing

algorithms are described, placed in the framework intro-

duced in Section 3, and compared to the algorithms

presented in Section 5. At this point it is helpful to

introduce the following four definitions.

Definition 22. (Language Types). A language is block-

structured if it has complex statements that are built from

other statements, such as if-then-else and while-do
statements. A language that does not have complex

statements is a flat language. A program is block-structured

if it is written in a block-structured language and flat if it is

written in a flat language.

Definition 23. (Disconnected Statements). A statement pair

(b, n) is disconnected if

(1) b is a branch statement and n is any statement,

(2) b and n are not nested (transitively) in different branches

of an if statement,

(3) branch statement b appears before statement n in the

syntax order, and

(4) there is no executable path from branch statement b to

statement n.

Definition 24. (Segmented Program). A program is

segmented if it contains a pair of disconnected statements.

For example, the following block-structured program is

segmented because the statements ‘if(c2)’ and ‘i:Z
iC1’ are disconnected. Condition ‘if(c2)’ appears

before the statement labeled ‘L1’, there is no path from

node ‘(c2)’ to node ‘i:ZiC1’, and the two statements

are not in different branches of an if statement.

id1;
if (c1) goto L1;
if (c2)
{

id2;
goto L2;

L1: idiC1;
}
else
{

id3;
L2: idiC2; }

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 563
For a program to be segmented it does not have to be

block-structured. The nesting condition in the definition of

a disconnected pair is tautologically satisfied for flat-

programs since they have no nesting. Hence, the flat-

program equivalent of the above program will also be

segmented. Furthermore, as the following example

demonstrates, an inward goto is not necessary for

segmenting a program. The following program is

segmented because there is no path from the branch

node ‘if (c2)’ to the statement labeled ‘L1’, although
the branch node ‘if (c2)’ precedes statement labeled

‘L1’ in the syntax order.

id1;
if (c1) goto L1;
if (c2)
{

id2;
goto L2;

}
else
{

id3;
goto L2;

}
L1: idiC1;
L2: idiC2;

Definition 25. (Segmented Slice). An Ottenstein slice is a

segmented slice if it contains a node n, but does not contain a

branch node b, where (b, n) are disconnected.

For example, in the above programs, the Ottenstein slice

taken with respect to statement ‘i:ZiC1’ is segmented

since it contains statement ‘i:ZiC1’, but does not

contain branch ‘if(c2)’.
6.1. Classification of prior work

Existing algorithms for slicing in the presence of

unstructured control-flow, fall into three of the classifi-

cations introduced in Section 3. Section 6.2 compares

each of these with the corresponding algorithm from

Section 5.

(1) SPM: Ball and Horwitz [2], Choi and Ferrante [11]

Algorithm 1, Kumar and Horwitz [25], Agrawal [1];

(2) SAE: Choi and Ferrante [11] Algorithm 2;

(3) WPE: Harman and Danicic [20].

This section uses the three classification dimensions of

the paper to classify and compare previous approaches to

slicing unstructured programs. As will be seen, previous

approaches fall into one of three of the six possible

classifications. Previous work was conducted without the

benefit of the classifications and so each algorithm is not

optimised for the classification in which it resides. The
algorithms presented in this paper are optimised for their

classification type. This may make the new algorithms

superior to those previously published. However, more

empirical work is required to assess the impact of this

theoretical superiority.

6.2. Comparison with prior work

6.2.1. SPM Algorithms

Ball and Horwitz [2] and Choi and Ferrante [11]

independently discovered similar SPM algorithms, referred

to as BH and CF1, respectively. Their algorithms identify

the statements in a slice by performing a backward traversal

of an augmented program dependence graph (APDG). The

APDG is constructed like a PDG, but goto statements are

treated as pseudo predicates. The ‘true’ branch of a

pseudo predicate leads to the goto target and the ‘false’
branch leads to the next statement in the syntax order. BH

and CF1 differ on the class of languages to which they

apply. BH slices a block-structured language whereas CF1

slices a flat language.

As a result of treating a goto statement as a pseudo

predicate, both CF1 and BH can introduce spurious control

dependences that lead to slices containing non-goto

statements not found in the Ottenstein slice. In particular,

if the Ottenstein slice is segmented then the CF1 and BH

slices will be Ottenstein-more; otherwise they will be

Ottenstein-equal. In comparison, the SPM algorithm from

Section 5 produces Ottenstein-more slices only when the

segmentation is due to an inward goto.
More recently, Kumar and Horwitz introduced a new

algorithm, referred to as KH, which overcomes the

deficiency of BH with regard to spurious control

dependences [25]. While KH, like BH, treats goto

statements as a pseudo predicates, it does not include the

backward slice taken with respect to the pseudo predicates.

Unfortunately, KH computes closure (non-executable)

slices (it does not consider implicit gotos); consequently,
its output cannot be used to produce an executable slice by

pruning the AST as described in Section 5.1.

Finally, Agrawal’s algorithm [1], referred to as Ag, is

based on the observation that a goto node should be

included in a slice if it targets a node other than its own

lexical successor. Agrawal’s term ‘lexical successor’ is the

‘fall-through statement’ of CF1 and the ‘continuation node’

of BH. Having included a goto node, Ag checks to see if the

goto is controlled by a predicate not in the slice. If there is

any such predicate p, then p and the slice taken with respect

to p are included in the final slice. This step has the effect

produced by CF1’s use of an augmented CFG. Agrawal’s

algorithm therefore produces very similar slices to those

produced by CF1 and BH.

6.2.2. SAE Algorithms

Choi and Ferrante’s [11] Algorithm 2, referred to as CF2,

computes SAE slices. It is the only prior algorithm that

M. Harman et al. / Information and Software Technology 48 (2006) 549–565564
produces strong and Ottenstein-equal slices. It achieves

Ottenstein equality by replacing each statement that is not in

the slice by a goto statement that transfers control to the

immediate post dominator. The resulting slice is amorphous

as it includes goto statements not from the original

program.

CF2 is similar in spirit to the SAE algorithm from

Section 5, in that it first computes the Ottenstein slice and

then deletes or replaces with goto statements certain nodes

not in the slice. The primary difference between the two is

that CF2 is not selective in its replacement. It morphs (or

‘rewires’) all branch nodes that are not in Ottenstein slice.

In contrast, the SAE algorithm from Section 5 morphs

branch statements only when simply deleting a true
branch will introduce a cycle. Furthermore, it introduces

new goto statements only when some code in the body of a

block (if/while) is in the slice, but the if/while
condition itself is not in the slice. This condition does not

arise for flat programs.

The CF2 algorithm addresses only flat programs. For

such programs, the SAE algorithm introduces amorphous

goto statements only when the original program will not

terminate when there exist if conditions not in the slice and

which are replaced by ‘true’. This follows from the use of

SO(n), the ‘true’ successor, when computing live goto nodes

for unstructured branches not in the slice. The empirical

determination of how significant this difference is with

respect to CF2 remains a problem for future work.

A direct comparison of SAE and CF2 for block

structured programs is not possible because those programs

are outside the scope of CF2. A block structured program

must first be morphed to a flat program in order to use CF2

for producing a SAE slice.

6.2.3. WPE Algorithms

Harman and Danicic’s WPE slicing algorithm, referred

to as HD, effectively attempts to transform Agrawal’s SPM

algorithm to a WPE algorithm. Like the WPE algorithm

from Section 5, it does this by first computing an Ottenstein

slice and then adding goto statements as needed to produce

a weak slice. HD is syntax-preserving because it adds only

goto nodes from the original program. However, it does

this at the expense of potentially introducing non-

termination and does not account for implicit goto nodes.
7. Conclusion and future work

To better understand and classify slicing algorithms for

programs with unstructured control-flow, this paper intro-

duces a three-dimensional space; a framework that

facilitates exploration of the trade-offs made when slicing

unstructured programs. The choice of the most suitable

slicing algorithm is impacted by the target application. For

example, weak, amorphous, Ottenstein-equal slices may be

most acceptable for debugging; strong, amorphous,
Ottenstein-equal slices for re-engineering; and strong,

syntax-preserving, Ottenstein-more slices for program

integration.

Of the eight classifications in the framework, the ideal

slice would be a strong, syntax-preserving, and Ottenstein-

equal (SPE) slice. Unfortunately, as shown in Section 4,

SPE slicers do not exist. Indeed, nor do WPE slicers: even

dropping the requirement that the slices be strong (i.e.

termination preserving) is insufficient to guarantee exist-

ence. Therefore, in general, a slice of an unstructured

program must be either Ottenstein-more or amorphous.

Furthermore, the existence of WAE and SAE slicers

obviates the need for WAM and SAM slicers. This leaves

four classifications of interest: WAE, SAE, WPM, SPM.

The paper places existing algorithms for slicing

programs with unstructured control flow into these four

classifications. It also presents linear time algorithms for

the four. In practice, as outlined in Section 6, more work is

needed to determine whether there are significant differ-

ences in slicing time or slice size. However, the new

algorithms are, in theory, an improvement on previous

techniques. For example, it is not easy to modify the

classification of previous algorithms (e.g. Ball and

Horwitz’s algorithm is SPM, but cannot easily be modified

to give a WPE algorithm). In contrast, the new algorithms

all share a common infrastructure; thus, movement

between classifications is considerably easier. This facili-

tates understanding and comparison between the different

options available when slicing programs with unstructured

control flow.
References

[1] Hiralal Agrawal, On slicing programs with jump statements, in: ACM

SIGPLAN Conference on Programming Language Design and

Implementation. Orlando, Florida, June 20–24, 1994, pp. 302–312.

Proceedings in SIGPLAN Notices, vol. 29(6), June 1994.

[2] Thomas Ball, Susan Horwitz, Slicing programs with arbitrary control-

flow in: Peter Fritzson (Ed.), 1st Conference on Automated

Algorithmic Debugging, Linköping, Sweden, Springer, 1993,

pp. 206–222. (Also available as University of Wisconsin-Madison,

technical report (in extended form), TR-1128, December, 1992).

[3] Jon Beck, David Eichmann, Program and interface slicing for reverse

engineering, in: IEEE/ACM 15th Conference on Software Engineer-

ing (ICSE’93), IEEE Computer Society Press, Los Alamitos,

California, USA, 1993, pp. 509–518.

[4] David Wendell Binkley, Precise executable interprocedural slices,

ACM Letters on Programming Languages and Systems 2 (1–4) (1993)

31–45.

[5] David Wendell Binkley, Computing amorphous program slices using

dependence graphs and a data-flow model, in: ACM Symposium on

Applied Computing, The Menger, San Antonio, Texas, USA, ACM

Press, New York, NY, USA, 1999, pp. 519–525.

[6] David Wendell Binkley, Keith Brian Gallagher, in: Marvin Zelkowitz

(Ed.), Program Slicing Advances in Computing vol. 43, Academic

Press, New York, 1996, pp. 1–50.

[7] David Wendell Binkley, Mark Harman, A survey of empirical results

on program slicing, Advances in Computers 62 (2004) 105–178.

M. Harman et al. / Information and Software Technology 48 (2006) 549–565 565
[8] David Wendell Binkley, Susan Horwitz, Tom Reps, Program

integration for languages with procedure calls, ACM Transactions

on Software Engineering and Methodology 4 (1) (1995) 3–35.

[9] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, in:

Mark Harman, Keith Gallagher (Eds.), Conditioned program slicing

Information and Software Technology Special Issue on Program

Slicing vol. 40, Elsevier Science B.V., Amsterdam, 1998, pp. 595–

607.

[10] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, G.A. Di Lucca,

Software salvaging based on conditions, in: International Conference

on Software Maintenance (ICSM’96), Victoria, Canada, September,

IEEE Computer Society Press, Los Alamitos, California, USA, 1994,

pp. 424–433.

[11] Jong-Deok Choi, Jeanne Ferrante, Static slicing in the presence of

goto statements, ACM Transactions on Programming Languages and

Systems 16 (4) (1994) 1097–1113.

[12] Aniello Cimitile, Andrea De Lucia, Malcolm Munro, A specification

driven slicing process for identifying reusable functions, Software

Maintenance: Research and Practice 8 (1996) 145–178.

[13] Andrea De Lucia, Program slicing: methods and applications, in 1st

IEEE International Workshop on Source Code Analysis and

Manipulation, Florence, Italy, IEEE Computer Society Press, Los

Alamitos, California, USA, 2001, pp. 142–149.

[14] Andrea De Lucia, Anna Rita Fasolino, Malcolm Munro. Under-

standing function behaviours through program slicing, in 4th IEEE

Workshop on Program Comprehension, Berlin, Germany, March.

IEEE Computer Society Press, Los Alamitos, California, USA, 1996,

pp. 9–18.

[15] Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren, The program

dependence graph and its use in optimization, ACM Transactions on

Programming Languages and Systems 9 (3) (1987) 319–349.

[16] Charles N. Fischer, Richard J. LeBlanc, Crafting a Compiler

Benjamin/Cummings Series in Computer Science, Benjamin/Cum-

mings Publishing Company, Menlo Park, CA, 1988.

[17] B. Keith Gallagher, James R. Lyle, Using program slicing in software

maintenance, IEEE Transactions on Software Engineering 17 (8)

(1991) 751–761.

[18] Mark Harman, David Wendell Binkley, Sebastian Danicic,

Amorphous program slicing, Journal of Systems and Software 68

(1) (2003) 45–64.

[19] Mark Harman, Sebastian Danicic. Amorphous program slicing, in: 5th

IEEE International Workshop on Program Comprenhesion

(IWPC’97), Dearborn, Michigan, USA, May, IEEE Computer Society

Press, Los Alamitos, California, USA, 1997, pp. 70–79.

[20] Mark Harman, Sebastian Danicic, A new algorithm for slicing

unstructured programs, Journal of Software Maintenance and

Evolution 10 (6) (1998) 415–441.

[21] Mark Harman, Robert Mark Hierons, An overview of program slicing,

Software Focus 2 (3) (2001) 85–92.

[22] Michael Hind, Pointer analysis: haven’t we solved this problem yet?

in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE’01)

(Snowbird, Utah, June 18–19, 2001), New York, NY, ACM, 2001, pp.

198–209.

[23] Susan Horwitz, Jan Prins, Thomas Reps, Integrating non-interfering

versions of programs, ACM Transactions on Programming Languages

and Systems 11 (3) (1989) 345–387.

[24] Mariam Kamkar, Interprocedural dynamic slicing with applications to

debugging and testing, PhD Thesis, Department of Computer Science

and Information Science, Linköping University, Sweden. Available as

Linköping Studies in Science and Technology, Dissertations, Number

297, 1993.

[25] Sumit Kumar, Susan Horwitz, Better slicing of programs with jumps

and switches, in: Proceedings of the 5th International Conference on

Fundamental Approaches to Software Engineering (FASE 2002) of

Lecture Notes in Computer Science, vol. 2306, Springer, 2002, pp.

96–112.

[26] Arun Lakhotia, Jean-Christophe Deprez, in: Mark Harman,

Keith Gallagher (Eds.), Restructuring Programs by Tucking State-

ments into Functions, Information and Software Technology Special

Issue on Program Slicing vol. 40, Elsevier, 1998, pp. 677–689.

[27] James R. Lyle, Mark Weiser, Automatic program bug location by

program slicing, in: 2nd International Conference on Computers and

Applications, Peking, IEEE Computer Society Press, Los Alamitos,

California, USA, 1987, pp. 877–882.

[28] Karl J. Ottenstein, Linda M. Ottenstein, The program dependence

graph in software development environments, SIGPLAN Notices 19

(5) (1984) 177–184.

[29] Lyle Ramshaw, Eliminating goto’s while preserving program

structure, Journal of the ACM 35 (4) (1988) 893–920.

[30] Thomas Reps, Wuu Wang, The semantics of program slicing and

program integration, in: Colloquium on Current Issues in Program-

ming Languages (Barcelona, Spain, March 13–17, 1989), Lecture

Notes in Computer Science, Springer-Verlag, New York, NY, vol.

352, 1989, pp. 360–374.

[31] Nahid Shahmehri, Generalized algorithmic debugging. PhD Thesis,

Department of Computer Science and Information Science, Linköping

University, Sweden. Available as Linköping Studies in Science and

Technoloy, Dissertations, Number 260, 1991.

[32] Marc Shapiro, Susan Horwitz, The effects of the precision of pointer

analysis, Lecture Notes in Computer Science 1302 (1997) 16–34.

[33] Frank Tip, A survey of program slicing techniques Technical Report

CS-R9438, Centrum voor Wiskunde en Informatica, Amsterdam,

1994.

[34] Martin Ward, Program slicing via FermaT transformations, in: 26th

IEEE Annual Computer Software and Applications Conference

(COMPSAC 2002), Oxford, UK, August, IEEE Computer Society

Press, Los Alamitos, California, USA, 2002, pp. 357–362.

[35] Mark Weiser, Program slicing, IEEE Transactions on Software

Engineering 10 (4) (1984) 352–357.

	Theory and algorithms for slicing unstructured programs
	Introduction
	Definitions
	Abstract Syntax Tree
	Control flow graph
	Program dependence graph

	The framework for slices and slicers
	Termination
	Syntactic
	Size
	The framework
	Applications of the different dimensions

	Non-existence of SPE and WPE slicers
	Slicing algorithms
	AST Projection
	Building psi
	Complexity discussion

	Classification and comparison with prior work
	Classification of prior work
	Comparison with prior work

	Conclusion and future work
	References

