
Rule-based Approach to Computing Module Cohesion

Arun Lakhotia
The Center for Advanced Computer Studies

University of Southwestern Louisiana
Lafayette, LA 70504

arun @cacs.usl.edu
(318) 231-6766, -5791 (Fax)

Abstract

Stevens, Myers, and Constantine introduced the notion
of cohesion, an ordinal scale of seven levels that describes
the degree to which the actions pelformed by a module
contribute to a unijied function [I3]. TRey provided rules,
termed as ‘associative principles’ to examine the relation-
ships between ‘processing elements’ of a module anddesig-
nate a cohesion level to it. Stevens et. al., however, did not
give a precise de9nition for the term ‘processing element’,
thereby leaving it open for interpretations.

This paper interprets the ‘output variables’ (not state-
ments) of a module as its processing elements. Stevens et.
al.’s associative principles are transformed to relate the
output variables based on their ‘data’ and ‘control depen-
dence relationships. What results is a rule-based approach
to computing cohesion. Experimental results show that, but
for temporal cohesion, the cohesion associated to a mod-
ule under our reinterpretation and that due to the original
dejinitions are identical for all examples.

1. Introduction

The conceptual complexity of developing a large pro-
gram is reduced by decomposing the program into smaller
modules and developing the modules independently. A
program can be decomposed into modules in several ways
of which one is chosen during the design process. The
choice of the decomposition has critical effect on software
quality attributes such as maintainability, reliability, mod-
ifiability, testability, etc. of the finished product. Stevens,
Myers, and Constantine have proposed that cohesion - the
functional relatedness of actions performed by individual
modules - is a good indicator of the quality attributes of
a software system [13]. Their proposition has been ac-
cepted by the software community without experimental
validation.

One reason why the relation between cohesion and
properties of a software product has not been investigated
so far is that Stevens et. al. defined cohesion in a

subjective manner. As per their definitions, the cohesion
of a module is measured by inspecting the association
between all pairs of its processing elements. The term
processing element was defined as an action performed
by a module - such as a statement, procedure call, or
“something which must be done in a module but which
has not yet been reduced to code” [lS]. The informal
definition of the cohesion was intentional since Stevens
et. al. intended cohesion as a measure to predict the
properties of modules that would be created from a given
design. The measure was to be used by designers as a
guide to evaluate various decompositions of a task.

This paper introduces an objective method to compute
cohesion of a completely implemented module. The mea-
sure, i t is hoped, will enable investigations on the effects
of cohesion on the quality attributes of a software product.
Such investigations are beyond the scope of this paper.
One such work in progress is that of [9] aimed at studying
the effects of cohesion on the modifiability of a program.
This is different from the work presented in [lo] investi-
gating the effects of program modifications on a module’s
cohesion.

The rest of the paper is organized as follows. The next
section gives Stevens et. al.’s informal definition of co-
hesion and the motivations behind our approach. Section
3 defines variable dependence graph, a graph that sum-
marizes the relationships between variables of a module.
Section 4 presents our approach to computing module co-
hesion. Section S provides an explanation of our rules for
designating cohesion levels and a laboratory validation for
the measure. Section 6 describes two other methods of
computing cohesion and compares the results of classify-
ing programs using these two approaches, our approach,
and Stevens et. al.’s definitions. The conclusions are pre-
sented i n Section 7.

2. Motivations

In early 70s Constantine attempted to learn why de-
signers associated things into modules. He found that they

35
0270-5257/93 $03.00 0 1993 IEEE

mailto:cacs.usl.edu

Table 1 Associative principle between two processing elements
and the corresponding cohesion in increasing order of levels.

Cohesion Associative principles

Coincidental None of the following associations
hold.

I Logical At each invocation, one of them is
executed.

Temporal Both are executed within the same
limited period of time during the
execution of the system.

I Procedural Both are elements of some iteration or
decision operation.

Communica-
tional

Sequential

Both reference the same input data set
and/or produce the same output data
set.

The output of one serves as input for
the other.

I Functional Both contribute to a single specific
function.

used certain relationships between a set of actions to de-
termine whether or not they should be performed by the
same module. He termed these relationships associative
principles - principles (properties or characteristics) used
by designers to associate actions to be placed in a module.
He classified three such principles and arranged them in
a linear order (or levels) reflecting the preference of most
designers for one principle over another. The ordinal scale
defined by the set of associative principles along with their
order he termed cohesion. Stevens, Myers, Yourdon, and
Constantine expanded the list of associative principles to
seven, which has now become the de facto standard [13,
151.

Table 1 enumerates their list of seven associative princi-
ples and the corresponding cohesion level. The associative
principles give the cohesion between pairs of processing
elements. The cohesion of a module on the whole, as
per Stevens et. al., is defined as the lowest of the co-
hesion between all pairs of processing elements. Figure
1 gives an algorithm to compute cohesion using Stevens
et. al.’s method. The informal definition of processing
elements and the associative principles make cohesion a
subjective metric. The algorithmic description of the steps
for computing cohesion suggests that if the definitions of
processing elements and the associative principles were
formalized, this measure could be made objective. This
paper does precisely that. Under our interpretation, the
output variables of a module are its processing elements.
The associative principles of Table 1 are also reinterpreted

and formalized using two relations: control and &a de-
pendence between variables, derived from control and data
flow analysis.

Algorithm: SMC ‘s-compute-module-cohesion
Input: A moa’ule or its narrative description
Output: Cohesion of the module

Identify the set ofprocessing elements of the mod-
ule
For every pair of processing elements do

identify the set of associative principles in
Table 1 that suitably define the association
between the pair
the highest level of cohesion corresponding
to these principles is the cohesion for the
pair

The cohesion of a moa’ule is the lowest cohesion
of all pairs of processing elements of the module.

Figure 1 The basic steps for computing module
cohesion according to Stevens et. al. [13]

The individual levels of cohesion, their ordering, and
their relationship to software quality attributes have not
yet been validated. It is quite likely that empirical investi-
gation may lead to a reordering, redefinition, addition, or
deletion of levels. It is, therefore, desirable that the method
for computing cohesion preserve the intent of associative
principles as well as be modifiable to accomodate the re-
sults of new findings.

In our approach each level of cohesion is defined by
translating Stevens et. al.’s associative priniciples into
rules of logic. This requires us to associate interpreta-
tions to certain terms that were left ambiguous by Stevens
et. al. ”hat our rules preserve the intent of the associative
principles can be verified by questioning our interpreta-
tions and the translation. Similarly, the levels of cohesion
correspond to the order of the rules (which themselves are
position independent). The levels may be changed simply
by reordering the rules.

We are familiar with two other efforts on computing co-
hesion, first by Ott & ’Ihuss 1111 and second by Emerson
[5]. The three works (including ours) take totally differ-
ent approaches; described in detail in Section 6. In the
approaches proposed by Ott, Thuss, and Emerson one first
computes a number (usually in the range of 0 to 1) using
a procedure’s text and then assigns a symbolic level based
on some threshold values. There is no obvious relationship
between the computation procedures of these methods and
Stevens et. al.’s definitions. While their measures may be
indicative of the strengths of internal bindings of a func-
tion, that they measure “cohesion” (a term that so far has

36

taken the definition given by Stevens et. al.) has to be ex-
perimentally verified. Similarly, the ordering of the levels
in these approach is fixed by the ordering of the thresh-
old values. These methods are, therefore, not conducive
to change.

3. Variable dependence graph

We consider modules’ written in a simple procedural
language. The reader is referred to [ll for definitions of
terms pertaining to data flow analysis.

A variable dependence graph abstracts the control and
data dependences between module variables used in the
associative principles for computing cohesion. The control
dependence between variables is of two types - true and
false, and is defined in terms of an if or a while vertex
that controls the dependence. Thus a variable y may have
true- (or false) control dependence on a variable z due to
a statement n, denoted t +c(n,t) y (or t +c(n,f) y).
These two dependences are defined below.
Definition: (Control dependence: z 3c (n1)y). A vari-
able, say y, has a control dependence on another variable,
say 2, due to some statement, say nl , when statement n1
contains a predicate that uses z and there exists a state-
ment, say n2, that defines y and the execution of n2 may be
controlled due to the success or failure of predicate in n2.

This dependence is of type true orfdse depending upon
which branch of nl is n2 in.
Definition: (me-control dependence: z +c(nl , t) y).
t +c(nl) y and n1 is either a while vertex or an if
statement with n2 in its then part.
Definition: (False-control dependence: 2 +c.(nl,f) y).
t -+c(nl) y and 711 is an if statement with n2 in its else
part.
Definition: (Data dependence: t +d y). Let nl and
n2 be statements defining variables t and y, respectively,
t # y. The variable y has data dependence on variable t
if there is a def-use chain [l] from nl to nz.
Definition: t -+ y
Definition: A variable dependence graph (VDG) of a
module M, denoted V M , is the directed graph2 with typed
edges defined as follows:

~ (V M) = V a r (M) (The set of variables of module M)

t -+d y V (3nk.t +c(n,k) y).

Our work relies on previous efforts in the areas of flow analysis
of programs and computing module cohesion. Terms such as procedure,
program, modules, and statements are used in these areas sometimes
with different meanings. We call module what in PASCAL is termed as
a procedure. * V x V . We
use the notations v(G) and c(G) to refer to V and E elements of the
tuple.

A directed graph G is a tuple (V, E) such that E

~ (V M) = {e such that
e = z +d y where z , y E ~ (V M) and
y has data dependence on t in M, or

and y has control dependence of type
k on z due to n in the module M}.

The modules used as examples in the next section are

e = t + c(n,k) Y where z, Y E ~ (V M)

shown with their VDGs.

Canonical naming of module variables

A variable is termed output variable for a given pro-
cedure if it is modified within it and is either a reference
parameter or declared outside the scope of that procedure.
Our rules for computing cohesion are based on interde-
pendencies between pairs of output variables. To draw an
analogy between variables and actions so as to correctly
compute module cohesion it is important that in a module
all definitions ofa variable be reluted to a single purpose.
The meaning of this statement can be stated by the fol-
lowing module which violates it.

1: procedure example2;
2: x : = g l (a)
3 : y : = f l (x)
4 : x : = g 2 (b)
5 : 2 : = f 2 (x)
6 : e n d (y , z)

If the occurrences of the variable 2 in statements 2 &
3 are replaced with m, the meaning of the module will
not change. We say that the two assignment statements
defining the variable z ‘do not have the same purpose’.
Definition: A variable has a single purpose if all its
definitions reach the end of the module.
Definition: A module has canonically named variables,
or is canonically named, if every variable defined in it has
a single purpose.

In [8] we give a polynomial time algorithm to translate
a module into an ‘equivalent’ module that is canonically
named by selectively renaming some occurrences of its
variables. Henceforth we assume that all modules are
canonically named.

4. Rules for computing cohesion
In this section we present Stevens et. al.’s definitions

(identified as “SMC”) of terms [13] along with our inter-
pretations (identified as “AL”). The next section validates
the measures resulting from our interpretation against that
due to Stevens et. al.’s.

Processing element
SMC: An action performed by a module - such as a
statement, procedure call, or “something which must

37

Table 2 Rules for computing cohesion between processing
elements. Here z, y denote output variables and
a -+tag b is a short hand for a +tag 8 E ~(VM).

Cohesion Associative principles or Rules
I C; rule; : V a r x V a r -+ Boolean

5 . Sequential rules(x, y) = z + y V y -+ x

be done in a module but which has not been reduced
to code”.
AL: An output variable of a module.

Our choice of output variables (instead of statements)
stems from the observation that the functionality of a mod-
ule is typically defined in terms of its inputs and outputs.
This is true for both formal specifications involving pre-
and post- conditions and informal documentation provided
as headers of each function.
Module cohesion may now be defined as:

SMC: The lowest cohesion of all pairs of its process-
ing elements as determined from rules in Table 1.

Notice that the above definition from Stevens et. al.
does not define cohesion for a module that has only 0 or
1 processing elements. We rectify this as follows.

AL: The cohesion of a module is functional if it has
only 1 output variable; it is undefined if it has no
output variables; else it is the lowest cohesion of all
pairs of the output variables of the module.

The above interpretation of the definition of module
cohesion preserves the intent of Stevens et. al.’s definition
of functional cohesion: namely, a module has functional
cohesion if all its processing elements contribute to a single
specific function.

Algorithm AL.-compute-module-cohesion
Input: a canonically named module P
Output: Module cohesion of P or ‘undefined’

Construct the PDG of P
Construct the VDG Vp
Let X be the set of all the output variables of P
If I X I= 0 then cohesion := ‘undefined’

else if I X I= 1 then cohesion := ‘functional’
else begin

- - initialize to highest value
cohesion := ’sequential’
for x in X and y in Y and x # y do

- - maximum of all cohesions for
a variable pair
V C := M A X ({ C i I i E {1..5}A
rulei(x1 Y)))
- - minimum of all pairs
cohesion : = min(cohesion, VC)

end-for
end

return cohesion
end

Figure 2 Algorithm for computing module cohesion using our
interpretation of terms. C, and rule; refer to the entry in the
corresponding columns of the i r h row of Table 2.

Our niles for designating cohesion between pairs of
output variables are stated in Table 2 as logical expressions
rulei, i = 1 3 . Given a pair of output variables a and b
and the module M if rulei(a,b) evaluates to true then
the variables a and b are said to have the corresponding
cohesion, Ci. Since the rules are symmetric the order of
the variables in the pair is not significant. In the logical
expressions, (1 -tag b is a short hand for a -+tag b E
~ (V M) where M is the module under consideration.

Figure 2 gives our algorithm for computing module
cohesion after rectifying the problem with Stevens et. al.’s
algorithm (Figure 1) and introducing our interpretation of
processing elements, their associations, and the associative
principles.

5. Explanation and validation
of rules of Table 2

This section gives a narrative of the intuition behind
our rules i n Table 2 for computing cohesion between pairs
of output variables. Also provided is a validation of
the measure: i.e. our rules indeed compute cohesion as
defined by Stevens et. al. [13]. Notice that this does
not validate the relationship if any between any quality

1 procedure sum(n: integer;

2 var i: integer;
3 begin
4 i := 1;
5 result := 0;
6 while i < n do begin
7 i : = i t 1;
8 result : = result t i
9 end

var result: integer);

10 end

Figure 3 A module computing the sum of first n numbers and its
variable dependence graph. The module has functional cohesion.

1 procedure sum-orqroduct(m,n,flag: integer;

2 var i,j: integer;
3 begin
4 if flag = 1 then begin
5 i : = 1;
6 sum : = 0;
7 while i <= m do begin
8 sum : = sum t i;

var sum,prod: integer);

9 i : = i t l
10 end
11 end
12 else begin
13 j := 1;
14 prod : = 1;
15 while j <= n do begin
16 prod := prod * j ;
17 j : = j t l
18 end
19 end
20 end

Figure 4 A module computing sum or product
of first n numbers and its variable dependence
graph. The module has logical cohesion.

attribute of a software system and its cohesion; as stated
earlier such a validation is beyond the scope of this paper.

Our validation approach consists of handcrafting a set
of programs with “known” cohesion according to Stevens
et. al.’s definition [13], computing their cohesion with
our approach, and comparing against the “known” value.
Similar validation method has been employed by Ott and
Thuss to validate their measure for cohesion [12]. The
reader is referred to [2] on details of approaches to vali-
dating software metric.

Figure 3 contains a module with a single output vari-
able hence expressing functional cohesion. Figures 4 to
8 contain modules with 2 output variables and express-
ing logical, communicational, procedural, sequential, and
coincidental cohesion. Figure 9 contains a module with
3 output variables. Its cohesion is the minimum of the
cohesions between the pairs of these variables.

1 procedure sum_and_product3(n: integer;

2 var i: integer;
3 begin

var sum,prod: integer);

i : = 1;
sum : = 0;
prod : = 1;
while i <= n do begin

sum : = sum t i;
prod := prod * i;

10 i : = i t 1
11 end
12 end

Figure 5 A module computing the sum and
product of first n numbers using a single loop.
It demonstrates procedural cohesion.

Logical cohesion

SMC: Two processing elements have logical cohesion
if at each invocation of the module only one of them
is invoked.
AL: Two variables have logical cohesion if they have
different type of control dependence on the same
variable due to the same node
rulez(z, y) = 3znk.Vl.

+c(n,k) A +c(n,-k) Y
A-(t +c(n,/) 2 A z +c(n,/) Y)

The above expression evaluates to true if there exists a
variable t such that a) 3: and y have control dependence on
it due to the same vertex n and of different type, k and -k,
i.e. z - -+c(,h ,k) z A z +c(n,7k) y and b) they do not have a
control dependence of the same type on this variable due
to the same vertex 11. The first condition will hold iff n is
an if statement and one variable is defined in one branch
of this statement and the other variable is defined in its
other branch. The condition -(z +c(n,l) 2 A z +c(n,/) Y
ensures that both the variables are not defined in the same
branch. This ensures the exclusion condition required for
logical cohesion, i.e. only one variable be assigned to
during each invocation.

The module of Figure 4 computes:
the sum offirst ‘m’ integers ifthe value of Yug’ is 1
else it computes the product of first ’n’ integers.

It has logical cohesion since at each invocation only one of
two functions are performed. The choice of the function is
controlled by the variablepug. The module’s VDG shows
that the output variables sum and prod have a control
dependence on variable pug due to statement 4. The
dependence is of different type: true for sum and false
for prod.

Thus rule2(sum,prod) = true, implying that the
module’s cohesion is C2 = logical.

39

1 procedure sum-andqroductZ(n: integer;

2 var i,j: integer;
3 begin

var sum,prod: integer) ;

4
5
6
7
8
9

10
11
12
13

i := 1;
sum := 0;
while i <= n do begin

sum : = sum t i;
i : = i t 1

end ;
j : = 1;
prod : = 1;
while j <= n do begin

prod := prod * j;
14 j := j t 1
15 end
16 end

Figure 6 A module computing the sum and product of 6rst n
numbers using two loops and its variable dependence graph.
The module demonstrates communicational cohesion.

Procedural cohesion
SMC: nkro processing elements have procedural co-
hesion if they belong to the same iteration or decision
operation.
AL: nkro variables have procedural cohesion if they
have control dependence of the same type on the same
variable due to the same node.
r u h (2 , Y) = (3znk.z +c(n,k) z A z +c(n,k) Y)

The condition will succeed iff there are definitions of
both the variables subordinate to the same while statement
or to the same branch of the gstatement.

The module in Figure 5 computes:
the sum and proahct of the first ‘n’ integers. The
two functions are related in that they are performed
simuluvleously in the same loop.

The module therefore has procedural cohesion. Since sum
and prod are computed in the same loop they have control
dependence on all variables in the loop predicate. The
dependence is due to the same statement and is of the
same type, in this case true.

Thus rules(sum,prod) = true and the module cohe-
sion is C3 which is procedural.

Communicational cohesion
SMC: Two processing elements have communica-
tional cohesion if they reference the same input data
and/or produce the same output data.
AL. Two variables have communicational cohesion if

they have data dependence on the same variable,
or
the same variable has data dependence on them,
or

1 procedure sum-and-average(n:integer;
var sum,average: integer);

2 var i: integer;
3 begin
4 i := 1;
5 sum : = 0;
6 while i <= n do begin
7 sum := sum t i;
8 i : = i t l
9 end;

10 average : = sum / n
11 end
Figure 7 A module computing the sum and average of first
n numbers. It demonstrates sequential cohesion.

one variable has control dependence and the
other has data dependence on the same variable
the two variables have control dependence on
the same variable but due to different vertices.

In other words, two variables have communicational
cohesion if they have relation with each other or a common
variable and this relation is not captured by logical or
procedural cohesion.

rule4(z, y) = 3z.Vnkl.
-(z --+c(n,k) A z +c(n,+) Y)

-c(n,k) z A z -+c(n,k) Y)
A((z --+ z A z + y)

V(z + z A y --+ z))

The first two negations above ensure that z and y do not
depend on z such that it may lead to logical or procedural
cohesion. The next condition then ensures that z and y
have some relation to the common variable z.

the suiri and product of first ‘n’ integers. The two
functions are computed independently.

The two functions are related in that they both depend
on the value of the variable n. Hence the module has
communicational cohesion. In the modules VDG the vari-
ables sum and prod have control dependence on n, but
the dependence is not due to the same statement. Thus
rule4(sum,prod) = t rue and the module cohesion is
C4= coniniunicational.

The module of Figure 6 computes:

Sequential cohesion

SMC: Two processing elements have sequential co-
hesion i f the output of one serves as an input to the
other.
AL‘: Two variables have sequential cohesion if one
has data dependence on the other.
r u k (z , y) = (2 --+d Y v Y -‘d z)

40

1 procedure sum-andqroductl(m,n: integer;

2
3
4
5
6
7
8
9
10
11

var sum,prod:
var i,j: integer;
begin

i : = 1;
sum := 0;
while i <= m do begin

sum : = sum + i;
i : = i + l

end ;
j : = 1;
prod := 1;

12 while j <= n do begin
13 prod := prod * j;
14 j : = j t 1
15 end
16 end

Figure 8 A module computing the sum of first m numbers and
product of first n numbers. It demonstrates coincidental cohesion.

The above expression captures the intent of Stevens et.
al.’s definition of sequential cohesion. Notice that, just as
in communicational cohesion, this definition does not state
anything about z having control dependence on y or vice
versa. Using argument similar to that in communicational
cohesion we believe that this expression should also be
generalized as follows:

rules(z , y) = (z -+ y V y + z)

The module of Figure 7 computes:
sum and average of the $rst n integers.

Since the computation of average uses the result from com-
puting sum, the two functions have sequential cohesion.
The dependence between the variables, sum and average,
corresponding to these functions exhibits this. The vari-
able average has a data dependence on the variable sum
hence rule5(sum, average) is true and the module cohe-
sion is sequential.

Coincidental cohesion
SMC: Two processing elements that do not have log-
ical, temporal, procedural, communicational, sequen-
tial, or functional cohesion have coincidental cohe-
sion.
AL: IIkro variables that do not have logical, proce-
dural, communicational, or sequential cohesion have
coincidental cohesion.
rulel(z, Y) = l(Vvj,iC(2 . . . 5) ruleizy)

The module of Figure 8 demonstrates coincidental co-

the sum of all numbers between 1 and m and the
product of all numbers between 1 and n.

The two functions it performs are independent and it
has two independent loops performing the tasks. This is

hesion. It computes:

1 procedure sum-sumsquaresqroduct2(
m,n, flag: integer;
var sum,sumsquares,prod: integer);

2 var i, j: integer;
3 begin
4 if flag = 1 then begin
5 i : = 1;
6 sum : = 0;
7 while i <= m do begin
8 sum := sum + i;
9 i : = i t 1

10 end;
11 end
12 else begin
13 j := 1;
14 sumsquares := 0;
15 prod : = 1;
16 while j <= n do begin
17 sumsquares : = sumsquares t j * j;
18 prod := prod j;
19 . - j t 1
20 end;
21 end
22 end

j . _

Figure 9 A module containing three output variables with
different types of cohesions between pairs of these variables.

reflected in its VDG. The graph consists of two disjoint
subgraphs. The two output variables sum and prod do not
depend on each other, nor do they depend on the same
variable. Thus rulel(sum,prod) is true and the module
has coiiicideiital cohesion.

The examples so far, except for functional cohesion,
had two output variables. Our next example looks at a
program with three output variables.
Consider the module in Figure 9. It takes input flag and
n. If the value of flag is n it computes the sum of f i s t n
positive integers otherwise it simultaneously computes the
sum of squares of the f i s t n integers and also their prod-
uct. The module performs three functions: compute sum,
compute sum of squares, compute product. It performs
only the first function on certain invocation and both the
remaining fuiictions in other invocations. It clearly has
logical cohesion between the processing elements of the
first function and the other two functions. The processing

41

Table 3 Comparison of cohesions associated to Modules 1 through 7 by the different approaches discussed in this paper. Emerson
and Ott & Thus reclassifiy the cohesions as subsets of the original categories. The reclassification is as follows:
Qpe I =(functional, sequential, communicational); Type II = (procedural, temporal); Type III = (logical,
coincidental}; Low = (coincidental, temporal), Control = (procedural, logical) High = {sequential, functional}. A
(*) indicates that the cohesion assigned to that module differs with that of Stevens et. al.’s assignment.
A ? indicates that that the classification for that module is ambiguous or not well defined.

Module 2

Module 3

I Module 1 I functional I functional I High I
logical logical Type m Control

communicational communicational Type II (*I Low (*I

Module 5

Module 6

sequential sequential Type II (*I High

coincidental coincidental Type (*I LOW

Module 7

elements of the latter two functions have procedural co-
hesion, because they are performed simultaneously. The
cohesion of the module is the smaller of logical and pro-
cedural, i.e. logical.

This is computed using our rules as follows.

rulez(sum, sumsquares) = true,
rulez(sum,prod) = true, and
rules(sumsquares, prod) = true.

Hence the set of cohesions between the pairs of output
variables is {logical, procedural}. The minimum element
of this set is logical.

logical logical ITYPem ?

6. Comparison with related works

Section 2 eluded to Ott & Thuss’ [l 11 and Emerson’s
[5] methods of computing module cohesion. It stated
the “philosophical” difference between the other methods
and ours. In this section we describe these methods and
compare the classifications done by them. We believe that
Emerson’s approach is flawed in so far as computation of
cohesion as defined by Stevens et. al. [13] is concerned.
The reasons are explained below.

The result of classifying the modules from the previous
section using Stevens et. al’s, Ott & Thuss’, Emerson’s
and our approach are shown in Table 3. In order to
compare the classifications done by different methods,
the seven levels of cohesion of Stevens et. al. are
mapped to four levels of Ott & Thuss and three levels
of Emerson. A (*) in Table 3 indicates those modules
whose cohesion differs from that of Stevens et. al.’s
after such reclassification. The cohesion assigned to the
various modules using our method is consistent with that

of Stevens et. al.’s assignment. The same is not true for
the other two methods.

In the following subsections we give the essence of Ott
& Thuss’ and Emerson’s approaches and reason why the
cohesion assigned by these methods differ from Stevens
et. al.’s definitions.

Ott and Thus’s Approach Ott & T h u s reclas-
sify the original seven levels of cohesion into four cat-
egories: low = (coincidental, temporal}, control = {log-
ical, procedural}, data = (communicational} and high =
(sequential, junctional}. They determine the “relationships
between processing elements” of a program by examining
statements i n the intersection of its end-slices of output
variables. An end-slice of a variable is a slice3 performed
at the last statement with respect to that variable. An out-
put vuriuiile of a module, as per their definition, is a vari-
able declared as reference parameter or a variable defined
by the operating system.

The associative principles of Ott & Thuss ‘relate the
sets of statements in the end-slices of a pair of output
variables’. These principles and their corresponding cohe-
sions are summarized in Table 4. The associative princi-
ples relate to the set of statements in the intersection of the
end-slices. Ott & Thuss restrict that only “variant referent
executable statements’’ - executable statements that refer
to variables be considered when comparing slices.

Comparison of the cohesion assignment due to Ott &
Thuss’ approach with that due to Stevens et. al. brings

’ A slice of a program at a statement a with respect a variable U
consists of all statements of the program that may effect the value of U
at statement i. For more details see Weiser [14]. We omit details for the
sake of brevity. The term md-slicc is our term. It is not used by Oa &
ThUSS.

42

Table 4 Summary of Ott & Thuss’s associative principles
for computing module cohesion. The principles
compare the intersection of end-slices of output
variables. Only “variable referent executable statements”
are considered as part of the end-slices.

high

Cohesion
Ci

one slice is totally contained in another

low

control

data

011 & i’ltuss’ Associative principles
A P,

the intersection is empty

the intersection primarily contains control
statements and definitions for the control
variables

the intersection contains non-control
variable data definitions

Emerson’s Approach Emerson reclassifies the seven
levels of cohesion into three: o p e I = {functional, sequen-
tial, communicational], o p e I1 = {procedural, temporal],
and o p e Ill = {logical, coincidental]. He represents a pro-
gram as a flow graph [614 and constructs a reference set for
each variable - the set of vertices that refer to that variable
in the flow graph. I f R , is the set of vertices in a flow
graph F that reference variable i then he defines a metric
K (& , F) - cohesion of R, in flow graph F as follows:

where dim A is the number of “maximal linearly indepen-
dent paths” [4] passing through the vertex set A in the
flow graph F .

He then defines the cohesion of a module with flow
graph F , K (F) , as the arithmetic mean of K (R ~ , F) for
all variables i. We call this measure graph cohesion.
Emerson uses the value of K (F) as a discriminant, that
is he associates a range of values of the metric for each
of the three types of cohesion:

1.
2.
3.

Type I - 0 5 K (F) 5 (q / c) / s
Type I1 - (q / c) / s 5 K (F) 5 l/s2
Type I11 - l/s2 5 K (F) 5 1

Actually Emerson operates on reduced flow graph - a graph derived
after Performing some transformation on a programs flow graph. The
details of the representation are not relevant for OUT discussion.

where s is the number of executable statements that refer
to variables, q is average number of variable references per
executable statement, and c is the ratio of number of vari-
ables in a module and number of executable statements.
The constants q and c are language specific parameters
supposed to be computed from a domain of sample pro-
grams. A module is classified to have a type of cohesion
if the value of the cohesion metric falls in the associated
range.

Table 3 shows that the cohesion associated to a mod-
ule using Emerson’s approach is not consistent with that
associated using Stevens et. al.’s definition (after aug-
menting it to reclassify the seven levels of cohesion into
Emerson’s Type I, 11, and 111). The source of the problem
can be traced to the assumptions that Emerson makes to
derive the above ranges.

In order to derive cut-off ranges Emerson models the
flow graph of Type I1 and I11 modules using graph con-
structs. He models a Type I1 module as those modules
whose flowgraph may be constructed by a ‘sequence’ of
simpler flow graphs. Similarly Type I11 modules are mod-
ules whose flowgraph may be modelled as a set of simpler
flowgraphs connected in parallel such that only one of the
them may be selected for execution. Although these mod-
els capture the structure of all modules with Type I1 and
Type 111 cohesions, respectively, not all modules modelled
by these constructs have Type I1 or Type I11 cohesions.
This leads to the incorrect classifications. For example the
module i n Figure 8 with coincidental cohesion is classified
as Type I1 because its flow graph can be modelled as a se-
quence of two simpler flow graphs. Similarly a module
in which all simpler flow graphs controlled by a selection
compute values for the same variable will be incorrectly
classified as Type 111.

7. Conclusions
Module cohesion was introduced by Stevens, Myers,

and Constalitilie 1131 as a property that describes the de-
gree to which actions performed by a module contribute
to a unified function. This is an ordinal metric with seven
levels measured in terms of the type of associations be-
tween pairs of processing elements of a module. Stevens
et. al. gave descriptive definitions of the notion of pro-
cessing elements and the rules for designating a cohesion
level to a module. This left the definitions open to inter-
pretations and made cohesion a subjective measure [31.

This paper gives a formal definition for the term “pro-
cessing elements” and the rules for measuring the type of
associations. A processing element as per Stevens et. al.’s
intent is a functionality provided by a module. While the
statements of a module implement a modules behavior, in
the domain of procedural programs, the actions performed

43

by a module, except those related ovex time, are reflected
in the change of its variables’ state and/or the state of
its input and output streams. This leads us to define the
output variables of a module as its processing elements.
The association between the output variables is defined in
terms of control and data dependence between variables
which in turn are derived from similar dependences be-
tween statements. The rules for designating a cohesion
level are defined such that they preserve the intent of the
original definitions in the context of the new definition of
processing elements.

We have validated our measure for cohesion in two
parts. In the first part we created sample modules that de-
picted a particular cohesion according to Stevens et. al.’s
definitions and compared their cohesions to that assigned
by our method. The examples in this paper show a subset
of these modules. As is shown in Table 3, but for temporal
cohesion, the cohesion associated to a module using our
interpretation and that due the Stevens et. al.’s definitions
are indentical in all cases.

In the second part of our experiment we took sample
programs from books, such as Kernighan and Plaugher [7],
and computed their cohesion using the two approaches. It
turns out that textbook programs tend to be have functional
cohesion since they are written with the intention of teach-
ing good programming style. These programs therefore do
not provide a good sample set for testing algorithms for
measuring program quality. Similar inference has previ-
ously been made by Emerson [51.
Our objective definition of computing cohesion should

enable investigations of the effect of module cohesion on
various software quality attributes. Work is in progress to
study the effect of module cohesion on software modifi-
ablility [9].
Acknowledgments: The author collaborated with Jagadeesh
Nandigain on the earlier stages of this work [8] and thanks him
for his comments and contribution. This work was supported in
part by the grant LEQSF (1991-92) ENH-98 from the Louisiana
Board of Regents.

Bibliography

[l] A. Aho, R. Sethi, and J. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

A. L. Baker, J. M. Bieman, N. Fenton, D. A.
Gustafson, A. Melton, and R. Witty. A philoso-
phy for software measurement. J Systems Software,

V. R. Basili. Evaluating software development char-
acteristics: Assessment of software measures in the
software engineering laboratory. In Proceedings,
6th Soflware Engineering Workshop, NMNGoddard
Space Flight Center, 1977.
N. Biggs. Algebraic Graph l3eory. Cambridge Uni-
versity Press, 1974.
T. J. Emerson. A discriminant metric for module
cohesion. In Proceedings of the 7th International
Conference on software Engineering, Mar. 1984.
M. S. Hecht. Flow Analysis of Computer Programs.
North-Holland, New York, 1977.
B. W. Kernighan and P. Plaugher. Sofnvare Tools.
Addison-Wesley Publishing Company, 1976.
A. Lakhotia and J. Nandigam. Computing module co-
hesion. Technical Report CACS-TR-91-5-5, Univer-
sity of Southwestern Louisiana, July 1991.
J. Nandigam. An empirical study of the effects of
module cohesion on program modifiability. Univer-
sity of Southwestern Louisiana, 1993.

12~277-281, 1990.

[lo] L. M. Ott and J. M. Bieman. Effects of software
changes on module cohesion. In Proceedings of the
Conference on Software Maintenance, pages 345-353.
IEEE Computer Society Press, 1992.

[l 13 L. M. Ott and J. J. Thuss. The relationship between
slices and module cohesion. In Proceedings of ?he
12th Interrutional Conference on Sofnvare Engineer-
ing, May 1989.

[12] L. M. Ott and J. J. Thuss. The relationship between
slices and module cohesion. In Proceedings of the
I21h International Conference on SofMare Engineer-
ing, May 1989.

[13] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design. IBM Systems Journal, 13(2):115-
139, 1974.

[14] M. Weiser. Program slicing. IEEE Trans. Som. Eng.,

[15] E. Yourdon and L. L. Constantine. StructuredDesign.
10(4):352-357, 1984.

Yourdon Press, 1978.

