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Abstract 

Stevens, Myers, and Constantine introduced the notion 
of cohesion, an ordinal scale of seven levels that describes 
the degree to which the actions pelformed by a module 
contribute to a unijied function [I3]. TRey provided rules, 
termed as ‘associative principles’ to examine the relation- 
ships between ‘processing elements’ of a module anddesig- 
nate a cohesion level to it. Stevens et. al., however, did not 
give a precise de9nition for the term ‘processing element’, 
thereby leaving it open for interpretations. 

This paper interprets the ‘output variables’ (not state- 
ments) of a module as its processing elements. Stevens et. 
al.’s associative principles are transformed to relate the 
output variables based on their ‘data’ and ‘control depen- 
dence relationships. What results is a rule-based approach 
to computing cohesion. Experimental results show that, but 
for temporal cohesion, the cohesion associated to a mod- 
ule under our reinterpretation and that due to the original 
dejinitions are identical for all examples. 

1. Introduction 

The conceptual complexity of developing a large pro- 
gram is reduced by decomposing the program into smaller 
modules and developing the modules independently. A 
program can be decomposed into modules in several ways 
of which one is chosen during the design process. The 
choice of the decomposition has critical effect on software 
quality attributes such as maintainability, reliability, mod- 
ifiability, testability, etc. of the finished product. Stevens, 
Myers, and Constantine have proposed that cohesion - the 
functional relatedness of actions performed by individual 
modules - is a good indicator of the quality attributes of 
a software system [13]. Their proposition has been ac- 
cepted by the software community without experimental 
validation. 

One reason why the relation between cohesion and 
properties of a software product has not been investigated 
so far is that Stevens et. al. defined cohesion in a 

subjective manner. As per their definitions, the cohesion 
of a module is measured by inspecting the association 
between all pairs of its processing elements. The term 
processing element was defined as an action performed 
by a module - such as a statement, procedure call, or 
“something which must be done in a module but which 
has not yet been reduced to code” [lS]. The informal 
definition of the cohesion was intentional since Stevens 
et. al. intended cohesion as a measure to predict the 
properties of modules that would be created from a given 
design. The measure was to be used by designers as a 
guide to evaluate various decompositions of a task. 

This paper introduces an objective method to compute 
cohesion of a completely implemented module. The mea- 
sure, i t  is hoped, will enable investigations on the effects 
of cohesion on the quality attributes of a software product. 
Such investigations are beyond the scope of this paper. 
One such work in progress is that of [9] aimed at studying 
the effects of cohesion on the modifiability of a program. 
This is different from the work presented in [lo] investi- 
gating the effects of program modifications on a module’s 
cohesion. 

The rest of the paper is organized as follows. The next 
section gives Stevens et. al.’s informal definition of co- 
hesion and the motivations behind our approach. Section 
3 defines variable dependence graph, a graph that sum- 
marizes the relationships between variables of a module. 
Section 4 presents our approach to computing module co- 
hesion. Section S provides an explanation of our rules for 
designating cohesion levels and a laboratory validation for 
the measure. Section 6 describes two other methods of 
computing cohesion and compares the results of classify- 
ing programs using these two approaches, our approach, 
and Stevens et. al.’s definitions. The conclusions are pre- 
sented i n  Section 7. 

2. Motivations 

In early 70s Constantine attempted to learn why de- 
signers associated things into modules. He found that they 
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Table 1 Associative principle between two processing elements 
and the corresponding cohesion in increasing order of levels. 

Cohesion Associative principles 

Coincidental None of the following associations 
hold. 

I Logical At each invocation, one of them is 
executed. 

Temporal Both are executed within the same 
limited period of time during the 
execution of the system. 

I Procedural Both are elements of some iteration or 
decision operation. 

Communica- 
tional 

Sequential 

Both reference the same input data set 
and/or produce the same output data 
set. 

The output of one serves as input for 
the other. 

I Functional Both contribute to a single specific 
function. 

used certain relationships between a set of actions to de- 
termine whether or not they should be performed by the 
same module. He termed these relationships associative 
principles - principles (properties or characteristics) used 
by designers to associate actions to be placed in a module. 
He classified three such principles and arranged them in 
a linear order (or levels) reflecting the preference of most 
designers for one principle over another. The ordinal scale 
defined by the set of associative principles along with their 
order he termed cohesion. Stevens, Myers, Yourdon, and 
Constantine expanded the list of associative principles to 
seven, which has now become the de facto standard [13, 
151. 

Table 1 enumerates their list of seven associative princi- 
ples and the corresponding cohesion level. The associative 
principles give the cohesion between pairs of processing 
elements. The cohesion of a module on the whole, as 
per Stevens et. al., is defined as the lowest of the co- 
hesion between all pairs of processing elements. Figure 
1 gives an algorithm to compute cohesion using Stevens 
et. al.’s method. The informal definition of processing 
elements and the associative principles make cohesion a 
subjective metric. The algorithmic description of the steps 
for computing cohesion suggests that if the definitions of 
processing elements and the associative principles were 
formalized, this measure could be made objective. This 
paper does precisely that. Under our interpretation, the 
output variables of a module are its processing elements. 
The associative principles of Table 1 are also reinterpreted 

and formalized using two relations: control and &a de- 
pendence between variables, derived from control and data 
flow analysis. 

Algorithm: SMC ‘s-compute-module-cohesion 
Input: A moa’ule or its narrative description 
Output: Cohesion of the module 

Identify the set ofprocessing elements of the mod- 
ule 
For every pair of processing elements do 

identify the set of associative principles in 
Table 1 that suitably define the association 
between the pair 
the highest level of cohesion corresponding 
to these principles is the cohesion for the 
pair 

The cohesion of a moa’ule is the lowest cohesion 
of all pairs of processing elements of the module. 

Figure 1 The basic steps for computing module 
cohesion according to Stevens et. al. [13] 

The individual levels of cohesion, their ordering, and 
their relationship to software quality attributes have not 
yet been validated. It is quite likely that empirical investi- 
gation may lead to a reordering, redefinition, addition, or 
deletion of levels. It is, therefore, desirable that the method 
for computing cohesion preserve the intent of associative 
principles as well as be modifiable to accomodate the re- 
sults of new findings. 

In our approach each level of cohesion is defined by 
translating Stevens et. al.’s associative priniciples into 
rules of logic. This requires us to associate interpreta- 
tions to certain terms that were left ambiguous by Stevens 
et. al. ”hat our rules preserve the intent of the associative 
principles can be verified by questioning our interpreta- 
tions and the translation. Similarly, the levels of cohesion 
correspond to the order of the rules (which themselves are 
position independent). The levels may be changed simply 
by reordering the rules. 

We are familiar with two other efforts on computing co- 
hesion, first by Ott & ’Ihuss 1111 and second by Emerson 
[5]. The three works (including ours) take totally differ- 
ent approaches; described in detail in Section 6. In the 
approaches proposed by Ott, Thuss, and Emerson one first 
computes a number (usually in the range of 0 to 1) using 
a procedure’s text and then assigns a symbolic level based 
on some threshold values. There is no obvious relationship 
between the computation procedures of these methods and 
Stevens et. al.’s definitions. While their measures may be 
indicative of the strengths of internal bindings of a func- 
tion, that they measure “cohesion” (a term that so far has 
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taken the definition given by Stevens et. al.) has to be ex- 
perimentally verified. Similarly, the ordering of the levels 
in these approach is fixed by the ordering of the thresh- 
old values. These methods are, therefore, not conducive 
to change. 

3. Variable dependence graph 

We consider modules’ written in a simple procedural 
language. The reader is referred to [ll for definitions of 
terms pertaining to data flow analysis. 

A variable dependence graph abstracts the control and 
data dependences between module variables used in the 
associative principles for computing cohesion. The control 
dependence between variables is of two types - true and 
false, and is defined in terms of an if or a while vertex 
that controls the dependence. Thus a variable y may have 
true- (or false) control dependence on a variable z due to 
a statement n, denoted t +c(n,t) y ( or t +c(n,f)  y). 
These two dependences are defined below. 
Definition: (Control dependence: z 3c (n1)y). A vari- 
able, say y, has a control dependence on another variable, 
say 2, due to some statement, say nl ,  when statement n1 
contains a predicate that uses z and there exists a state- 
ment, say n2, that defines y and the execution of n2 may be 
controlled due to the success or failure of predicate in n2. 

This dependence is of type true orfdse depending upon 
which branch of nl is n2 in. 
Definition: (me-control dependence: z +c(nl , t )  y). 
t +c(nl) y and n1 is either a while vertex or an if 
statement with n2 in its then part. 
Definition: (False-control dependence: 2 +c.(nl,f) y). 
t -+c(nl) y and 711 is an if statement with n2 in its else 
part. 
Definition: (Data dependence: t +d y). Let nl and 
n2 be statements defining variables t and y, respectively, 
t # y. The variable y has data dependence on variable t 
if there is a def-use chain [l] from nl to nz. 
Definition: t -+ y 
Definition: A variable dependence graph (VDG) of a 
module M, denoted V M ,  is the directed graph2 with typed 
edges defined as follows: 

~ ( V M )  = V a r ( M )  (The set of variables of module M) 

t -+d y V (3nk.t +c(n,k) y). 

Our work relies on previous efforts in the areas of flow analysis 
of programs and computing module cohesion. Terms such as procedure, 
program, modules, and statements are used in these areas sometimes 
with different meanings. We call module what in PASCAL is termed as 
a procedure. * V x V .  We 
use the notations v(G) and c(G) to refer to V and E elements of the 
tuple. 

A directed graph G is a tuple (V, E )  such that E 

~ ( V M )  = {e such that 
e = z +d y where z , y  E ~ ( V M )  and 
y has data dependence on t in M, or 

and y has control dependence of type 
k on z due to n in the module M}. 

The modules used as examples in the next section are 

e = t +  c(n,k)  Y where z, Y E ~ ( V M )  

shown with their VDGs. 

Canonical naming of module variables 

A variable is termed output variable for a given pro- 
cedure if it is modified within it and is either a reference 
parameter or declared outside the scope of that procedure. 
Our rules for computing cohesion are based on interde- 
pendencies between pairs of output variables. To draw an 
analogy between variables and actions so as to correctly 
compute module cohesion it is important that in a module 
all definitions ofa variable be reluted to a single purpose. 
The meaning of this statement can be stated by the fol- 
lowing module which violates it. 

1: procedure  example2; 
2:  x : =  g l ( a )  
3 :  y : =  f l ( x )  
4 :  x : =  g 2 ( b )  
5 :  2 : =  f 2 ( x )  
6 :  e n d ( y , z )  

If the occurrences of the variable 2 in statements 2 & 
3 are replaced with m, the meaning of the module will 
not change. We say that the two assignment statements 
defining the variable z ‘do not have the same purpose’. 
Definition: A variable has a single purpose if all its 
definitions reach the end of the module. 
Definition: A module has canonically named variables, 
or is canonically named, if every variable defined in it has 
a single purpose. 

In [8] we give a polynomial time algorithm to translate 
a module into an ‘equivalent’ module that is canonically 
named by selectively renaming some occurrences of its 
variables. Henceforth we assume that all modules are 
canonically named. 

4. Rules for computing cohesion 
In this section we present Stevens et. al.’s definitions 

(identified as “SMC”) of terms [13] along with our inter- 
pretations (identified as “AL”). The next section validates 
the measures resulting from our interpretation against that 
due to Stevens et. al.’s. 

Processing element 
SMC: An action performed by a module - such as a 
statement, procedure call, or “something which must 
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Table 2 Rules for computing cohesion between processing 
elements. Here z, y denote output variables and 
a -+tag b is a short hand for a +tag 8 E ~(VM). 

Cohesion Associative principles or Rules 
I C; rule; : V a r  x V a r  -+ Boolean 

5 .  Sequential rules(x, y) = z + y V y -+ x 

be done in a module but which has not been reduced 
to code”. 
AL: An output variable of a module. 

Our choice of output variables (instead of statements) 
stems from the observation that the functionality of a mod- 
ule is typically defined in terms of its inputs and outputs. 
This is true for both formal specifications involving pre- 
and post- conditions and informal documentation provided 
as headers of each function. 
Module cohesion may now be defined as: 

SMC: The lowest cohesion of all pairs of its process- 
ing elements as determined from rules in Table 1. 

Notice that the above definition from Stevens et. al. 
does not define cohesion for a module that has only 0 or 
1 processing elements. We rectify this as follows. 

AL: The cohesion of a module is functional if it has 
only 1 output variable; it is undefined if it has no 
output variables; else it is the lowest cohesion of all 
pairs of the output variables of the module. 

The above interpretation of the definition of module 
cohesion preserves the intent of Stevens et. al.’s definition 
of functional cohesion: namely, a module has functional 
cohesion if all its processing elements contribute to a single 
specific function. 

Algorithm AL.-compute-module-cohesion 
Input: a canonically named module P 
Output: Module cohesion of P or ‘undefined’ 

Construct the PDG of P 
Construct the VDG Vp 
Let X be the set of all the output variables of P 
If I X I= 0 then cohesion := ‘undefined’ 

else if I X I= 1 then cohesion := ‘functional’ 
else begin 

- - initialize to highest value 
cohesion := ’sequential’ 
for x in X and y in Y and x # y do 

- - maximum of all cohesions for 
a variable pair 
V C  := M A X ( { C i  I i E {1..5}A 
rulei(x1 Y))) 
- - minimum of all pairs 
cohesion : = min(cohesion, VC) 

end-for 
end 

return cohesion 
end 

Figure 2 Algorithm for computing module cohesion using our 
interpretation of terms. C, and rule; refer to the entry in the 
corresponding columns of the i r h  row of Table 2. 

Our niles for designating cohesion between pairs of 
output variables are stated in Table 2 as logical expressions 
rulei, i = 1 3 .  Given a pair of output variables a and b 
and the module M if rulei(a,b) evaluates to true then 
the variables a and b are said to have the corresponding 
cohesion, Ci. Since the rules are symmetric the order of 
the variables in  the pair is not significant. In the logical 
expressions, (1 -tag b is a short hand for a -+tag b E 
~ ( V M )  where M is the module under consideration. 

Figure 2 gives our algorithm for computing module 
cohesion after rectifying the problem with Stevens et. al.’s 
algorithm (Figure 1) and introducing our interpretation of 
processing elements, their associations, and the associative 
principles. 

5. Explanation and validation 
of rules of Table 2 

This section gives a narrative of the intuition behind 
our rules i n  Table 2 for computing cohesion between pairs 
of output variables. Also provided is a validation of 
the measure: i.e. our rules indeed compute cohesion as 
defined by Stevens et. al. [13]. Notice that this does 
not validate the relationship if  any between any quality 



1 procedure sum(n: integer; 

2 var i: integer; 
3 begin 
4 i := 1; 
5 result := 0; 
6 while i < n do begin 
7 i : =  i t 1; 
8 result : =  result t i 
9 end 

var result: integer); 

10 end 

Figure 3 A module computing the sum of first n numbers and its 
variable dependence graph. The module has functional cohesion. 

1 procedure sum-orqroduct(m,n,flag: integer; 

2 var i,j: integer; 
3 begin 
4 if flag = 1 then begin 
5 i : =  1; 
6 sum : =  0; 
7 while i <= m do begin 
8 sum : =  sum t i; 

var sum,prod: integer); 

9 i : = i t l  
10 end 
11 end 
12 else begin 
13 j := 1; 
14 prod : =  1; 
15 while j <= n do begin 
16 prod := prod * j ;  
17 j : = j t l  
18 end 
19 end 
20 end 

Figure 4 A module computing sum or product 
of first n numbers and its variable dependence 
graph. The module has logical cohesion. 

attribute of a software system and its cohesion; as stated 
earlier such a validation is beyond the scope of this paper. 

Our validation approach consists of handcrafting a set 
of programs with “known” cohesion according to Stevens 
et. al.’s definition [13], computing their cohesion with 
our approach, and comparing against the “known” value. 
Similar validation method has been employed by Ott and 
Thuss to validate their measure for cohesion [12]. The 
reader is referred to [2] on details of approaches to vali- 
dating software metric. 

Figure 3 contains a module with a single output vari- 
able hence expressing functional cohesion. Figures 4 to 
8 contain modules with 2 output variables and express- 
ing logical, communicational, procedural, sequential, and 
coincidental cohesion. Figure 9 contains a module with 
3 output variables. Its cohesion is the minimum of the 
cohesions between the pairs of these variables. 

1 procedure sum_and_product3(n: integer; 

2 var i: integer; 
3 begin 

var sum,prod: integer); 

i : =  1; 
sum : =  0; 
prod : =  1; 
while i <= n do begin 

sum : =  sum t i; 
prod := prod * i; 

10 i : =  i t 1 
11 end 
12 end 

Figure 5 A module computing the sum and 
product of first n numbers using a single loop. 
It demonstrates procedural cohesion. 

Logical cohesion 

SMC: Two processing elements have logical cohesion 
if at each invocation of the module only one of them 
is invoked. 
AL: Two variables have logical cohesion if they have 
different type of control dependence on the same 
variable due to the same node 
rulez(z, y) = 3znk.Vl. 

+c(n,k) A +c(n,-k) Y 
A-( t  +c(n,/)  2 A z +c(n,/) Y) 

The above expression evaluates to true if there exists a 
variable t such that a) 3: and y have control dependence on 
it due to the same vertex n and of different type, k and -k, 
i.e. z - -+c( ,h ,k)  z A z +c(n,7k) y and b) they do not have a 
control dependence of the same type on this variable due 
to the same vertex 11. The first condition will hold iff n is 
an if statement and one variable is defined in one branch 
of this statement and the other variable is defined in its 
other branch. The condition -(z +c(n,l) 2 A z +c(n,/) Y 
ensures that both the variables are not defined in the same 
branch. This ensures the exclusion condition required for 
logical cohesion, i.e. only one variable be assigned to 
during each invocation. 

The module of Figure 4 computes: 
the sum offirst ‘m’ integers ifthe value of Yug’ is 1 
else it computes the product of first ’n’ integers. 

It has logical cohesion since at each invocation only one of 
two functions are performed. The choice of the function is 
controlled by the variablepug. The module’s VDG shows 
that the output variables sum and prod have a control 
dependence on variable pug due to statement 4. The 
dependence is of different type: true for sum and false 
for prod. 

Thus rule2(sum,prod) = true, implying that the 
module’s cohesion is C2 = logical. 
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1 procedure sum-andqroductZ(n: integer; 

2 var i,j: integer; 
3 begin 

var sum,prod: integer) ; 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

i := 1; 
sum := 0; 
while i <= n do begin 

sum : =  sum t i; 
i : = i t 1  

end ; 
j : =  1; 
prod : = 1; 
while j <= n do begin 

prod := prod * j; 
14 j :=  j t 1 
15 end 
16 end 

Figure 6 A module computing the sum and product of 6rst n 
numbers using two loops and its variable dependence graph. 
The module demonstrates communicational cohesion. 

Procedural cohesion 
SMC: nkro processing elements have procedural co- 
hesion if they belong to the same iteration or decision 
operation. 
AL: nkro variables have procedural cohesion if they 
have control dependence of the same type on the same 
variable due to the same node. 
r u h ( 2 ,  Y) = (3znk.z +c(n,k) z A z +c(n,k) Y) 

The condition will succeed iff there are definitions of 
both the variables subordinate to the same while statement 
or to the same branch of the gstatement. 

The module in Figure 5 computes: 
the sum and proahct of the first ‘n’ integers. The 
two functions are related in that they are performed 
simuluvleously in the same loop. 

The module therefore has procedural cohesion. Since sum 
and prod are computed in the same loop they have control 
dependence on all variables in the loop predicate. The 
dependence is due to the same statement and is of the 
same type, in this case true. 

Thus rules(sum,prod) = true and the module cohe- 
sion is C3 which is procedural. 

Communicational cohesion 
SMC: Two processing elements have communica- 
tional cohesion if they reference the same input data 
and/or produce the same output data. 
AL. Two variables have communicational cohesion if 

they have data dependence on the same variable, 
or 
the same variable has data dependence on them, 
or 

1 procedure sum-and-average(n:integer; 
var sum,average: integer); 

2 var i: integer; 
3 begin 
4 i := 1; 
5 sum : =  0; 
6 while i <= n do begin 
7 sum := sum t i; 
8 i : = i t l  
9 end; 

10 average : =  sum / n 
11 end 
Figure 7 A module computing the sum and average of first 
n numbers. It demonstrates sequential cohesion. 

one variable has control dependence and the 
other has data dependence on the same variable 
the two variables have control dependence on 
the same variable but due to different vertices. 

In other words, two variables have communicational 
cohesion if  they have relation with each other or a common 
variable and this relation is not captured by logical or 
procedural cohesion. 

rule4(z, y) = 3z.Vnkl. 
-(z --+c(n,k) A z +c(n,+) Y) 

-c(n,k) z A z -+c(n,k) Y) 
A( ( z  --+ z A z  + y) 

V(z + z A y --+ z ) )  

The first two negations above ensure that z and y do not 
depend on z such that it may lead to logical or procedural 
cohesion. The next condition then ensures that z and y 
have some relation to the common variable z. 

the suiri and product of first ‘n’ integers. The two 
functions are computed independently. 

The two functions are related in that they both depend 
on the value of the variable n. Hence the module has 
communicational cohesion. In the modules VDG the vari- 
ables sum and prod have control dependence on n, but 
the dependence is not due to the same statement. Thus 
rule4(sum,prod) = t rue and the module cohesion is 
C4= coniniunicational. 

The module of Figure 6 computes: 

Sequential cohesion 

SMC: Two processing elements have sequential co- 
hesion i f  the output of one serves as an input to the 
other. 
AL‘: Two variables have sequential cohesion if one 
has data dependence on the other. 
r u k ( z , y )  = (2 --+d Y v Y -‘d z) 
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1 procedure sum-andqroductl(m,n: integer; 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

var sum,prod: 
var i,j: integer; 
begin 

i : =  1; 
sum := 0; 
while i <= m do begin 

sum : =  sum + i; 
i : = i + l  

end ; 
j : =  1; 
prod := 1; 

12 while j <= n do begin 
13 prod := prod * j; 
14 j : =  j t 1 
15 end 
16 end 

Figure 8 A module computing the sum of first m numbers and 
product of first n numbers. It demonstrates coincidental cohesion. 

The above expression captures the intent of Stevens et. 
al.’s definition of sequential cohesion. Notice that, just as 
in communicational cohesion, this definition does not state 
anything about z having control dependence on y or vice 
versa. Using argument similar to that in communicational 
cohesion we believe that this expression should also be 
generalized as follows: 

rules(z ,  y) = (z -+ y V y + z) 

The module of Figure 7 computes: 
sum and average of the $rst n integers. 

Since the computation of average uses the result from com- 
puting sum, the two functions have sequential cohesion. 
The dependence between the variables, sum and average, 
corresponding to these functions exhibits this. The vari- 
able average has a data dependence on the variable sum 
hence rule5(sum, average) is true and the module cohe- 
sion is sequential. 

Coincidental cohesion 
SMC: Two processing elements that do not have log- 
ical, temporal, procedural, communicational, sequen- 
tial, or functional cohesion have coincidental cohe- 
sion. 
AL: IIkro variables that do not have logical, proce- 
dural, communicational, or sequential cohesion have 
coincidental cohesion. 
rulel(z, Y) = l(Vvj,iC(2 . . . 5)  ruleizy) 

The module of Figure 8 demonstrates coincidental co- 

the sum of all numbers between 1 and m and the 
product of all numbers between 1 and n. 

The two functions it performs are independent and it 
has two independent loops performing the tasks. This is 

hesion. It computes: 

1 procedure sum-sumsquaresqroduct2( 
m,n, flag: integer; 
var sum,sumsquares,prod: integer); 

2 var i, j: integer; 
3 begin 
4 if flag = 1 then begin 
5 i : =  1; 
6 sum : =  0; 
7 while i <= m do begin 
8 sum := sum + i; 
9 i : = i t 1  

10 end; 
11 end 
12 else begin 
13 j := 1; 
14 sumsquares := 0; 
15 prod : =  1; 
16 while j <= n do begin 
17 sumsquares : =  sumsquares t j * j; 
18 prod := prod j; 
19 . -  j t 1 
20 end; 
21 end 
22 end 

j . _  

Figure 9 A module containing three output variables with 
different types of cohesions between pairs of these variables. 

reflected in its VDG. The graph consists of two disjoint 
subgraphs. The two output variables sum and prod do not 
depend on each other, nor do they depend on the same 
variable. Thus rulel(sum,prod) is true and the module 
has coiiicideiital cohesion. 

The examples so far, except for functional cohesion, 
had two output variables. Our next example looks at a 
program with three output variables. 
Consider the module in Figure 9. It takes input flag and 
n. If the value of flag is n it computes the sum of f i s t  n 
positive integers otherwise it simultaneously computes the 
sum of squares of the f i s t  n integers and also their prod- 
uct. The module performs three functions: compute sum, 
compute sum of squares, compute product. It performs 
only the first function on certain invocation and both the 
remaining fuiictions in other invocations. It clearly has 
logical cohesion between the processing elements of the 
first function and the other two functions. The processing 
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Table 3 Comparison of cohesions associated to Modules 1 through 7 by the different approaches discussed in this paper. Emerson 
and Ott & Thus reclassifiy the cohesions as subsets of the original categories. The reclassification is as follows: 
Qpe I =(functional, sequential, communicational); Type II = (procedural, temporal); Type III = (logical, 
coincidental}; Low = (coincidental, temporal), Control = (procedural, logical) High = {sequential, functional}. A 
(*) indicates that the cohesion assigned to that module differs with that of Stevens et. al.’s assignment. 
A ? indicates that that the classification for that module is ambiguous or not well defined. 

Module 2 

Module 3 

I Module 1 I functional I functional I High I 
logical logical Type m Control 

communicational communicational Type II (*I Low (*I 

Module 5 

Module 6 

sequential sequential Type II (*I High 

coincidental coincidental Type (*I LOW 

Module 7 

elements of the latter two functions have procedural co- 
hesion, because they are performed simultaneously. The 
cohesion of the module is the smaller of logical and pro- 
cedural, i.e. logical. 

This is computed using our rules as follows. 

rulez(sum, sumsquares) = true, 
rulez(sum,prod) = true, and 
rules(sumsquares, prod) = true. 

Hence the set of cohesions between the pairs of output 
variables is {logical, procedural}. The minimum element 
of this set is logical. 

logical logical ITYPem ? 

6. Comparison with related works 

Section 2 eluded to Ott & Thuss’ [l 11 and Emerson’s 
[5 ]  methods of computing module cohesion. It stated 
the “philosophical” difference between the other methods 
and ours. In this section we describe these methods and 
compare the classifications done by them. We believe that 
Emerson’s approach is flawed in so far as computation of 
cohesion as defined by Stevens et. al. [13] is concerned. 
The reasons are explained below. 

The result of classifying the modules from the previous 
section using Stevens et. al’s, Ott & Thuss’, Emerson’s 
and our approach are shown in Table 3. In order to 
compare the classifications done by different methods, 
the seven levels of cohesion of Stevens et. al. are 
mapped to four levels of Ott & Thuss and three levels 
of Emerson. A (*) in Table 3 indicates those modules 
whose cohesion differs from that of Stevens et. al.’s 
after such reclassification. The cohesion assigned to the 
various modules using our method is consistent with that 

of Stevens et. al.’s assignment. The same is not true for 
the other two methods. 

In the following subsections we give the essence of Ott 
& Thuss’ and Emerson’s approaches and reason why the 
cohesion assigned by these methods differ from Stevens 
et. al.’s definitions. 

Ott and Thus’s Approach Ott & T h u s  reclas- 
sify the original seven levels of cohesion into four cat- 
egories: low = (coincidental, temporal}, control = {log- 
ical, procedural}, data = (communicational} and high = 
(sequential, junctional}. They determine the “relationships 
between processing elements” of a program by examining 
statements i n  the intersection of its end-slices of output 
variables. An end-slice of a variable is a slice3 performed 
at the last statement with respect to that variable. An out- 
put vuriuiile of a module, as per their definition, is a vari- 
able declared as reference parameter or a variable defined 
by the operating system. 

The associative principles of Ott & Thuss ‘relate the 
sets of statements in the end-slices of a pair of output 
variables’. These principles and their corresponding cohe- 
sions are summarized in Table 4. The associative princi- 
ples relate to the set of statements in the intersection of the 
end-slices. Ott & Thuss restrict that only “variant referent 
executable statements’’ - executable statements that refer 
to variables be considered when comparing slices. 

Comparison of the cohesion assignment due to Ott & 
Thuss’ approach with that due to Stevens et. al. brings 

’ A slice of a program at a statement a with respect a variable U 
consists of all statements of the program that may effect the value of U 
at statement i. For more details see Weiser [14]. We omit details for the 
sake of brevity. The term md-slicc is our term. It is not used by Oa & 
ThUSS. 
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Table 4 Summary of Ott & Thuss’s associative principles 
for computing module cohesion. The principles 
compare the intersection of end-slices of output 
variables. Only “variable referent executable statements” 
are considered as part of the end-slices. 

high 

Cohesion 
Ci 

one slice is totally contained in another 

low 

control 

data 

011 & i’ltuss’ Associative principles 
A P, 

the intersection is empty 

the intersection primarily contains control 
statements and definitions for the control 
variables 

the intersection contains non-control 
variable data definitions 

Emerson’s Approach Emerson reclassifies the seven 
levels of cohesion into three: o p e  I = {functional, sequen- 
tial, communicational], o p e  I1 = {procedural, temporal], 
and o p e  Ill = {logical, coincidental]. He represents a pro- 
gram as a flow graph [614 and constructs a reference set for 
each variable - the set of vertices that refer to that variable 
in the flow graph. I f  R ,  is the set of vertices in a flow 
graph F that reference variable i then he defines a metric 
K ( & ,  F )  - cohesion of R, in flow graph F as follows: 

where dim A is the number of “maximal linearly indepen- 
dent paths” [4] passing through the vertex set A in the 
flow graph F .  

He then defines the cohesion of a module with flow 
graph F ,  K ( F ) ,  as the arithmetic mean of K ( R ~ ,  F )  for 
all variables i. We call this measure graph cohesion. 
Emerson uses the value of K ( F )  as a discriminant, that 
is he associates a range of values of the metric for each 
of the three types of cohesion: 

1. 
2. 
3. 

Type I - 0 5 K ( F )  5 ( q / c ) / s  
Type I1 - ( q / c ) / s  5 K ( F )  5 l/s2 
Type I11 - l/s2 5 K ( F )  5 1 

Actually Emerson operates on reduced flow graph - a  graph derived 
after Performing some transformation on a programs flow graph. The 
details of the representation are not relevant for OUT discussion. 

where s is the number of executable statements that refer 
to variables, q is average number of variable references per 
executable statement, and c is the ratio of number of vari- 
ables in a module and number of executable statements. 
The constants q and c are language specific parameters 
supposed to be computed from a domain of sample pro- 
grams. A module is classified to have a type of cohesion 
if the value of the cohesion metric falls in the associated 
range. 

Table 3 shows that the cohesion associated to a mod- 
ule using Emerson’s approach is not consistent with that 
associated using Stevens et. al.’s definition (after aug- 
menting it to reclassify the seven levels of cohesion into 
Emerson’s Type I, 11, and 111). The source of the problem 
can be traced to the assumptions that Emerson makes to 
derive the above ranges. 

In order to derive cut-off ranges Emerson models the 
flow graph of Type I1 and I11 modules using graph con- 
structs. He models a Type I1 module as those modules 
whose flowgraph may be constructed by a ‘sequence’ of 
simpler flow graphs. Similarly Type I11 modules are mod- 
ules whose flowgraph may be modelled as a set of simpler 
flowgraphs connected in parallel such that only one of the 
them may be selected for execution. Although these mod- 
els capture the structure of all modules with Type I1 and 
Type 111 cohesions, respectively, not all modules modelled 
by these constructs have Type I1 or Type I11 cohesions. 
This leads to the incorrect classifications. For example the 
module i n  Figure 8 with coincidental cohesion is classified 
as Type I1 because its flow graph can be modelled as a se- 
quence of two simpler flow graphs. Similarly a module 
in which all simpler flow graphs controlled by a selection 
compute values for the same variable will be incorrectly 
classified as Type 111. 

7. Conclusions 
Module cohesion was introduced by Stevens, Myers, 

and Constalitilie 1131 as a property that describes the de- 
gree to which actions performed by a module contribute 
to a unified function. This is an ordinal metric with seven 
levels measured in terms of the type of associations be- 
tween pairs of processing elements of a module. Stevens 
et. al. gave descriptive definitions of the notion of pro- 
cessing elements and the rules for designating a cohesion 
level to a module. This left the definitions open to inter- 
pretations and made cohesion a subjective measure [31. 

This paper gives a formal definition for the term “pro- 
cessing elements” and the rules for measuring the type of 
associations. A processing element as per Stevens et. al.’s 
intent is a functionality provided by a module. While the 
statements of a module implement a modules behavior, in 
the domain of procedural programs, the actions performed 
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by a module, except those related ovex time, are reflected 
in the change of its variables’ state and/or the state of 
its input and output streams. This leads us to define the 
output variables of a module as its processing elements. 
The association between the output variables is defined in 
terms of control and data dependence between variables 
which in turn are derived from similar dependences be- 
tween statements. The rules for designating a cohesion 
level are defined such that they preserve the intent of the 
original definitions in the context of the new definition of 
processing elements. 

We have validated our measure for cohesion in two 
parts. In the first part we created sample modules that de- 
picted a particular cohesion according to Stevens et. al.’s 
definitions and compared their cohesions to that assigned 
by our method. The examples in this paper show a subset 
of these modules. As is shown in Table 3, but for temporal 
cohesion, the cohesion associated to a module using our 
interpretation and that due the Stevens et. al.’s definitions 
are indentical in all cases. 

In the second part of our experiment we took sample 
programs from books, such as Kernighan and Plaugher [7], 
and computed their cohesion using the two approaches. It 
turns out that textbook programs tend to be have functional 
cohesion since they are written with the intention of teach- 
ing good programming style. These programs therefore do 
not provide a good sample set for testing algorithms for 
measuring program quality. Similar inference has previ- 
ously been made by Emerson [51. 
Our objective definition of computing cohesion should 

enable investigations of the effect of module cohesion on 
various software quality attributes. Work is in progress to 
study the effect of module cohesion on software modifi- 
ablility [9]. 
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