J Comput Virol (2009) 5:335-343
DOI 10.1007/s11416-008-0100-6

EICAR 2008 EXTENDED VERSION

Evaluation of malware phylogeny modelling systems using automated

variant generation

Matthew Hayes - Andrew Walenstein - Arun Lakhotia

Received: 20 January 2008 / Revised: 1 July 2008 / Accepted: 8 July 2008 / Published online: 29 July 2008

© Springer-Verlag France 2008

Abstract A malware phylogeny model is an estimation of
the derivation relationships between a set of malware sam-
ples. Systems that construct phylogeny models are expected
to be useful for malware analysts. While several such systems
have been proposed, little is known about the consistency of
their results on different data sets, about their generalizabil-
ity across different types of malware evolution. This paper
explores these issues using two artificial malware history
generators: systems that simulate malware evolution accord-
ing to different evolution models. A quantitative study was
conducted using two phylogeny model construction systems
and multiple samples of artificial evolution. High variabil-
ity was found in the quality of their results on different data
sets, and the systems were shown to be sensitive to the char-
acteristics of evolution in the data sets. The results call into
question the adequacy of evaluations typical in the field, raise
pragmatic concerns about tool choice for malware analysts,
and underscore the important role that model-based simula-
tion is expected to play in evaluating and selecting suitable
malware phylogeny construction systems.

1 Introduction

Of the millions of malicious programs known to anti-virus
companies, the clear majority of them are variants of some
previously generated program [21]. That is, malware authors
modify, reuse, maintain, and tweak. They are also known to
share code, use libraries, and employ generators and Kkits.
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These are examples of software evolution, in which deriva-
tion relationships are created between malicious programs,
i.e., between variants. As a result, it is understood that there
exist various families or species of malware with relation-
ships between them. This creates a need to identify, under-
stand, relate, classify, organize, and name the variants,
species, or families.

In biology, a “phylogeny” is the set of derivation rela-
tionships between a set of species. The actual phylogenetic
relationships are rarely, if ever known in biology. Rather, they
must be inferred or “reconstructed” [17] through painstaking
sleuthing and analysis, often with the help of automated sys-
tems that can generate estimated models of the phylogenies.
Such a system can be called a “phylogeny model genera-
tor”, or “PMG” for short. Similarly in malware, the phylo-
genetic relationships are frequently unknown for malicious
programs, and so the phylogenetic models likewise need to
be constructed. Tools to do so are expected to help malware
analysts. Several malware PMGs have been proposed in the
literature to meet this specific goal.

Existing PMGs have been subjected to relatively simple
evaluations. The system evaluations we are aware of assess
only a single PMG, tend to be informal and non-quantitative
in assessment criteria, and operate on a limited or ad hoc
collection of evolution histories. Moreover, the question of
how to properly evaluate malware PMGs has not yet been
addressed in depth. One question of particular importance is
whether or not tests on limited sets of malicious samples can
reasonably be considered sufficient for evaluation since: (a)
phylogeny constructors may produce variable results depend-
ing upon the specific test set, and (b) they may be sensitive to
the class of malware evolution present in the test set. Impor-
tant questions are unanswered regarding such evaluations:
How important is random sampling? What measures of good-
ness are suitable? What evaluation approaches are helpful?
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This paper explores answers to such questions using a
quantitative, model-driven simulation approach to evalua-
tion. Models of distinct malware evolution classes are pro-
posed, and then used to drive an evolution simulation that
constructs artificially generated reference corpora. Each cor-
pus consists of a collection of related variants, plus an explicit
record of their derivation relationships (i.e., the phylogeny).
Two forms of evolution models are employed: a straightfor-
ward code-mutation based model that simulates evolution
by fine-grained program modification, and a feature-based
model that simulates a coarser evolution by addition of new
features among family members. These models, while lim-
ited, are utilized to begin exploring the questions posed
above.

A study was conducted using reference corpora generated
by the two evolution simulators. Reference sets were gener-
ated, and the outputs of two different PMGs were compared
to the reference phylogenies. Graph distance measures were
used to quantify the divergence from the reference phylog-
enies. The results show high variance in the output quality
for different samples from the same population; the vari-
ance calls into question the sufficiency of evaluating phylog-
eny model constructors using limited reference corpora. The
results of the study also highlight the importance of consider-
ing accuracy versus stability or reliability in the constructor.
Finally, the study illustrates the important role that the quan-
titative approach may play in evaluating phylogeny model
construction systems.

Problems in evaluating malware phylogenies are reviewed
in Sect. 2, the evaluation approach through model-based arti-
ficial evolution systems is introduced in Sect. 3, and the study
using these is described in Sect. 4. Conclusions and implica-
tions are presented in Sect. 5.

2 Problems in evaluating malware phylogeny model
constructors

A variety of approaches to constructing malware phylogeny
models have been proposed. Table 1 summarizes the known
publications using the PMG taxonomy of Karim et al. [12].
The taxonomy distinguishes generators on the basis of three
properties: (1) what features of the programs they examine,
(2) the class of graphs they generate, and (3) the construction
algorithm used to generate the graph.

The rightmost column of Table 1 indicates the sort of eval-
uation reported in the relevant publication. In that column,
“demonstration” indicates mere demonstration, i.e., that a
model can be constructed, but no special consideration is
given to ensure the sufficiency of the data set, and no formal
comparison to a reference phylogeny is provided. The term
“informal evaluation” refers to a demonstration with some
ad hoc discussion about the sufficiency of the test data and
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accuracy of the results. The most carefully constructed eval-
uation of phylogeny constructors in the field is arguably that
of Wehner [22]. Wehner used a convenience sample with no
reference phylogeny and informally evaluated the accuracy
of the phylogeny models generated; while she quantitatively
and formally examined a derived classification heuristic, it
evaluates only restricted properties of the trees (i.e., rough
grouping). It is listed as a “semi-formal” evaluation because
of these properties.

Table 1 makes it clear that no comprehensive assessment
is known for any of the systems in the list. None of them
employed systematic random sampling or quantitative mea-
sures of accuracy with respect to a reference phylogeny.
While the bar for evaluation is thus low in relation to that nor-
mally desired in science and engineering, it must be acknowl-
edged that the question of how to evaluate such systems has
not yet been rigorously addressed. One can expect that pro-
gress in the field would be accelerated if more systematic
evaluations methods were developed. One important step in
doing so is defining suitable reference corpora, i.e., sets of
representative samples along with their derivation relation-
ships.

At least two different approaches can be pursued for gen-
erating the reference corpora needed for improved evalua-
tion: (1) using actual malware samples collected, or (2) from
artificially generated samples. In either case, the phylogeny
models created by the PMGs are compared against the ref-
erence, i.e., correct data set. In the former approach, sets of
(authentic) samples are collected, and their actual relation-
ships are determined through investigation or through knowl-
edge of their construction. In the latter approach, a model of
malware evolution is used to drive a simulation which not
only generates the data set, it records the actual derivation
relationships.

So far in malware phylogeny research, the approach
through authentic sample collection is typical, whereas in
biology, the simulation based approach is the de facto stan-
dard [17]. Many problems are confronted with either
approach. Several issues for the hand-crafted reference cor-
pora approach are reviewed below; these will be used to moti-
vate our exploration of the model-based simulation approach.
Since phylogeny model evaluation has been studied in biol-
ogy, points of comparison are offered when relevant.

2.1 Measurement and comparison problems

A key issue in evaluating PMGs is how well their outputs
correspond to the actual derivation relationships. In biology,
the correspondence has been measured using formal mea-
sures of graph differences, or graph distances. The so-called
“Nodal Distance” [2] is a simple measure for comparing
arbitrary graphs by measuring the sum of the differences
in path lengths between two graphs. Calculation is straight-
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Table 1 Malware phylogeny systems and their evaluations

System Features

Output type

Generation algorithm Evaluation

Goldberg et al. [7] 20-grams on bytes

Directed acyclic graph

Variants of minimum phyloDAG None

Erdélyi and Carrera [5] Call graph Binary tree Graph similarity + unspecified Demonstration
clusterer

Karim et al. [12] n-perms on operations  Binary tree Program similarity + UPGMA Informal
clusterer

Maetal. [15] Instruction sequences  Binary tree Exedit distance + agglomerative Informal
clustering

Wehner [22] Bytes Binary tree Normalized compression distance + Semi-formal

unspecified clusterer

forward: the differences in the path lengths between each
corresponding pair of nodes in the graphs are summed. The
“Robinson—Foulds” distance [19] is a more popular edit-dis-
tance approach, but is restricted to trees and its exact solution
can be too expensive for some bioinformatics applications,
although various approximations have been proposed. Any
number of other graph distance or similarity measures might
possibly be used.

Whatever graph measure is selected, one inevitable con-
cern is how to interpret the results of the measures. In the
ideal case the PMG in question reproduces the phylogeny
exactly for any imaginable evolution history. In that case,
the measured distances between the outputs and the refer-
ence graph should be 0. Since the ideal is unlikely to ever be
met, the problem reverts an engineering concern of managing
trade-offs. One traditional engineering goal is to ensure that,
on average, the difference between the constructed models
and the true phylogeny should be as small as manageable.
Evaluation of a PMG would examine the mean distances;
a comparison between two PMGs could compare the mean
distances to see if there is a significant difference. While this
approach seems straightforward, it is possible that other engi-
neering goals might also be sought. For example, if two sys-
tems produce results with similar mean distances, but one has
much higher variance and occasionally generates extremely
poor results, then the user may have reasons not to choose
the PMG with the better mean score. That is, average dis-
tance captures only a portion of the concerns that a user may
have. Without relevant data about the performance of exist-
ing PMGs to consult, however, it is not possible at this time
to know how important the variance issue is.

2.2 Difficulty of using authentic data sets

One of the established problems in phylogeny constructor
evaluation in biology is the difficulty of constructing the ref-
erence corpora that can be used to compare the constructed
phylogenies against [18]. The true derivation relationships
may not be known and, indeed, the techniques one might use
to try to establish such a reference model may involve the

very phylogeny reconstruction techniques under evaluation.
In order to advance the field past case studies it is desirable
that multiple reference corpora be constructed; moreover the
mechanics of statistical hypothesis testing make it desirable
that the reference models are proved to be selected randomly
from a population of family histories with common evolution
characteristics. The need for representative samples of rea-
sonable sizes exacerbates the problem of hand-constructing
of the reference models.

This problem may be addressed, in part, through aggre-
gation and sharing of effort. It may be feasible to establish
standardized, shareable reference data sets, complete with
carefully checked derivation information. This approach is
similar in spirit to the TREC efforts in the field of text retrieval
[3], as well as to benchmarking efforts in software engineer-
ing [20]. In this vein, standardized malware data sets could
be constructed, much like the WildList effort for anti-virus
testing [16]. Unfortunately, the fact that malware is involved
may add special challenges to sharing authentic reference
corpora: sharing malicious samples is notoriously difficult
in practice, and introduces many legal and safety challenges.
While shareability of reference models is perhaps not strictly
required for the field to advance, if they cannot be shared
then key pillars of science and engineering are likely to be
affected in practice: independent repeatability and verifica-
tion of studies and fair comparison between systems. We
know of no instance of malware phylogeny modelling system
evaluators sharing their data sets to enable direct comparison
of systems.

2.3 Variation and idiosyncrasy in malware evolution

In biology it may be reasonable to assume a uniform and
stable set of mechanics and characteristics for evolution.
The same sorts of transcription errors may be expected to
occur, for example, in large numbers of species over long
periods of time. Malware evolution may not enjoy stability
and universality to the same degrees. For example, certain
malware families may evolve in special ways due to the spe-
cific tools the malware author employs, the particular ways
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that the author attacks the defense infrastructure and, in
general, the constantly and rapidly changing nature of the
malware/anti-malware battle. Further, mutants can be gener-
ated automatically through distinct forms of polymorphism
and metamorphism [1].

If one can expect that malware evolution be highly vari-
able and idiosyncratic, it creates additional problems for the
approach through hand-crafted reference sets. Specifically, it
calls into further question the sufficiency of a small or fixed
number of reference sets, as they may fail to represent the
overall and varied characteristics of malware evolution.

3 The approach through artificial evolution histories

The use of artificial evolution histories can address many of
the problems listed in Sect. 2. Consider the efforts of Nakhleh
etal. [17] or Rambaut et al. [ 18], for example. They construct
reference models using simulations of genetic evolution. In
their approaches, they randomly selected (i.e., created) evo-
lution paths and then simulated mutation events to match
those paths.

A similar approach may be taken in creating artificially
constructed malicious reference sets. Several benefits may
accrue from the use of simulations based on evolution
models:

1. Large numbers of reference sets may be feasibly gener-
ated. This reduces the threat to external validity posed
by using only a small number of hand-constructed ref-
erence sets, while enabling the measuring of both mean
performance and variance.

2. The characteristics of the evolution histories can be tai-
lored to match the type of evolution history the user is
expecting. Thus, unlike biology in which a modeller may
seek to find an accurate and general model, malware
phylogeny constructor evaluators may use only limited-
purpose but relevant models.

3. [If the simulator creates benign samples, or uses existing
malware samples in benign ways, the threat in evalua-
tion can be controlled, and it may be simpler to share the
outputs or the simulator itself.

While these are clear benefits for the artificial history
approach, the approach does suffer one important drawback:
in order to construct artificial malware evolution histories,
suitable models of evolution are needed so that an evolution
simulator can be constructed. This simulator would gener-
ate the required reference data, namely, a corpus of samples
related through derivation. It would also generate the
corresponding reference derivation graph. Thus a question
is raised as to what models could be used.
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One approach to answering this question is to adopt a
goal of creating an “ideal” malware evolution model that
captures all important characteristics of known evolution,
and could thus serve as an effective proxy for reality. While
this is a daunting task well beyond the scope of this work,
it could perhaps be approached incrementally. However, it is
not clear that a comprehensive and authentic model is abso-
lutely required in order to create pragmatically useful evalu-
ations of PMGs.

From a pragmatic point of view, a malware analyst may
have only a certain class of malware evolution histories to
deal with. In terms of creating a model phylogeny, the ana-
lyst’s main concern is the selection of a suitable system to
use on her particular data. In addition, at the moment there
is no reason to believe that a singular PMG can exist that
performs optimally on all classes of malware evolution. Said
another way, at the moment we can reasonably expect that
every existing phylogeny construction system will be asso-
ciated with some classes of malware evolution for which it
performs better than other classes. Moreover, the best tool for
the analyst’s job may actually be sub-optimal with respect to
the full panoply of malware evolution classes. Thus to serve
the analyst’s practical problem, a comprehensive evolution
model is not only not required, it may not be as effective as
a restrictive evolution model that matches her specific situa-
tion.

Another approach to the evolution modelling challenge,
therefore, is to aspire not to create an ideal evolution model,
but to produce a toolkit of restricted but useful artificial evolu-
tion systems such that each captures essential characteristics
of some class of malware evolution. The restricted models
will have utility in the case that they are relevant to some non-
empty set of analyst situations. Because analyst situations
differ, a beneficial quality of the resulting simulator is that it
can be in some way parametrized or specialized to custom-
ize the artificial evolution to match the analyst’s situation.
Note that a new matching problem is created: the analyst
must select the evolution model that matches her problem
best. One possible way of easing the matching problem is to
construct models with clearly recognizable characteristics—
that is, they generate evolution histories that are in some sense
prototypical for a class of evolution types. If a given phylog-
eny construction system performs well on one of these, the
potential user may be able to choose the system for which
the prototype seems to match known characteristics best.

The preceding analysis produces a number of research
questions that might be explored empirically, including:

1. How variable are the outputs of malware phylogeny con-
structors? If they vary greatly, it may severely limit the
value of small numbers of hand-crafted reference sets.

2. How sensitive are the outputs to different classes of mal-
ware evolution? If the types of changes have significant
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effects, it may suggest that specialized models be
pursued instead of waiting for a comprehensive, ideal-
ized model of malware evolution to be developed.

Some evolution simulators are required to explore these
questions. The simulations need not be “ideal” models of
malware evolution in order to yield interesting answers. We
propose here two models that are intended to capture some
important but distinct characteristics of malware evolution.
Each of these evolution models are inspired by knowledge
about software evolution in general, and malware evolution
in particular. Neither are intended to be comprehensive mod-
els of all different types of malware evolution.

3.1 Non-uniform, mutation-based evolution model

One of the ways of generating simulated biological evolution
is to develop amodel of the mechanics of genetic change [18];
transcription errors, for example, are one of the ways that
mutations are known to occur. A similar approach in mali-
cious software is to start with an authentic sample of malware
and then perform a sequence of code-mutation operations on
it, recording the derivation. Variations of this approach have
been described for the purpose of testing malware detec-
tors [4,6]. One advantage is that a potentially large selection
of initial seed programs can be selected as authentic starting
points for the artificial evolution history.

When considering a mutation-based model, perhaps the
important questions to ask—from an evolution history point
of view—are: which mutations does one perform, and what
characteristics should the resulting graph of derived sam-
ples have as a whole? Consider a probabilistic generator
type of simulator that randomly selects from a fixed set of
mutation mechanisms. These mechanisms might include, for
example, semantics-preserving transformations, and random
add/delete/change operations. Control of the evolution class
would then amount to selecting the set of mutation mecha-
nisms, and assigning their associated probabilities for being
employed. However, it may not be obvious how to use such
a system to tailor such systems to match the evolution char-
acteristics desired. For example, it has been pointed out that
ordinary software evolution is non-uniform in the sense that
changes between versions are frequently discontinuous and
characterized by periods of small, localized change inter-
spersed with periods of rapid or more global change [8,23].
A similar concern exists in biology, in which simulations are
careful to follow known properties of evolution [9]. If some
malware evolves along similar principles, then a mutation-
based simulator may fail to capture important characteristics
of the evolution class if it generates artificial evolution his-
tories in which the change rates are relatively constant, even
if the underlying mutations are randomized because of the
probabilistic generation process.

To address this issue we propose a mutation model that
is simple and abstract, and yet can generate artificial evo-
lution sets that alternate large and small changes in ways
that are consistent with a mixture of probabilistic modifica-
tion. The model assumes a single mutation type: replacement
of either a “small” or a “large” amount of code with new,
mutated pieces of code. Any number of different mutation
mechanisms (add/delete, permute, etc.) might be used for
the mutations. The model assumes small changes between
generations happen at a particular ratio to the number of
large changes, i.e., a “Small-to-Large” ratio. It also assumes
that the small changes are all smaller than a given threshold
“Small Threshold”, and the large changes all larger. Although
the resulting changes sizes will have a bimodal distribu-
tion instead of a power function distribution observed by
Gorshenev et al. [8], the changes will exhibit the critical prop-
erty of non-uniformity.

3.2 Feature accretion model

One property of software evolution is commonly discerned:
new features creep into code as it is incrementally modi-
fied. In malware, this is known to occur as a malicious code
base matures and the developers add new exploit or pay-
load capabilities [11]. An evolution simulator for this type
of evolution would need to be able to add realistic new code;
perhaps in the ideal case, it would automatically create the
features, exploits, and payloads that a real malicious pro-
gram writer would create. One would, of course, expect it to
be extremely difficult to create such an automated evolution
system (else malware writers might already be using such
systems). However, it is possible to simulate some facets of
this type of evolution history using an existing mature code
base as a starting point.

The idea we propose is to dissect a mature program into
sets of independent features and then generate artificial evo-
lution histories that consist entirely of subsets of the original
program, with each distinct subset defined by a different set of
features. More formally, assume a program M can be decom-
posed into a set F' = {f1, f2, ..., fi} of features, for some
k. The power set P(F') of all feature sets of F is a lattice of
size 2F. Assume that each feature f; describes one potential
behaviour of M, so that the behaviour of a program with a
subset of F is defined by the union of the features. Then
define a derivation path D = (d;, da, ..., d;) through the
lattice starting at point d; such that each d; + 1 = d; U n,
where n is non-empty and the intersection of n and d; is
empty. That is each evolution step adds one or more new fea-
tures; it is a model of feature accretion. Then we can define a
(rooted) evolution history as a collection of derivation paths
starting at a common point and overlapping only at that point.
An example of such a derivation tree is shown in Fig. 1.
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Virus-M.1

Generation 1 Capabilities: a

Virus-M.3
Capabilities: a, ¢

Virus-M.2

Generation 2 Capabilities: a, b

Virus-mM.4

Generation 3 Capabilities: a, b, ¢

Fig. 1 Example artificial evolution through feature addition

Using this definition it is possible to define a process to
randomly select derivation trees when given a set of features
of a seed program. If the seed program is the result of a long
process of evolution, and this process of evolution worked
to gradually add new features, then this random derivation
tree selection process serves to select alternative histories by
choosing different orderings and paths. The intent is to use
the existing features to suggest plausible but artificial alter-
native derivation histories.

It may be difficult to define an entirely automated pro-
cess for dissecting the programs and then re-combining the
features. We expect the problem to be much harder to solve
without the source code for a mature sample. However, in
some cases a semi-automated approach may be simple to
implement. One possibility is to use a program slicing-based
program decomposition scheme to automatically construct
executable program subsets [ 14]. When a source base is avail-
able, however, it may be feasible to select groups of program
elements (lines, objects, etc.) that form a feature, and then
set up a simple infrastructure for compiling only program
subsets. We use this approach in the study reported below.

4 Study of phylogeny model constructor behaviour

We performed a two-part study to explore some of the ques-
tions raised in the previous sections regarding evaluation
of malware phylogeny model constructors. In particular, we
wished to provide data that can yield new insight into: the
importance of using multiple reference sets, the variability
of PMGs, and the degree of generality that can be expected
of various PMGs, i.e., their sensitivity to different classes of
evolution.

To examine the question of how sensitive malware phy-
logeny constructors are to evolution class, the output model
quality was compared when sampling from different clas-
ses of evolution. To examine the question of how important
multiple reference sets are, and what measurement issues
may arise in analysis, we sought to collect information about
the standard deviation in the results of the phylogeny mal-
ware constructors for a given treatment.
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4.1 Design

Evolution simulators are employed to generate samples from
different classes of evolution histories. The experiment fol-
lowed a factorial design, where the factors were the evolution
characteristics of the simulated evolution histories, which
were set by selecting a particular evolution simulator and
setting its parameters. That is, we ran different evolution
simulators with a variety of parameters, generating collec-
tions of artificial evolution histories. Treatments consisted
of applications of a malware phylogeny model constructor
to these collections, producing estimated models (trees), and
the dependent variable was the nodal distance between the
estimated model and the (known) reference phylogeny. That
is, we ran different phylogeny model constructors on the sim-
ulated evolution histories and measured how different their
outputs were from the reference tree. We used a convenience
selection of phylogeny model constructors: Vilo [12], and our
own implementation of Wehner’s NCD [22]. If these detec-
tors were sensitive to the evolution type, we would expect
the dependent measure (distance mean) to vary according to
the simulator used and its parameters.

4.2 Apparatus

Two different malware evolution simulators were
constructed. The first simulator followed the mutation model
of Sect. 3.1. It was constructed as a Perl script that read
Windows portable executable (PE) files and wrote them with
modified code segments. The simulator takes a PE file to
mutate, and two parameters: a ratio of small to large changes,
and the threshold value of what is considered a small change.
The simulator then constructs an artificial evolution history
consisting of a balanced binary tree of depth four (15 sam-
ples) by mutating the PE file to create children, with the
size of the mutations randomly selected from either a large
change population or small change population with the pop-
ulation selected as if by a weighted coin flip with the pro-
vided small/large change ratio as the weighting. Mutations
are made by replacing code blocks with randomly generated
code. Each mutation is randomly split into one to seven dif-
ferent mutations, simulating modifications in multiple places
between generations.

The second evolution simulator followed the feature-
accretion evolution model of Sect. 3.2. It was specially con-
structed by modifying a version of the “Agobot” construction
kit [11]. The Agobot kit was a suitable selection because its
source was available to us, it is mature and has a rich fea-
ture set that could be selected from, and the features are, by
design, implemented in a highly modular manner so that they
can be independently selected. Moreover, though the kit we
acquired is considered in-the-zoo, many in-the-wild malware
belonging to Agobot or Gaobot family are believed to have
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Table 2 Features of Agobot selected for building the lattice of possible
variants

1 Use computer name as nickname 8 Enable stealth

2 Login using channel messages 9  Auto start enabled

3 Generate random nickname 10 Start as service

4 Melt original server file 11 Enable Identd

5 Execute topic commands 12 Steal Windows product keys
6 Do speedtest on startup 13 Spam AOL

7 Kill AV processes 14 Sniffer enabled

15 Polymorph on install

been created through variants of this kit [11]. A subset of
15 features were selected for constructing variations; these
are listed in Table 2. The code was segmented by (manually)
wrapping the features in #1 fde f/#endi £ delimiters. Arbi-
trary combinations could be selected by use of a script that
invoked Make and the Microsoft Visual C++ 6.0 compiler.
Balanced binary trees of depth four were sampled by starting
at the minimum point in the lattice (no features on) and then
randomly walking up the lattice.

Adequate care was taken that the samples generated could
not accidentally be executed and the samples were destroyed
immediately after analysis. Further details about the feature-
accretion simulator, including the algorithms used for tree
sampling and construction, are provided in Hayes [10].

4.3 Subjects and preparation

A malicious sample from a wild collection was used as the
seed to the mutation engine. It was identified by four different
anti-virus scanners as belonging to the Agobot family. The
two parameters (two factors) to the simulator were varied
to create 18 different classes of simulated evolution histo-
ries, as follows: Small-To-Large Ratio took on values from
{0.1,0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9}, and Small Thresh-
old (measured in bytes) from {400, 2400}. A 19th sample of
size 20 was constructed using the feature-accretion model
simulator.

4.4 Protocol

The simulators were run to create the 19 different samples
of size 20 with 15 programs in each instance. Dendrograms
were constructed for each simulated evolution from the bal-
anced binary trees, using the relative changes between parent
and child to determine how to generate pairs in the dendro-
gram. Each sample was fed to Vilo and NCD, which gen-
erated similarity matrices. The similarity matrices were fed
through CLUTO [13] such that CLUTO’s UPGMA clusterer
constructed dendrograms. The nodal distance between these
dendrograms and the reference dendrograms were then mea-

—140413
0 1404 —1404
10 140413 —14 0407
10 05 14 04 07 .
10 0515 14 01 07 —10
14
100503 140107
14 01
1012 14
101206 1401 08
—1401
101208 101206 -
L —140108
14 10 0503
1404 1012 [r100503
140407 101208 —101206
140413 10 05 1012
14 01 10 0515 1005
140108 ) —100515
140107 10 —101208
() reference (b) NCD output (c¢) Vilo output

Fig. 2 Example reference and output trees

Table 3 Measures for feature-addition sample

Mean nodal distance Standard deviation

NCD 219.7
Vilo 208.3

39.44
35.48

sured and recorded. Their means and standard deviation val-
ues for each parameter setting were then collected.

4.5 Results

An example of the reference and constructed trees is shown
in Fig. 2. The example is one of the randomly constructed
evolution histories using the feature-accretion model. The
labels in the leaves indicate the feature numbers included in
the program; the numbers correspond to the feature numbers
from Table 2. The measures for the feature accretion model
are in Table 3. The mean and standard deviation for the muta-
tion simulation are shown in Tables 4 and 5, and the means
graphed in Fig. 3.

4.6 Discussion

The data from the sensitivity study, presented in the tables
and chart, indicate that the mean distances are affected by
the model type and, to a lesser extent, the parameter settings
in the models. While this study is limited by the types of
evolution models employed, the results appear to signal a
need for caution when building or selecting evolution mod-
els for evaluation. In particular, if the model does not match
the characteristics of the target evolution history, then the
evaluation using the simulations may indicate that a subop-
timal choice be used.
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Table 4 Mean nodal differences across factors

Small-to-Large  NCD,400  Vilo,400 NCD,2400  Vilo,2400
0.9 946.1 1,004.8 975.2 980.8
0.8 975.9 1,019.3 920.4 925.1
0.7 988.1 1,000.7 1,003.7 1,017.9
0.6 1,014.6 1,055.7 1,016.6 1,017.1
0.5 1,054.0 1,094.9 980.4 992.0
0.4 1,091.4 1,082.1 992.8 994.6
0.3 997.8 996.5 929.7 926.7
0.2 969.2 992.9 905.8 917.8
0.1 959.9 934.2 949.6 930.8
Table 5 Standard deviation across factors

Small-to-large ~ NCD,400  Vilo,400 NCD,2400  Vilo,2400
0.9 184.56 143.23 132.90 111.01
0.8 205.94 118.72 133.11 158.44
0.7 248.00 103.24 154.89 107.58
0.6 281.69 149.23 118.18 122.98
0.5 217.28 153.73 91.47 110.65
0.4 305.36 131.80 114.42 123.89
0.3 275.23 162.92 100.59 120.09
0.2 232.96 155.43 131.82 103.74
0.1 224.03 132.69 85.21 95.86

Variation is high between individual histories taken from
a single population of evolution histories. This fact is cap-
tured in Table 2 by the relatively large values of the standard
deviation for the case of the accretion model data, or about
18% of the mean. The difference in means is stark when

comparing the results across different evolution models.
While some variation appears between the mutation mod-
els (Fig. 3), the difference between the mutation and feature
accretion model is large: from 200 to 1,000.

The study is limited in that only a single measure (nodal
distance) is used, and it may be a factor in the variance
shown. Nonetheless, similar results were achieved using the
Robinson—Foulds measures also. Furthermore, the variance
exhibited in the data set appears to present important chal-
lenges to the evaluation of phylogeny model construction sys-
tems. There are several points that can be considered depend-
ing upon the purpose and context of evaluation:

1. The variation calls into question the sufficiency of a small
number of tests data sets for evaluation of malware phy-
logeny model construction systems. It suggests that there
may be a need, as in biology, to lean on simulation-based
evaluations similar in spirit to the ones in this paper.

2. Ananti-malware analyst may value consistency of results
in addition to mean performance. For example, if she
is constructing a phylogeny model from a specific data
set of incoming malware, she may be worried that the
result may happen to be egregiously bad, and thus allow
a risky piece of software to be misclassified. This pos-
sibility suggests that publication of performance results
should include indications of consistency in addition to
straightforward accuracy.

3. The question of selecting quantitative measures is likely
to be critical, especially for the anti-malware analyst.
Nodal distance measures the average path distance devi-
ations, but in some circumstances the analyst may be
specifically interested in other key measures, such as the
number of especially poor classifications. While other

Fig. 3 Mutation chart
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measures from biology might be useful, there may be
measures of particular interest specifically for malware
analysts, such as ones similar to those studied by
Wehner [22].

5 Conclusions

In biology, phylogeny model construction systems are nor-
mally evaluated using simulations that generate large enough
samples that are statistically meaningful, quantitative, and
objective tests can be performed. This approach is rare in the
field of malware phylogeny model generators, but then eval-
uation in this field is still effectively in its infancy. This paper
describes an approach for simulating evolution histories by
breaking apart and then recombining existing malware in
order to simulate feature evolution. It argues that variance
in performance and sensitivity to evolution characteristics
may be likely properties of such systems and, if so, then it
raises important questions for evaluators. For practitioners in
the anti-malware field, the implication is that evaluations of
phylogeny construction tools need to be carefully considered
if they use only limited sets of data.

The study in this paper, while limited, raises legitimate
concerns and provides positive indication that similar sorts
of simulation-based evaluations may become important in
the field. If so, then important research may lie in charac-
terizing malware evolution and building appropriate models
and simulations.
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