
DOC – ANSWERING THE
HIDDEN “CALL” OF A VIRUS

Uday Kumar Eric, Aditya Kapoor, Arun
Lakhotia
University of Louisiana at Lafayette

SUMMARY
DOC is a prototype to demonstrate a method for
detecting obfuscated calls and returns in binaries.
Malicious programs use such obfuscations to hide
information about the system calls they make.
DOC statically identifies several types of
obfuscations, promising to speed up the process
of determining whether a program is malicious.

INTRODUCTION
One of the first steps in determining whether a
program is malicious is to identify the system
calls it makes. If the program performs certain
collections of file operations, registry operations,
or network operations, it may be good reason to
consider it potentially malicious.

The set (sometimes, the sequence) of system calls
a program makes we refer to as its behavior. The
behavior of a program may be determined by
either static analysis or by dynamic analysis. In
static analysis, a program is analyzed (by humans
and/or tools) without running or simulating it. In
dynamic analysis, a program’s behavior is
observed, often by trapping the calls or sniffing
network activity.

Malware writers have developed obfuscation
techniques that make it difficult to statically
identify the calls made by their program. These
programs effectively make a call without actually
using the call instruction (Szor, Ferrie 2001, Virus
Bulletin Conference). Doing so increases the
difficulty of analyzing a program not least
because it defeats the methods typical
disassemblers use to identify procedure entry and
exit points.

AV companies, therefore, rely on dynamic
methods for determining a program’s behavior.
For instance, Symantec’s Bloodhound technology
executes a program in a sandbox (or an emulator),
traps the calls made by the program, and then
determines whether it is malicious.

While dynamic analyses are helpful and often
necessary, they are often cumbersome, time-
consuming and fallible. Malware authors already

know many methods for defeating detection
through dynamic analysis, including detecting the
dynamic analysis method, introducing delay loops
to bypass stopping heuristics, and executing their
malicious behaviour in only particular
circumstances. For these reasons alone static
analysis is still a critical component of AV
strategies, but methods for overcoming
obfuscation obstacles are extremely desirable.

In this paper we present the results of using a new
tool called DOC (Detector of Obfuscated Calls) to
analyze W32.Evol. DOC statically identifies
several types of obfuscations related to the call
and return instructions. Technical details of the
method used by DOC has been described
elsewhere (Lakhotia and Kumar 2004, Fourth
IEEE International Workshop on Source Code
Analysis and Manipulation-SCAM’2004). We
will review call/return obfuscations, describe
DOC and how it was applied to W32.Evol, and
close by summarizing some of the successes and
limitations of the approach.

CALL/RETN OBFUSCATIONS
Figure 1 shows a classic example of call
obfuscation used by viruses, most notably
W32.Evol and Netsky.Z. In the left column is a
normal call instruction. In the right column is
code containing a sequence of two push
instructions and a retn instruction. These three
instructions do exactly the same work as the call
instruction. They are semantically equivalent.

Other related obfuscations include the substitution
of retn instructions and the use of non-contiguous
function bodies. For instance a retn may be
replaced with a pop ip instruction. Non-
contiguous procedure bodies can be created by
intertwining a procedure’s code with the code of
other procedures, thus making it difficult to match
a call instruction to its corresponding retn
instructions.

Normal call-ret

 call L5
L1: …
…
L5: ret

Obfuscated call

 push L1
 push L5
 ret
L1: …
…
L5: ret

L1 top of stack

Figure 1. Call obfuscation

Such obfuscations take away important cues that
are used during both automated and manual
analysis. While a determined, experienced
programmer can discover the obfuscations; the
time spent in making the discovery can be
precious when the malware is actively spreading.

Substituting call instructions, in particular, breaks
most automated methods for detecting a virus
since these methods depend on recognizing call
instructions to (a) identify the kernel functions
used by the program and (b) to identify
procedures in the code. As is shown later, IDA
Pro, a disassembler used very widely in the
industry, gives incorrect and misleading results in
the presence of call/return obfuscations.

ABOUT DOC

DOC is implemented Java as a plug-in to the
Eclipse Platform (www.eclipse.org). Figure 2
shows a screenshot DOC when opening an
assembly file (.asm extension). DOC provides the
ability to open any number of projects at the same
time. The navigator view is used to browse and
open files in a project. The files are displayed in
the file view.

DOC takes as input an assembly file or a
disassembled binary obtained from a disassembler
such as IDAPro. A user may choose any of the
following three analyses:

� Match call-ret instructions

� Detect obfuscated calls

� Detect obfuscated returns

DOC returns its results by highlighting and
annotating the assembly. The annotations contain
links to related code when there are multiple
occurrences of the same type of obfuscation.

INSIDE DOC
DOC uses abstract interpretation, a technique
commonly used in static analysis. In this
technique a program is interpreted using abstract
values, instead of real values. The key challenge
in using abstract interpretation is in choosing the
right abstraction.

DOC creates an abstraction of the stack and its
contents. A specific instance of a real stack is
represented as an abstract stack. Further, the set
of all possible abstract stacks for all possible
executions of a program is represented as an
abstract stack graph. Though the set of all
abstract stacks (or real stacks) for all possible
executions of a program may be infinite, the
abstract stack graph is finite.

The abstract stack graph for a given assembly
program is constructed by interpreting each
instruction of the program. The operations
performed by the instruction on a real stack are
instead performed on an abstract stack graph.
Each instruction is interpreted at most once.

Once the abstract interpretation terminates, the
abstract stack graph contains an abstraction of all
possible stacks at each statement. DOC analyzes
the abstract stack to match call-ret instructions,
detect obfuscated calls, and detect obfuscated
returns.

W32.EVOL – REVEALING THE HIDDEN
Our efforts at statically analyzing W32.Evol, in
fact, led us to developing DOC. It all started a
few years ago as a result of our first attempt at
developing an AV scanner based on formal, static
analysis. We had implemented behavior-based
analyzer using model checking. Our analyzer
failed miserably when we exposed it to
W32.Evol.

Figure 2. DOC User Interface

Figure 3. W32.Evol code with Multiple

Obfuscations

Navigator View

File View

Choices View

A closer analysis revealed that the virus was
obfuscating all system calls, and our analyzer
assumed that IDA Pro would correctly detect
system calls in disassembled code. It failed and,
as is so common in developing new technologies,
the failures provided the impetus to explore new
methods. Here we describe some of the causes
for disassembly failure and show how DOC can
detect these.

Call/Ret Obfuscation in W32.Evol
The common sequence of instructions to make a
system call, say GetTickcount, on a Windows
environment is as follows:
 push add1 ; “kernel32.dll”
 push add2 ; “GetTickCount”
 call GetProcAddress
 call [eax] ; “call GetTickCount”

Here addr1 and addr2, respectively, are pointers
to strings “kernel32.dll” and “GetTickCount”
located in the data segment. The addresses of
these strings are pushed on the stack. The
kernel32.dll function GetProcAddress is called,
which returns the address of the function
“GetTickCount” in the eax register. The program
then does an indirect call to the address in eax,
effectively making a call to GetTickCount.

Disassemblers, such as IDA Pro, can detect such
patterns of call and aid in detecting system calls.
Figure 3 shows a code fragment from W32.Evol
for calling the function GetTickCount. This code
has multiple obfuscations, none of which are
detected by IDA Pro. The reasons for this are
instructive.

IDAPro assumes that the retn instruction at
address 0040156A actually returns from the

procedure. Thus, it deems this statement as
ending the procedure that has entry at address
00401530. IDA Pro indicates the end of a
procedure by introducing the dummy directive
endp. Thus it deduces that the retn statement
matches “call 00401530” instructions.

The retn instruction, it turns out, is performing a
call. The value returned from GetProcAddress is
moved to the stack, and the stack pointer
modified such that when the retn instruction is
executed, it transfers control to GetTickCount.
This can be verified by manually analyzing the
virus in a debugger such as OllyDbg. Figure 4
presents the code of Figure 3 with annotations
created by such a manual analysis.

Detecting call obfuscations
Figure 5 shows a portion of the code where DOC
detects the obfuscated call to the kernel function
GetTickCount(). The push instruction at address
00401557 and the retn instruction at address
0040156A are instrumental in obfuscating the call
to GetTickCount(). This is indicated by
highlighting these instructions in red. The
annotation “(0)” at the end of these instructions
indicates that the two belong to the same call
obfuscation.

W32.Evol uses similar code to make system calls
in 25 locations. IDA Pro misses all of these calls,
where as DOC highlights every such retn
instruction as making a call.

Matching call-retn instructions
Figure 6 shows the same code as Figure 3, but it
also shows of the results of running DOC’s
analysis for matching call-retn instructions. The
two call instructions at addresses 00401558 and
0040155E are highlighted and are annotated “(2)”
and “(3)”, respectively. These numbers are arc

0040153F mov dword ptr ds:[eax], 54746547 ;‘TteG’

00401545 mov dword ptr ds:[eax+4], 436B6369 ;‘Ckci’

0040154C mov dword ptr ds:[eax+8], 746E756F ;‘tnuo’

00401553 mov byte ptr ds:[eax+c], 0; ‘\0’

00401557 push eax; ptr to “GetTickCount”.

00401558 call 00401280; gets base address of kernel32.dll base.

0040155D push eax;

0040155E call 004012A7; obfuscated call to GetProcAddress()

00401563 mov dword ptr ss:[ebp], eax; addr of GetTickCount().

00401566 add esp, 10

00401569 pop ebp

0040156A retn; transfer control to GetTickCount().

Figure 4. Annotated code of Figure 3

Figure 5. Using DOC to detect obfuscated call.

labels in the effective call graph. Figure 7 shows
return sites corresponding to these statements.
These statements are annotated with the numbers
“(2)” and “(3)”, which are matched to the call
sites so labeled. This figure also shows retn
statements matching call sites annotated as “(0)”
and “(1)”. As is expected, one retn statement may
match multiple call sites.

DOC correctly found matching retn statements
for all 33 call statements of W32.Evol. In several
instances the procedure code was not contiguous.

CONCLUSIONS
DOC is efficient, being linear in both space and
time. And it is demonstrably effective in finding
the sort of call/retn obfuscations found
inW32.Evol. We believe its techniques can be an

important part of an AV researcher’s toolkit, and
can significantly speed up analysis of obfuscated
binaries. DOC has limitations. It is restricted
solely to detecting call obfuscations, and cannot
handle some of these, including manual stack
manipulation. Efforts to overcome some of these
limitations are in progress in our laboratory.

 Figure 6. Using DOCs to detect valid calls.

Figure 7. Using DOC to detect valid call-ret sites.

