
A Measure for Module Cohesion

A Dissertation

Presented to

The Graduate Faculty of The

The University of Southwestern Louisiana

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Jagadeesh Nandigam

Spring 1995

A Measure for Module Cohesion

Jagadeesh Nandigam

APPROVED:

__________________________________ ___________________________________
Arun Lakhotia, Chairman Steve P. Landry
Assistant Professor of Computer Science Director, Research and Sponsored Programs

__________________________________ ___________________________________

William R. Edwards Claude G. C ech
∨

Associate Professor of Computer Science Associate Professor of Psychology

Joan T. Cain
Dean, Graduate School

To the memory of

my mother, Savithri Nandigam
my grandparents, Subbarayudu and Neelaveni Nandigam

my father-in-law, Vasudevan G Tekumalla

Abstract

Module cohesion is a property of a module that describes the degree to which actions

performed within the module contribute to single behavior/function. The concept of module

cohesion was originally introduced by Stevens, Myers, Constantine, and Yourdon. However,

the subjective nature of their definitions has made it difficult to compute the cohesion of a

module precisely.

In this dissertation, we have proposed a measure for module cohesion that is

amenable to algorithmic computation. The proposed measure for module cohesion has been

investigated using proper experimental design and analysis methods. A tool implementing

the proposed measure for cohesion has been developed for determining the cohesion of

functions in a C program.

In the proposed measure for module cohesion, the output variables of a module are

interpreted as the processing elements of a module. The associations between the processing

elements of a module are defined in terms of control and data dependencies between the

variables of a module. Formal rules are developed to compute cohesion between pairs of

processing elements, in terms of control and data dependencies between variables of a

module. An algorithm to compute the cohesion of a module using the formal rules mentioned

above has been proposed.

The proposed measure has been validated using experiments based on two paradigms:

comprehension paradigm and production paradigm. In an experiment based on

comprehension paradigm, subjects (programmers) were provided stimulus materials

(programs) and were asked to classify the cohesion level of functions within a program,

using the concepts of module cohesion as originally described by Stevens et al. Their

classifications were then compared to the classification of the same programs made by the

tool implementing the proposed measure. The classfication data were analyzed using various

statistical tests, including binomial test, analysis of variance, and correlation test. The general

conclusion was that subjects appeared to have some agreement amongst themselves in

determining relative cohesion of functions, but the tool was unable to predict these data.

In an experiment based on production paradigm, subjects (programmers) produced

stimulus materials (programs) and the cohesion of functions in those programs were

computed using the tool developed. The programs used in this experiment were based on

good design. Assuming that the implementations of programs did not deviate much from the

design, we expected that the tool should assign high cohesion levels to functions in these

programs as well. The results of this experiment showed that the tool, implementing the

proposed measure, in fact, displayed above-chance level correlation between the expected

cohesion level of functions and the actual cohesion assignment made based on the proposed

measure.

One conclusion of this research is that developing objective measures for module

cohesion is necessary since cohesion is an important attribute of software quality, if one

needs to study the precise effects of cohesion on software quality. Also, any proposed

measure for quantifying software attributes should first be empirically validated with proper

experimental design and analysis.

Acknowledgments

I wish to express my sincere appreciation to Dr. Arun Lakhotia for his continued

guidance, patience, help, and support throughout this research. His persistence has been vital

to the completion of this dissertation. Also, I would like to thank him for patiently listening

to me on issues other than research, especially during the last semester of my research.

Thanks to Drs. Steve P. Landry, William R. Edwards, and Claude G. Cech for

serving on the committee. Their comments, criticisms, and suggestions made this a better

dissertation.

Special thanks to Dr. Steve P. Landry for all his help in numerous occasions during

my education at USL. He came to my rescue whenever I needed and I will always remember

his kindness and helpfulness. Special thanks to Dr. Claude G. Cech for all the help that he

has given me in experimental design and analysis. I would also like to thank Dr. Robert

McFatter for his advise on experimental analysis.

I would like to thank Mr. Anurag Bhatnagar, Mr. John Gravely, Mr. Anil K

Vijendran, Mr. Bharath Nedunchelian, and Mr. Ganesh Sundaresan, who as fellow graduate

students, have contributed to this work through many informal, intense, and valuable

technical conversations and assistance. My thanks to Dr. Tat W. Chan and Mr. Anurag

Bhatnagar for their friendship and willingness to listen to my problems.

I would like to thank Dr. Muddapu Balaram for allowing me to have a flexible

teaching schedule which was crucial to the successful completion of this research. I would

like to thank Dr. Y. B. Reddy and Dr. J. Alsabbagh for their help as colleagues.

I would like to express my sincere appreciation and love to my uncle and aunt, Dr.

Nandigam Gajendar and Mrs. Shobha Gajendar, for their support and encouragement

throughout my education, especially during the early stages of my education in the United

States. I would not be in this position today if it were not because of them. I also wish to

thank them, on behalf of my whole family, for all help that they have given us over the

years. I also thank my uncle for his help as a colleague at Grambling State University.

I want to express my love and special thanks to my father, Mr. Janardhan Nandigam,

for all the sacrifices he had made for the our sake when my mother died leaving five young

children to his responsibility. He always wanted me to become a medical doctor, but he is

certainly happy now to know that I will be addressed, at least, as 'Dr. Nandigam' from now

on. I would also like to thank all my family members, both in the United States and India,

for their support and love.

Special thanks to my mother-in-law, Mrs. Vasantha Vasudevan, for all the wonderful

and great help she has given to me and my family by willing to leave everything behind in

India for the sake of my studies. The completion of this research would not have been

possible without her help with the household chores and care for her grandsons. She made

sure that the whole family is well fed with the mouth-watering items she made every day; we

never had to wait for them. My whole family is going miss her, especially her three year old

grandson who will not sleep without her next to him, when she leaves for India soon.

I would like to express my deepest appreciation and thanks to my wife, Asha, for her

love, support, and understanding during this seemingly interminable project. The thought of

quitting the dissertation research in the middle occurred to me so many times, but it is she

who never encouraged this crazy idea and provided love and support to pass all those hurdles

that came as a part of the package. She is a great mother to my sons. I am lucky to have such

a wonderful life partner and my heartfelt thanks and love to her.

Finally my love and thanks to my adorable sons Nikhil and Nishal for all the daddy-

less days they had to spend when I was out of town half of the week, every week for almost

two years. They both brought good luck in my life, especially this year has been great in

many ways, so far. I love you guys!!

Table of Contents

Chapter 1 Research Objectives .. 1
1.1 Introduction ... 1
1.2 Motivations.. 2
1.3 Objectives .. 3
1.4 Organization of the Dissertation... 4

Chapter 2 The Original Definition of Cohesion ... 6
2.1 Stevens et al.'s definition of Module Cohesion ... 6
2.2 Sample set of programs.. 10

Chapter 3 The Proposed Measure for Module Cohesion .. 15
3.1 Variable Dependence Graph... 15
3.2 Our Definitions of Cohesion Levels ... 18
3.3 Algorithm for Computing Module Cohesion .. 20
3.4 Constructing Variable Dependence Graphs .. 25
3.5 Algorithm for Canonicalization of Variables.. 32
3.6 Evolution of the measure ... 34

Chapter 4 Empirical Validation of the Proposed Measure for Cohesion..................... 36
4.1 Subjects ... 36
4.2 Experimental Programs.. 37
4.3 Experiment Material .. 37
4.4 Experiment Procedure.. 38
4.5 Subjects' Responses.. 40
4.6 Data Analysis... 42

4.6.1 Analysis of data using Binomial test .. 42
4.6.2 Reliability of subjects using analysis of variance 46
4.6.3 Analysis of data using correlation test.. 49

4.7 Power of the Experiment.. 51
4.8 Subjects' Performance on Quiz... 52
4.9 Feedback from the subjects .. 52
4.10 Deficiencies of the Experiment .. 54
4.11 Conclusions ... 55

Chapter 5 Analysis of the Cohesion of Large Programs... 56
5.1 Experiment 2: Analysis of Real-World Software...................................... 57
5.2 Experiment 3: Analysis of Course Projects .. 58

5.2.1 Analysis of the lex.scheme system... 60
5.2.2 Analysis of the calc system.. 61
5.2.3 Analysis of the kwic system .. 61

5.3 Analysis of the data collected in the Experiments..................................... 63
Chapter 6 Related Work .. 68

6.1 Slice Based Cohesion Measures ... 68
6.1.1 Ott and Thuss .. 69
6.1.2 Cohesion measures based on Weiser's slice based metrics.......... 72

i

6.1.2.1 Longworth, Ott and Thuss... 72
6.1.2.2 Bieman and Ott ... 75

6.2 Emerson's Approach .. 77
6.3 Other work on cohesion measures .. 78
6.4 Comparison with Related Works.. 80

Chapter 7 Research Contributions and Future Work .. 82
7.1 Research Contributions .. 82
7.2 Future Work .. 82

References... 84
Appendix A Cohesion Measurement Tool (CMT) ... 89

A.1 Architecture of the CMT... 89
A.2 Components of the CMT... 90

A.2.1 Refine/c Interactive Workbench.. 90
A.2.2 Refine/c Cfg Generator... 92
A.2.3 Control Dependence Analyzer .. 93
A.2.4 Data-flow Analyzer .. 93
A.2.5 Variable Canonicalizer ... 95
A.2.6 VDG Constructor.. 96
A.2.7 Cohesion Analyzer ... 97
A.2.8 CMT's User Interface.. 98

A.3 A Example Session with CMT .. 98
Appendix B ... 102

B.1 Processing Element Information for Programs in Experiment 1............... 102
B.2 Processing Element Information for Programs in Experiment 3............... 103

Appendix C ... 105

ii

List of Tables

Table 2.1 Associative principles between two processing elements and the
 corresponding cohesion level.. 9
Table 3.1 Associative principles between two processing elements............................ 19
Table 4.1 Subjects' background information .. 36
Table 4.2 Subjects' familiarity with the C language and cohesion concepts................ 37
Table 4.3 Programs used in the Experiment 1 and their size measures 37
Table 4.4 Cohesion assignments for the Expression Evaluation program (P-1).......... 40
Table 4.5 Cohesion assignments for the Tax Form program (P-2) 40
Table 4.6 Cohesion assignments for the Accounting program (P-3)........................... 41
Table 4.7 Cohesion assignments for the Bank Promotion program (P-4) 41
Table 4.8 Percentage of agreement amongst subjects and between each subject and
 the tool for the Expression Evaluation program...................................... 43
Table 4.9 Percentage of agreement amongst subjects and between each subject and
 the tool for the Tax Form program ... 43
Table 4.10 Percentage of agreement amongst subjects and between each subject and
 the tool for the Accounting program... 44
Table 4.11 Percentage of agreement amongst subjects and between each subject and
 the tool for the Bank Promotion program ... 44
Table 4.12 Cumulative binomial probabilities (p-values) for the Expression
 Evaluation program.. 45
Table 4.13 Cumulative binomial probabilities (p-values) for the Tax Form program. 45
Table 4.14 Cumulative binomial probabilities (p-values) for the Accounting
 program.. 45
Table 4.15 Cumulative binomial probabilities (p-values) for the Bank Promotion
 program.. 45
Table 4.16 Subjects' assignment of cohesion levels for the Expression Evaluation
 program.. 47
Table 4.17 Subjects' assignment of cohesion levels for the Tax Form program.......... 47
Table 4.18 Subjects' assignment of cohesion levels for the Accounting program 47
Table 4.19 Subjects' assignment of cohesion levels for the Bank Promotion program 47
Table 4.20 Analysis of variance for the Expression Evaluation program 48
Table 4.21 Analysis of variance for the Tax Form program....................................... 48
Table 4.22 Analysis of variance for the Accounting program 48
Table 4.23 Analysis of variance for the Bank Promotion program............................. 48
Table 4.24 Theta and estimate of the reliability of the mean of the k subjects for
 experimental programs ... 49
Table 4.25 Data for Pearsons test for the Expression Evaluation program 50
Table 4.26 Data for Pearsons test for the Tax Form program..................................... 50
Table 4.27 Data for Pearsons test for the Accounting program 50
Table 4.28 Data for Pearsons test for the Bank Promotion program........................... 50
Table 4.29 Pearsons product-moment correlation coefficient between each subject
 and tool for experimental programs .. 50
Table 4.30 Summary of feedback information from subjects 53

iii

Table 5.1 Sizes of the three versions of spread sheet SC.. 57
Table 5.2 Sizes of the three versions of text editorUEMACS................................... 58
Table 5.3 Characteristics of the lex.scheme, calc, and kwic systems 59
Table 5.4 Analysis of lex.scheme: average size of interface functions and the
 number of implementations of interface functions exhibiting various
 cohesions.. 60
Table 5.5 Analysis of calc: average size of interface functions and the number of
 implementations of interface functions exhibiting various cohesions 61
Table 5.6 Analysis of kwic: average size of interface functions and the number of
 implementations of interface functions exhibiting various cohesions 62
Table 6.1 Slice profile for procedure sum_and_product1.. 70
Table 6.2 Definitions of slice based cohesion metrics .. 74
Table 6.3 Comparison of various cohesion measures - Part I 80
Table 6.4 Comparison of various cohesion measures - Part II.................................... 80
Table A.1 A subset of information generated by the data-flow analyzer of CMT....... 94
Table B.1 Processing element information for the Expression Evaluation
 Program (P-1) ... 102
Table B.2 Processing element information for the Tax Form Program (P-2).............. 102
Table B.3 Processing element information for the Accounting Program (P-3) 102
Table B.4 Processing element information for the Bank Promotion Program (P-4).... 103
Table B.5 Average number of processing elements for interface functions in
 lex.scheme... 103
Table B.6 Average number of processing elements for interface functions in calc 103
Table B.7 Average number of processing elements for interface functions in kwic.... 104

iv

List of Figures

Figure 2.1 The basic steps for computing module cohesion according to
 Stevens et. al. ... 9
Figure 2.2 Decision tree to determine the cohesion level of a module........................ 10
Figure 2.3 Procedure sum_and_product1.. 11
Figure 2.4 Procedure sum_and_product2.. 11
Figure 2.5 Procedure sum_and_product3.. 12
Figure 2.6 Procedure sum_and_product4.. 12
Figure 2.7 Procedure sum_or_product1 .. 13
Figure 2.8 Procedure sum_or_product2 .. 13
Figure 2.9 Procedure sum_and_average ... 14
Figure 2.10 Procedure compute_sum... 14
Figure 3.1 A sample program and its Variable Dependence Graph 17
Figure 3.2 Algorithm for computing the cohesion of a module................................. 21
Figure 3.3 VDG of module sum_and_product1 .. 21
Figure 3.4 VDG of module sum_or_product2... 22
Figure 3.5 VDG of module sum_and_product2 .. 22
Figure 3.6 VDG of module sum_and_product4 .. 23
Figure 3.7 VDG of module sum_and_average .. 23
Figure 3.8 VDG of module compute_sum .. 24
Figure 3.9 VDG of module sum_sumsquares_product.. 25
Figure 3.10 Algorithm to compute interprocedural dependencies in a VDG 27
Figure 3.11 Algorithm to initialize the worklist of pairs of formal parameters 28
Figure 3.12 A sample program to illustrate construction of interprocedural
 dependencies ... 29
Figure 3.13 VDG for module compute_sum.. 29
Figure 3.14 VDG for module compute_average .. 29
Figure 3.15 VDG for module compute_product... 29
Figure 3.16 VDG for module sum_and_average.. 30
Figure 3.17 VDG for module sum_average_product.. 30
Figure 3.18 VDG for module sum_and_average.. 31
Figure 3.19 VDG for module sum_average_product.. 31
Figure 3.20 An example C function that computes sum and product of numbers 33
Figure 3.21 Algorithm to canonicalize variables.. 33
Figure 3.22 An example to show the need for dummy use of variable 34
Figure 4.1 Cumulative percentage distribution of cohesion levels for subjects and
 the tool .. 41
Figure 5.1 Percentage of functions demonstrating various cohesions in the three
 versions of spread sheet SC .. 57
Figure 5.2 Percentage of functions demonstrating various cohesions in the four
 versions of text editor UEMACS... 58
Figure 5.3 Percentage of implementations in each cohesion category for lex.scheme,
 calc, and kwic systems .. 63
Figure 6.1 Slice of sum_and_product1 with slicing criterion <16,sum>.................... 69

v

Figure A.1 The Data Flow Architecture of CMT... 90
Figure A.2 Function fact and its Abstract Syntax Tree... 91
Figure A.3 Function compute_sum and its control flow graph................................... 92
Figure A.4 A control flow graph and the corresponding control dependence graph ... 93
Figure A.5 An example C function that computes sum and product of numbers 95
Figure A.6 Variable dependence graph for function compute_sum_and_prod 96

vi

Chapter 1
Research Objectives

1.1 Introduction

The cohesion of a module is a property that describes the degree to which actions

performed by/within a module contribute to a single behavior/function. The concept of

cohesion was originally introduced by Stevens, Myers, Constantine, and Yourdon

[Stevens74, Myers75, Myers78, Yourdon78, Yourdon79]. Stevens et al. defined the notion

of cohesion subjectively by encoding in English certain rules that may be used to determine a

module's cohesion. The cohesion of a module was defined in terms of the relationships

among the processing elements of a module. A processing element in a module was defined

as a statement, a group of statements, a data definition or a procedure call. Stevens et al.

defined an ordinal scale with seven levels of cohesion based on the types of associations

among the processing elements of a module. These levels, in decreasing order of cohesion,

are functional, sequential, communicational, procedural, temporal, logical, and coincidental.

Module cohesion has been associated to the quality of a software. Stevens et al. and

Page-Jones claimed that cohesion is associated with effective modularity, a desirable quality

of software, and has predictable effects on external software quality attributes such as

modifiability, maintainability, and understandability [Yourdon78, Page-Jones88]. Karstu

indicated that there appears to be a correlation between module cohesion and number of

changes made to a module [Karstu94] such that highly cohesive modules are less likely to

need changes. It is generally accepted that, with respect to the quality of software, functional

cohesion is the most desirable and coincidental cohesion is the least desirable.

The subjective nature of the Stevens et al.'s definitions of the term processing element

and the associative principles used to distinguish between the various levels of cohesion

make it difficult to determine the cohesion of a module precisely. The subjectivity of their

measure also leads to problems when studying the effects of module cohesion on attributes

1

of software quality. When a measure is not objective, it is difficult to use the measure for

predicting purposes.

The goal of the proposed research is to define an objective measure for module

cohesion, develop a tool to analyze and determine the cohesion of functions in a C program,

and validate the proposed measure using controlled and exploratory experiments.

1.2 Motivations

Over the past decade many changes have taken place in how programs are developed.

Emphasis in program development has shifted from ad hoc approaches to more systematic

approaches. Many software development methodologies, tools and techniques have been

proposed as the solution to the so-called software crisis. These modern program development

methodologies include structured and object-oriented analysis/design/programming, data

abstraction, information hiding etc., [Pressman92, Sommerville89, Lewis91]. Many claims

have been made in support of these new approaches to software development including

enhanced reliability, easier and more thorough testing possibilities, reduced number of bugs

in programs, shortened development time, ease of maintenance, and ease of modification etc.

Practitioners of these approaches accept these claims without questioning their validity

largely because of their intuitive appeal.

But methodological improvements alone do not completely solve the software crisis

situation. The field of software engineering needs empirical investigations of the benefits of

these methodologies. Unfortunately, the issue of empirical validation, until recently, has

been almost totally ignored within the mainstream of software engineering theory and

practice. Empirical evaluation of these claims, in most cases, is not possible because of the

lack of proper measurement of the benefits of the proposed method. Sound measurement is a

prerequisite for sound empirical validation [Fenton91, Baker90]. Successful empirical

validation requires proper selection of experiment design, subjects, materials, and measures.

2

Brooks provides a review of many of the technical problems associated with carrying out

effective experimental research [Brooks80].

We are faced with similar problems of proper measurement and sound empirical

validation when dealing with attributes of a software. Software attributes that are usually

measured are classified into two types: internal and external [Fenton91, Zuse91, Conte86].

Internal attributes, such as modularity, lines of code, coupling, and cohesiveness, are

attributes of a software which can be measured in terms of the software product itself.

External attributes, such as reliability, usability, modifiability, and maintainability, are

attributes of a software which can only be measured in terms of how the product relates to its

environment. External attributes are usually the ones that software managers and software

users would like control and predict. However, it is difficult to measure external attributes

directly. Internal attributes are usually needed to support the measurement of external

attributes. In general, the internal attributes are considered to be the key to improving

software quality, i.e., external attributes of a software. In spite of intuitive connections

between internal attributes of a software and its external attributes, there have been very few

attempts to establish specific relationships. One reason for this is the lack of proper measures

for internal attributes of a software. Therefore, it is important to provide accurate and

meaningful measures of internal attributes, such as cohesion, of a software.

1.3 Objectives

The major objectives of this research are outlined below:

1) Propose a measure for module cohesion that is objective and algorithmically

computable. In our approach, the output variables of a module are interpreted as the

module's processing elements. The associations between the processing elements of a

module are defined in terms of control and data dependencies between the variables

of the module. Associative rules are provided for each cohesion level, except for

temporal cohesion. An algorithm to compute the cohesion of a module is proposed.

3

2) Develop a software tool that is capable of analyzing and determining the cohesion

level of functions written in C programming language. The tool should be robust

enough to handle industrial-strength programs.

3) Validate the proposed measure for cohesion using a controlled experiment. The intent

of this experiment, referred to as Experiment 1, is to investigate whether our measure

preserves the intent of original definition of module cohesion as provided by Stevens

et al. The experiment will involve comparison of cohesion level assignments made by

subjects (programmers) using the original definition of cohesion levels with the

cohesion level assignments made by the tool implementing the proposed measure.

4) Use the tool developed to analyze large programs obtained from course projects and

repositories in the public domain. This is conducted as separate experiments:

Experiment 2 and Experiment 3. In Experiment 2, multiple releases of each of the two

software systems are analyzed to study the distribution of various cohesion levels. In

Experiment 3, multiple implementations of the same specification/problem by

different programmers are analyzed to see how the code-level cohesion differs from

the design/specification-level cohesion.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides the original

definition of module cohesion as given by Stevens et al. and a collection of programs used in

the rest of the chapters. The sample programs presented in this chapter are used only to

demonstrate the various approaches to computing cohesion and are not used for the

experimental study. In Chapter 3, we present the proposed approach for computing the

module cohesion. Chapter 4 describes the controlled experiment, Experiment 1, conducted to

validate the proposed measure for module cohesion. Chapter 5 presents the details of the

production experiments, Experiment 2 and Experiment 3. Chapter 6 provides a detailed

discussion of some recent attempts to make the subjective nature of cohesion more precise.

4

Chapter 7 provides a summary of research contributions and future research directions.

Appendix A describes the implementation details of the Cohesion Measurement Tool (CMT).

Appendix B provides information on processing elements in functions of programs used in

Experiment 1 and Experiment 3. Appendix C contains a listing of the materials used in

Experiment 1.

5

Chapter 2
The Original Definition of Cohesion

In this chapter the definition of module cohesion as originally proposed by Stevens,

Myers, Yourdon and Constantine [Stevens74, Myers75, Myers78, Yourdon78, Yourdon79]

is presented. Also, a set of programs is presented in Section 2.2 which will be used to

illustrate various approaches to computing module cohesion.

2.1 Stevens et al.'s definition of Module Cohesion

Module cohesion is an intramodular measure originally proposed by Stevens, Myers,

Yourdon and Constantine [Stevens74, Myers75, Myers78, Yourdon78, Yourdon79]. It is

defined as the measure of the strength of functional relatedness among the processing

elements within a module. A processing element is defined as a statement, a group of

statements, a data definition, or a procedure call; that is, it is any piece of code that

accomplishes some work or defines some data. Other terms used in the literature to denote

the same concept are module strength, module binding, and module functionality.

The original work by Stevens et al. [Stevens74, Myers75, Myers78, Yourdon78,

Yourdon79] on module cohesion resulted in identifying three levels of cohesion. This list has

been extended and refined to seven levels of cohesion which have become the de facto

standard. These seven levels of cohesion, in the order of increasing cohesion, are:

coincidental, logical, temporal, procedural, communicational, sequential, and functional.

These levels are defined based on certain associative principles (properties or characteristics)

that relate the processing elements in a module.

The rest of this section contains a discussion on the original seven levels of cohesion

as defined by Stevens et al., an algorithmic description of the steps used by them to compute

the cohesion of a module, and the subjective methods suggested in the literature to determine

the cohesion of a module.

6

(a) Coincidental Cohesion

Coincidental cohesion occurs when there is little or no meaningful relationship

among the processing elements of a module. The following is an example of coincidentally

cohesive module:

procedure compute_read_write
begin
 A := B + C
 Read D
 Write F
 If M = 4 then S = 0
end;

(b) Logical Cohesion

Logical cohesion occurs when the processing elements of a module perform a set of

related functions, one of which is selected by the calling module at the time of the invocation

of the module. The following is an example of a logically cohesive module:

procedure process_records (record,code)
begin
 if code = 1 then

insert record;
 if code = 2 then

delete record;
 if code = 3 then

update record;
end;

(c) Temporal Cohesion

Temporal cohesion occurs when the processing elements of a module are executed

within the same limited period of time during the execution of the system. Typical examples

of temporally cohesive modules are for initialization, termination, housekeeping, and clean-

up. An example of a temporally cohesive module is shown below:

procedure initialize_all_variables
begin
 x := 0;
 y := 0;
 for i := 1 to n do

z[i] := 0;
end;

7

(d) Procedural Cohesion

A set of processing elements are procedurally cohesive if they share a common

procedural unit. The common procedural unit may be a loop or a decision structure. The

module sum_and_product2 in Figure 2.4 is procedurally cohesive because the only

relationship between the processing elements computing sum and prod is their dependence

on the common loop structure.

(e) Communicational Cohesion

A set of processing elements are communicationally cohesive if they reference the

same input data and/or produce the same output data. This is the lowest level where

processing elements are related to one another by flow of data rather than flow of control.

The module sum_and_product3 in Figure 2.5 is communicationally cohesive because the

processing elements that compute sum and prod reference the same input data item x.

(f) Sequential Cohesion

Two processing elements are sequentially cohesive when the output data or results

from one processing element serve as input data for the other processing element. The

module sum_and_average in Figure 2.9 is sequentially cohesive because the output from the

computation of summation is input to the computation of mean.

(g) Functional Cohesion

Functional cohesion occurs when all the processing elements of a module contribute

to the computation of a single specific result that is returned to the caller of the module. The

module compute_sum in Figure 2.10 is functionally cohesive because it computes and returns

only one value to its caller.

Table 2.1 summarizes the original definitions of cohesion levels by listing for each

level of cohesion the associative principle that must hold between a pair of processing

elements.

8

Table 2.1 Associative principles between two processing elements
and the corresponding cohesion level

Cohesion Associative Principle
Functional Both processing elements contribute to a single specific function.
Sequential The output of one processing element serves as input to the other

processing element.
Communicational Both processing elements reference the same input data and/or output

data.
Procedural Both processing elements belong to the same procedural unit such as

a loop or a decision structure.
Temporal Both processing elements are executed within the same limited time

period during the execution of the system.
Logical One of the processing elements selected at the time of invocation is

executed.
Coincidental None of the other cohesion levels hold between the two processing

elements.

Any given module is rarely an example of only one associative principle or cohesion.

The processing elements of a module may be related by a mixture of the seven levels of

cohesion. A given pair of processing elements can be associated by more than one level of

cohesion. The steps suggested by Stevens et al. to determine the cohesion of a module are

summarized in Figure 2.1:

Algorithm: Compute-module-cohesion
Input: A module's code / design / narrative description
Output: cohesion level of the module
begin

1. Identify the set of processing elements of the module.
2. For each pair of processing elements do

• Identify the set of associative principles in Table 2.1 that suitably
define the association(s) between the pair.

• The highest level of cohesion corresponding to these principles is
the cohesion for the pair.

3. The cohesion of the module is the lowest cohesion that was assigned
to any pair of processing elements in step 2.

end

Figure 2.1 The basic steps for computing module cohesion according to
Stevens et al. (from [Lakhotia93])

A technique commonly suggested by Stevens et al. and others to determine the

cohesion of a module is by writing an English sentence that accurately describes the function

9

of a module and then examining the sentence structure and keywords in the sentence for an

indication of the level of cohesion. Page-Jones [Page-Jones88] provides a decision tree,

shown in Figure 2.2, that can be used as an aid in determining the cohesion of a module.

Myers [Myers75] provides a table version of decision tree that can be used as an aid in

determining the cohesion of a module.

Figure 2.2 Decision tree to determine the cohesion level of a module [Page-Jones88]

2.2 Sample set of programs

A common set of programs is used to illustrate the various approaches to computing

module cohesion. These programs are listed below along with their cohesion as per Stevens

et al.'s definitions. The procedures sum_and_product1, sum_and_product2,

sum_and_product3, and sum_and_product4 all compute sum and product of a set of

numbers, but in different ways. The procedures sum_or_product1 and sum_or_product2

compute either sum or product of a set of numbers based on some control flag passed to the

10

module. For each of the programs, we also give its cohesion level according to Stevens et

al.'s definition.

1) The following procedure sum_and_product1 computes the sum of first m natural
numbers and the product of first n natural numbers using two separate while loops.

Module cohesion: Coincidental

 1 procedure sum_and_product1(m,n: integer; var sum,prod: integer);
 2 var i,j: integer;
 3 begin
 4 i := 1;
 5 sum := 0;
 6 while i <= m do begin
 7 sum := sum + i;
 8 i := i + 1;
 9 end;
10 j := 1;
11 prod := 1;
12 while j <= n do begin
13 prod := prod * j;
14 j := j + 1;
15 end;
16 end;

Figure 2.3 Procedure sum_and_product1

2) The following procedure sum_and_product2 computes the sum and product of first n
natural numbers using a single while loop.

Module cohesion: Procedural

 1 procedure sum_and_product2(n: integer; var sum,prod: integer);
 2 var i: integer;
 3 begin
 4 i := 1;
 5 sum := 0;
 6 prod := 1;
 7 while i <= n do begin
 8 sum := sum + i;
 9 prod := prod * i;
10 i := i + 1;
11 end;
12 end;

Figure 2.4 Procedure sum_and_product2

11

3) The following procedure sum_and_product3 first initializes the array x. The sum and
product of the values in the array x are then computed using two separate while loops.

Module cohesion: Communicational

1 procedure sum_and_product3(n:integer; var x:vector; var sum,prod:integer);
2 var i,j,k: integer;
3 begin
4 i := 1;
5 while i <= n do begin
6 x[i] := i;
7 i := i + 1;
8 end;
9 j := 1;
10 sum := 0;
11 while j <= n do begin
12 sum := sum + x[j];
13 j := j + 1;
14 end;
15 k := 1;
16 prod := 1;
17 while k <= n do begin
18 prod := prod * x[k];
19 k := k + 1;
20 end;
21 end;

Figure 2.5 Procedure sum_and_product3

4) The following procedure sum_and_product4 computes the sum and product of the values
in an array that is passed as an input. A single while loop is used to compute the sum and
product.

Module cohesion: Communicational

 1 procedure sum_and_product4(x: array; n: integer; var sum,prod: integer);
 2 var i: integer;
 3 begin
 4 i := 1;
 5 sum := 0;
 6 prod := 1;
 7 while i <= n do begin
 8 sum := sum + x[i];
 9 prod := prod * x[i];
10 i := i + 1;
11 end;
12 end;

Figure 2.6 Procedure sum_and_product4

12

5) The following procedure sum_or_product1 uses a single if statement to compute the sum
of the first n natural numbers if the input flag is 1. If the flag is not equal to 1, it
computes the product of the first n natural numbers.

Module cohesion: Logical

1 procedure sum_or_product1(n,flag: integer; var sum,prod: integer);
2 var i,j: integer;
3 begin
4 if flag = 1 then begin
5 i := 1;
6 sum := 0;
7 while i <= n do begin
8 sum := sum + i;
9 i := i + 1;
10 end;
11 end
12 else begin
13 j := 1;
14 prod := 1;
15 while j <= n do begin
16 prod := prod * j;
17 j := j + 1;
18 end;
19 end;
20 end;

Figure 2.7 Procedure sum_or_product1

6) The following procedure sum_or_product2 computes the sum of the first n natural
numbers if the input flag is 1. If the input flag is 2 then it computes the product of the
first n natural numbers.

Module cohesion: Logical

1 procedure sum_or_product2(n,flag: integer; var sum,prod: integer);
2 var i,j: integer;
3 begin
4 if flag = 1 then begin
5 i := 1;
6 sum := 0;
7 while i <= n do begin
8 sum := sum + i;
9 i := i + 1;
10 end;
11 end
12 if flag = 2 then begin
13 j := 1;
14 prod := 1;
15 while j <= n do begin
16 prod := prod * j;
17 j := j + 1;
18 end;
19 end;
20 end;

Figure 2.8 Procedure sum_or_product2

13

7) The following procedure sum_and_average computes the sum and average of the first n
natural numbers.

Module cohesion: Sequential

1 procedure sum_and_average(n: integer, var sum,average: integer);
2 var i: integer;
3 begin
4 i := 1;
5 sum := 0;
6 while i <= n do begin
7 sum := sum + i;
8 i := i + 1;
9 end;
10 average := sum / n;
11 end;

Figure 2.9 Procedure sum_and_average

8) The following procedure compute_sum computes the sum of the first n natural numbers.

Module cohesion: Functional

1 procedure compute_sum(n: integer; var sum: integer);
2 var i: integer;
3 begin
4 i := 1;
5 sum := 0;
6 while i <= n do begin
7 sum := sum + i;
8 i := i + 1;
9 end;
10 end;

Figure 2.10 Procedure compute_sum

14

Chapter 3
 The Proposed Measure for Module Cohesion

This chapter presents our measure for computing the cohesion of a module. In our

approach, the output variables of a module are interpreted as the module's processing

elements. The associations (or relationships) between the processing elements of a module

are defined in terms of control and data dependencies between the variables of a module.

These dependencies are represented as a directed graph called a Variable Dependence Graph

(VDG).

Various levels of cohesion are defined by a set of associative principles or rules that

must hold between pairs of output variables. Our approach does not include temporal

cohesion as one of the cohesion levels. We believe that the temporal relationships between

the processing elements are difficult to obtain from static analysis of code. An algorithm to

compute the cohesion of a module is also presented.

Section 3.1 presents a formal definition of variable dependence graph. Section 3.2

presents formal definitions of cohesion levels in our approach. Section 3.3 presents an

algorithm to compute module cohesion using the proposed definitions of various levels of

cohesion. Section 3.4 describes how the dependencies determined through interprocedural

analysis are incorporated in the VDG of a module. In our approach to computing module

cohesion, we assume that variables in a module are canonical, i.e., every variable has a single

purpose. Section 3.5 describes an algorithm to canonicalize variables in a module. In Section

3.6, we present how the proposed measure evolved over time.

3.1 Variable Dependence Graph

The Variable Dependence Graph (VDG) abstracts the data and control dependencies

between the variables of a module. The nodes represent the variables of a module and the

edges represent the dependencies between the variables. These dependencies are obtained

15

through data and control flow analysis of the module [Aho86, Hecht77]. Some useful flow

analysis definitions are given here:

Definition 1: The control flow graph, or simply a flow graph, of a program is a directed

graph where the nodes correspond to the basic blocks of the program and the

edges represent potential transfer of control between two basic blocks

[Aho86, Hecht77].

Definition 2: A basic block is a group of statements such that no transfer occurs into a

group except to the first statement in that group, and once the first statement

is executed, all statements in the group are executed sequentially [Hecht77].

Definition 3: A definition-use chain of variable x is of the form <x,n1,n2>, where statement

n1 defines the variable x and statement n2 uses the variable x, and there exists

a path in the flow graph from n1 to n2 which does not contain another

definition of x.

Definition 4: A variable y has data dependence on variable x, denoted x yD → , if

statement n1 defines x and statement n2 defines y and there is a definition-use

chain with respect to x from n1 to n2.

Definition 5: A variable y has control dependence on variable x due to statement n1,

denoted x yC n() → , if statement n contains a predicate that uses x and the

execution of the statement that defines y is dependent on the value of the

predicate in n.

For each distinct variable of a module, there is a node in the VDG of the module that

is labeled with that variable. The dependencies between variables (represented as edges in

the VDG) are classified into two types: data dependence and control dependence. The

control dependence edges are further classified into two types: loop-control and selection-

control.

Definition 6: A VDG contains a data dependence edge from node x to node y labeled "d" if

x yD → .

16

Definition 7: A VDG contains a loop-control dependence edge from node x to node y,

labeled "l(n)" if x yC n() → , and n is a loop statement such as a while or for

statement.

Definition 8: A VDG contains a selection-control dependence edge from node x to node y

of the form "s(n,k)", if x yC n() → , and n is an if or case statement and y is

defined in the kth branch.

A variable dependence graph (VDG) of a module M, denoted VM, is a directed graph

with labeled edges defined as follows, where v(VM) denotes the set of vertices and ε(VM)

denotes the set of edges of VM:

v(VM) = Var(M), the set of variables of module M

ε(VM) = { e | e = (x yD → ∨ x yL n() → ∨ x yS n k(,) →) ∧ x ≠ y}

A control dependence (of loop or selection kind) is given precedence over data

dependence between two variables. That is, if both data and control dependence exists

between two variables, we only establish control dependence between them. Figure 3.1

shows a sample program and its VDG constructed using the approach described above:

1 procedure sum1ton(n: integer;
 var sum:integer);
2 var i: integer;
3 begin
4 i := 1;
5 sum := 0;
6 while i <= n do begin
7 sum := sum + i;
8 i := i + 1;
9 end;
10 end;

Figure 3.1 A sample program and its Variable Dependence Graph

The control and data flow analysis carried out to construct a variable dependence

graph handles the compound data types, such as arrays, structures/records, and pointers as

follows: (i) a definition of an array or structure element is considered as a definition to the

whole array or structure, (ii) a reference of an array or structure element is considered as a

17

reference to the whole array or structure, and (iii) pointer variables are treated as regular

variables, i.e., a pointer variable such as ∗sum in C language is treated as a variable sum.

3.2 Our Definitions of Cohesion Levels

In our approach, the output variables of a module are treated as the processing

elements of the module. The relationship between two output variables is defined using

certain associative principles or rules. The associative principles are based on the existence

of data and control dependencies between the variables, both output and non-output, of the

module.

Our associative principles for designating cohesion between pairs of output variables

are stated in Table 3.1 as associative rules ARi, i = 1..5. Given a pair of output variables x

and y of a module M, if associative rule ARi evaluates to true then the variables x and y are

said to have the cohesion given by the table. Sometimes it is possible to have more than one

type of cohesion between a given pair of output variables. In such a case, the highest level of

cohesion that applies is considered to be the cohesion between the pair of the output

variables.

 We do not include temporal cohesion in our list of cohesion levels because we

believe that temporal relationships between processing elements are difficult to obtain from

static analysis of code. Functional cohesion is not listed in the Table 3.1, although not

excluded from our list of cohesion levels, since functional cohesion is only defined on

modules with one output (variable).

18

Table 3.1 Associative principles between two processing elements

i
Cohesion

Ci

Associative Rules
ARi : Var × Var → Boolean

1 Coincidental ¬ ∧ ∀ ∈((,)), { .. }i i iAR x y2 5

2 Logical ∃ → ∧ →z z x z yS S()(*,*) (*,*)

3 Procedural ∃ → ∧ → ∨ → ∧ →z n k z x z y z x z yL n L n S n k S n k, , () ()() () (,) (,)

4 Communicational ∃ → ∧ → ∨ → ∧ →z z x z y x z y zD D D D() ()
5 Sequential x y y x→ ∨ →

1) Sequential Cohesion: x y y x→ ∨ →

Two output variables x and y are sequentially cohesive if variable x is dependent

(data or control) on variable y or variable y is dependent (data or control) on variable x.

2) Communicational Cohesion: ∃ → ∧ → ∨ → ∧ →z z x z y x z y zD D D D() ()

Two output variables x and y are communicationally cohesive if variables x and y are

data dependent on a common variable z or the common variable z is data dependent on the

variables x and y.

3) Procedural Cohesion: ∃ → ∧ → ∨ → ∧ →z n k z x z y z x z yL n L n S n k S n k, , () ()() () (,) (,)

Two output variables x and y are procedurally cohesive if variables x and y are

computed within the same loop originating at statement n with a predicate containing

variable z or variables x and y are computed within the same branch of an if or case statement

originating at statement n with a predicate containing variable z.

4) Logical Cohesion: ∃ → ∧ →z z x z yS S()(*,*) (*,*)

Two output variables x and y are logically cohesive if variables x and y are dependent

on a common variable z through some form of selection-control dependence. This includes

the cases where (i) variable x is defined in true branch of if statement and variable y is

defined in false branch of the same if statement, (ii) variable x is defined in one branch of

case statement and variable y is defined in another branch of the same case statement, and

(iii) variable x is defined in some branch of if or case statement and variable y is defined in

19

some branch of a different if or case statement. In each case, the selection statement(s) in

consideration involves a predicate with the variable z.

5) Coincidental Cohesion: ¬ ∧ ∀ ∈((,)), { .. }i i iAR x y2 5

Two output variables x and y are coincidentally cohesive if they are not sequentially,

communicationally, procedurally, or logically cohesive. That is, two output variables are

coincidentally cohesive if there is neither data nor control relationships between them.

3.3 Algorithm for Computing Module Cohesion

The steps required to compute the cohesion of a module are presented in the

algorithm shown in Figure 3.2. In this algorithm, after the cohesion between each output

variable (processing element) pair is determined by applying the associative principles listed

in Table 3.1, the cohesion of the module as a whole is determined using the principle: The

cohesion of a module is coincidental if all pairs of processing elements are coincidentally

cohesive; otherwise it is the lowest cohesion, excluding coincidental, of all pairs of

processing elements in the module.

The rest of this section verifies our measure using a set of sample programs. The

approach used to verify our measure proceeds as follows: i) hand-craft a set of programs

with specific cohesion, and ii) apply our measure to the hand-crafted programs and examine

if the cohesion levels assigned to modules are same as those assigned by Stevens et al.

Figure 3.3 shows the variable dependence graph of the module sum_and_product1 of

Figure 2.3. According to Stevens et al., this module has coincidental cohesion because the

computation of sum and prod do not have anything in common. Our approach also assigns

coincidental cohesion to this module since ARi(sum,prod) is false for i = 2..5 and the

cohesion is not functional since it has more than one output.

20

Algorithm Compute-Module-Cohesion
Input: VDG of module M
Output:Cohesion of module M
begin
 X ← {output variables in M};
 if X = 0 then Cohesion ← 'undefined'
 else if X = 1 then Cohesion ← 'functional'

 else begin
cohesion_between_pairs ← {};
for all x and y in X and x ≠ y do begin

cohesion_between_pairs ←
cohesion_between_pairs ∪ max{Ci i ∈ {1..5} ∧ ARi(x,y) };

end for;

if (∀i i ∈ cohesion_between_pairs ∧ i = coincidental) then
Cohesion ← coincidental;

else
Cohesion ← min(cohesion_between_pairs - {coincidental});

end;
 end

 return Cohesion
end Compute-Module-Cohesion

Figure 3.2 Algorithm for computing the cohesion of a module

 Figure 3.3 VDG of module sum_and_product1

Figure 3.4 shows the VDG of the module sum_or_product2 of Figure 2.8. According

to Stevens et al.'s classification, this module has logical cohesion because it computes only

one output when invoked depending upon the flag information sent by its caller. Our

approach also assigns logical cohesion since the only associative principle that is true is

AR2(sum,prod).

21

 Figure 3.4 VDG of module sum_or_product2

As an example of a module with procedural cohesion, consider the Figure 3.5 that

shows the VDG of the module sum_and_product2 of Figure 2.4. According to Stevens et al.,

this module has procedural cohesion because the processing elements sum and prod share the

common while loop. Our approach also assigns procedural cohesion to this module because

the only associative principle that is true is AR3(sum,prod).

 Figure 3.5 VDG of module sum_and_product2

Figure 3.6 shows the VDG of the module sum_and_product4 of Figure 2.6. Stevens

et al. classify this module as having communicational cohesion. The reason for this is as

follows: The processing elements sum and prod share the common while loop and also are

data dependent on the same input array x. Therefore, these processing elements are both

procedurally and communicationally cohesive. When there is more than one relationship

between two processing elements, the highest level of relationship is applied to the pair.

22

Thus, the cohesion of the pair is communicational which in turn implies that the module is

communicationally cohesive. Our approach also assigns communicational cohesion to this

module because AR3(sum,prod) = true and AR4(sum,prod) = true and the cohesion of the

pair is the higher of these two, which is communicational, which in turn makes the module

communicationally cohesive.

 Figure 3.6 VDG of module sum_and_product4

Figure 3.7 shows the VDG of the module sum_and_average of Figure 2.9. Stevens et

al. classify this module as having sequential cohesion because the output of one processing

element, sum, is used as input to the computation of the processing element average. Our

approach also assigns sequential cohesion to this module because the only associative

principle that is true is AR5(sum,average).

 Figure 3.7 VDG of module sum_and_average

23

Figure 3.8 shows the VDG of the module compute_sum of Figure 2.10. This module

has functional cohesion as per Stevens et al. because the module performs one specific

function, i.e., summation. Our approach also assigns functional cohesion to this module

because the module produces only one output.

 Figure 3.8 VDG of module compute_sum

So far, the examples we have illustrated have at most two output variables. The next

example illustrates the computation of module cohesion for a module with more than two

output variables. Consider the module sum_sumsqures_product and its VDG shown in

Figure 3.9. The module takes two inputs, flag and n. If the value of flag is 1, then it

computes the sum of the first n positive integers. Otherwise, it computes both the sum of

squares and product of the first n positive integers.

The module performs three functions: summation, summation of squares, and

multiplication. It performs either summation or summation of squares and multiplication. It

has logical cohesion between the processing elements of the first function and the other two

functions. The processing elements of the latter two functions are procedurally cohesive

because they are performed in a common while loop. The cohesion of the module is logical,

i.e., the smaller of logical and procedural.

Our approach also assigns logical cohesion to this module and is computed using

associative principles as follows:

AP2(sum, sumsquares) = true

AP2(sum, prod) = true

24

AP3(sumsquares, prod) = true

The cohesion of the module is the smaller of {logical, procedural}, which is logical.

1 procedure sum_sumsquares_product(n,flag: integer;
var sum,sumsquares,prod: integer);

2 var i,j: integer;
3 begin
4 if flag = 1 then begin
5 i := 1;
6 sum := 0;
7 while i <= n do begin
8 sum := sum + i;
9 i := i + 1;
10 end
11 end
12 else begin
13 j := 1;
14 sumsquares := 0;
15 prod := 1;
16 while j <= n do begin
17 sumsquares := sumsquares + j * j;
18 prod := prod * j;
19 j := j + 1;
20 end
21 end;
22 end;

Figure 3.9 VDG of module sum_sumsquares_product

3.4 Constructing Variable Dependence Graphs

This section describes the approach used to construct the variable dependence graph

of a module containing procedure calls. The construction of a VDG for a module in the

presence of procedure calls is similar to the construction of a VDG for a module without

25

procedure calls with one exception. In the presence of procedure calls, any dependencies

between the formal parameters of the called procedure are interpreted as data dependencies

between the corresponding actual parameters at the call site. If data dependencies already

exist between the actual parameters, established by intraprocedural dependence analysis of

the calling module, the dependencies discovered from interprocedural analysis are simply

ignored. Otherwise, the discovered dependencies are mapped as data dependencies between

the actual parameters at the call site by adding appropriate edges in the variable dependence

graph of the calling module.

In presence of procedure calls, it is recommended that the task of construction of

VDGs of all functions in a program be finished before cohesion analysis of modules is

started. This recommendation is, in fact, too strong. The minimum requirement is that the

cohesion analysis of a module should wait until after the VDGs of all its subordinate

modules are fully constructed and any possible dependencies due to the calls to these

subordinate modules are incorporated in the VDG of the calling module.

An iterative work-list algorithm is used to determine the dependencies between actual

parameters of a procedure call due to dependencies between the corresponding formal

parameters. This algorithm works by first making a work-list of all possible pairs of formal

parameters in a program such that there is either data or control dependence between a pair

of formal parameters. The formal parameters of a pair must always be the parameters of the

same function.

Once this initial work-list is constructed, a pair of formal parameters is selected. This

pair is deleted from the work-list and any dependence (data or control) between the pair is

propagated to the corresponding actual parameters at all the calling sites of the function that

correspond to the formal parameter pair. The propagation of dependence is achieved by

inserting a data edge, if not already present, between the appropriate nodes in the variable

dependence graph of the calling function. If the actual parameters at the call site of function

are also the formal parameters of the calling function, then a new pair of formal parameters

26

is constructed and added to the work-list. This process continues until we exhaust all the

elements in the work-list.

The algorithm to propagate the dependence between the formal parameters to the

corresponding actual parameters is outlined in Figure 3.10 and the algorithm to construct the

initial work list is outlined in Figure 3.11. The algorithms presented in Figure 3.10 and

Figure 3.11 refer to some functions whose names are indicative of the function performed by

these modules and not presented here. For example, the function

determine_call_sites_of_function takes a function definition and returns a set containing

information about all the calls to this function. Similarly, formal_parameter? is a function

that takes the names of a variable as input and determines whether the variable is a formal

parameter or not.

Algorithm determine_interprocedural_dependencies_of_vdg
 Input: VDGs of functions with intraprocedural dependence edges
 Output: VDGs of functions with interprocedural dependence edges added
begin
 for f over functions-defined(program) do
 call-sites(f) ← determine_call_sites_of_function(f);
 end for
 worklist ← initialize_worklist();
 while ~empty(worklist) do
 select a pair of formal parameters, <x,y>, from worklist;
 delete <x,y> from worklist;

 function_called ← function with <x,y> as formal parameters;
 for c over call-sites(function_called) do

 calling_function ← function containing call-site c;
 actual_param1 ← {set of variables in actual parameter corresponding to x};
 actual_param2 ← {set of variables in actual parameter corresponding to y};
 vdg_of_calling_function ← vdg(calling_function);
 if (i ∈ actual_param1) ∧ (j ∈ actual_param1) ∧
 (i →d j ∉ vdg_of_calling_function) then

i →d j ∈ vdg_of_calling_function;
if i and j are formal parameters of calling_function then

 add <i,j> to worklist
 end if

 end if
 end for
 end while

end determine_interprocedural_dependencies_of_vdg

Figure 3.10 Algorithm to compute interprocedural dependencies in a VDG

27

Algorithm initialize_worklist
 Input: VDGs of functions with intraprocedural dependence edges
 Output: worklist
begin
 worklist ← {};
 for v over vdgs of program do

 if x ∈ nodes(v) ∧ formal_parameter?(x) ∧
y ∈ nodes(v) ∧ formal_parameter?(y) ∧ (x → y) then
 worklist ← worklist with <x,y>

 end if
 end for
 return worklist
end

Figure 3.11 Algorithm to initialize the worklist of pairs of formal parameters

Now, we will demonstrate, using an example program containing several procedures,

the construction of VDGs in the presence of procedure calls. Consider the set of procedures

in the program listed in Figure 3.12.

1 procedure sum_average_product(n:integer,var sum,prod,average: integer);
2 begin
3 sum_and_average(n,sum,average);
4 product(n,prod);
5 end;

1 procedure sum_and_average(n: integer; var sum,average: integer);
2 begin
3 compute_sum(n,sum);
4 compute_average(n,sum,average);
5 end;

1 procedure compute_sum(n: integer; var sum: integer);
2 var i: integer;
3 begin
4 i := 1;
5 sum := 0;
6 while i <= n do begin
7 sum := sum + i;
8 i := i + 1;
9 end;
10 end;

1 procedure compute_average(n,sum: integer; var average: integer);
2 begin
3 average := sum / n;
4 end;

28

1 procedure compute_product(n: integer; var prod: integer);
2 var i: integer;
3 begin
4 i := 1;
5 prod := 1;
6 while i <= n do begin
7 prod := prod * i;
8 i := i + 1;
9 end;
10 end;

Figure 3.12 A sample program to illustrate construction of interprocedural dependencies

First, we will construct the VDGs of the procedures in the program of Figure 3.12

with only intraprocedural dependence edges. These VDGs are shown in Figures 3.13 through

3.17.

Figure 3.13 VDG for module compute_sum

Figure 3.14 VDG for module compute_average

Figure 3.15 VDG for module compute_product

29

Figure 3.16 VDG for module sum_and_average

Figure 3.17 VDG for module sum_average_product

The VDGs of functions sum_and_average and sum_average_product have no

dependence edges after intraprocedural dependence analysis. The reason for this is that the

body of these functions contain only calls to other functions. The dependencies between the

actual parameters, if any, will only be established after interprocedural dependence analysis.

Now, let us use the algorithms presented in Figures 3.10 and 3.11 to construct the

interprocedural dependencies due to procedural calls. The initialize_worklist algorithm will

initialize the worklist to contain the following pairs of formal parameters by analyzing the

existing VDGs of functions:

worklist = {<n,sum,compute_sum> ,<sum,average,compute_average>,
 <n,average,compute_average> , <n,prod,compute_product>}

Now, the algorithm of Figure 3.10 will select an arbitrary tuple from the worklist,

delete it from the worklist, and propagate the dependence to the call site of the function. The

processing of tuples <n,sum,compute_sum> will add a data dependence edge from the

variable n to the variable sum in the VDG of function sum_and_average. Since these

30

variables are also the formal parameters of the function sum_and_average, a new tuple of the

form <n,sum,sum_and_average> is added to the worklist. The processing of the tuples

<sum,average,compute_average> will add a data dependence edge from the variable sum to

the variable average in the VDG of function sum_and_average. Similarly, the processing of

the tuple <n,average,compute_average> will add a data dependence edge from the variable n

to the variable average in the VDG of function sum_and_average, respectively. The

processing of these two tuples will add two new tuples of the form

<n,average,sum_and_average> and <sum,average,sum_and_average> to the worklist. The

VDG of function sum_and_average after the addition of the interprocedural dependence

edges is shown in Figure 3.18. Also, the worklist will now contain the following tuples:

worklist = {<n,sum,sum_and_average> ,<n,average,sum_and_average>
 <sum,average,sum_and_average>,<n,prod,compute_product>}

Figure 3.18 VDG for module sum_and_average

The algorithm of Figure 3.10 processes the remaining four tuples in a similar manner.

The processing of these tuples will add four new data dependence edges to the VDG of

function sum_average_product. The resulting VDG of this function is shown in Figure 3.19.

Figure 3.19 VDG for module sum_average_product

31

Now, the worklist will be left with the following four tuples.

worklist = {<n,sum,sum_average_product> ,<n,average,sum_average_product>
<sum,average,sum_average_product>,

 <n,prod,sum_average_product>}

The above worklist will be processed in a similar manner by the algorithm of Figure

3.10, assuming there is a main program that calls the function sum_average_product. The

resulting worklist after such processing will be empty.

3.5 Algorithm for Canonicalization of Variables

A variable is canonicalized if all definitions of the variable are related, i.e., they are

defined to achieve a single purpose. A module in which every variable is canonicalized is

said to be a canonicalized module.

The variable canonicalizer algorithm is presented in Figure 3.21. The algorithm first

places each of the definitions of the variable to be canonicalized into different subsets. The

subsets are repeatedly merged such that all definitions belonging to a set are reachable at one

or more uses of that variable. At the end of this process, there will be one or more subsets of

definitions for a variable. A variable is canonicalized if there exist only one such subset for

the variable. A variable is not canonicalized if there exist several subsets of definitions for

the variable. Once this partitioning of definitions of variables is done, a variable can be

easily canonicalized by replacing each occurrence of the variable from a set with a unique

name. This replacement will not affect the functionality of the module. The replacement of

variables with unique names is not necessarily done by changing the source code, but can be

accomplished by maintaining the information as to which set a particular definition belongs

to. This information can be used to tell whether two definitions are related or not.

As an example of variable canonicalization, consider the C function in Figure 3.20,

in which the variable i has more than one purpose, especially: the computation of sum and

the computation of product.

32

1 compute_sum_and_prod(int m,int n,int *sum,int *prod)
2 {
3 int i;
4
5 *sum = 0;
6 for (i = 1; i <= m; i++)
7 *sum = *sum + i;
8 *prod = 1;
9 for (i = 1; i <= n; i++)
10 *prod = *prod * i;
11 }

Figure 3.20 An example C function that computes sum and product of numbers

In the above module, the variable i involved in the computation of sum is not related

to the variable i involved in the computation of product. We can safely replace every

occurrence of the variable i involved in the computation of product, for example, with a

unique variable name without affecting the functionality of the module.

Algorithm variable_canonicalizer
 Input: D, set of definitions of a variable v
 Output: partitioning of input definitions set of a variable into one or more subsets

 such that the definitions of a subset are related.
begin
 for i over size(D) do
 di ← {Di};
 end for
 for j over uses(v) do
 if (x ∈ D) ∧ (y ∈ D) ∧ (x reaches j) ∧ (y reaches j) then

 if (x ∈ dm) ∧ (y ∈ dn) ∧ (m ≠ n) then
 delete the subset dm;
 merge the definitions of dmwith the subset dn;

 end for
 Introduce a dummy use for every variable at the end statement
 to merge subsets of variables for which there are no uses in the module
end variable_canonicalizer

Figure 3.21 Algorithm to canonicalize variables

The introduction of a dummy use is needed in some cases where definitions are really

related, but the definitions endup in different subsets at the end of the canonicalization

process mainly because there are no uses of the definitions within the module. This situation

is illustrated with the simple program in Figure 3.22:

33

1 compute_example(int m, int n, int flag, int *x)
2 {
3
4 if (flag == 1)
5 *x = m + n;
6 else
7 *x = m * n;
8 }

Figure 3.22 An example to show the need for dummy use of variable

In the example of Figure 3.22, there are two definitions of the variable x. The

canonicalization algorithm will initially place each of these definitions into different subsets.

Since there is no use of the variable x in the module, the algorithm will not merge these

definitions of x into a single subset, leading to the incorrect conclusion that these two

definitions of x are not related. The introduction of a dummy use at the end of the module

will force the algorithm to merge the subsets of definitions into one subset. This action of

merging definitions with the use of a dummy variable will identify the correct canonical

variables.

3.6 Evolution of the measure

Fenton describes that defining a measure of an attribute of an entity is an iterative

process [Fenton91]. One usually begins by identifying the attribute to be measured and

developing a means of measuring it. Then data using the defined measure is collected.

Analysis of the data usually leads to the clarification and re-evaluation of the attribute. This

in turn leads to improvements in the definition of the measure. This iterative process

continues until a well-defined measure is developed. In our study of measurement of module

cohesion, we were involved in a similar iterative process for capturing the concept of

cohesion.

Our measure for module cohesion is an extension of the work done by Lakhotia

[Lakhotia91b, Lakhotia93]. Analysis of the data collected from the application of his

measure to programs have led us to redefine and/or simplify his definitions for certain levels

of cohesion. The definitions of logical and communicational levels of cohesion have been

34

simplified. We have applied the new measure to determine the cohesion of modules of a

number of large programs. Analysis of the data collected from applying the measure to these

large programs in turn led us to refine the formalization of some levels of cohesion used, as

described in the rest of this section.

Our experience with processing and analysis of the spreadsheet SC and editor

UEMACS systems, see Chapter 5, have helped formalization of various cohesion levels,

especially those of sequential and logical cohesion levels. Initially, we defined two output

variables to be sequentially cohesive if one is data dependent on the other. With this

definition of sequential cohesion, a large number of functions in SC and UEMACS systems

were assigned coincidental cohesion. Examination of these functions showed that they

contained output variables with one output variable dependent on another output variable

through meaningful control dependence. This prompted us to change the definition of

sequential cohesion to include control dependence as well as data dependence between two

output variables.

Similarly, the definition of logical cohesion has been changed to include any type of

control dependence of type selection between two output variables through a third variable.

This change has reclassified some functions that were assigned coincidental cohesion to the

level of logical cohesion when two output variables were dependent on a third variable with

a meaningful control (selection type) dependence.

Our analysis of the data from Experiment 3, discussed in Chapter 5, also prompted us

to change the algorithm that assigns cohesion level to a module. In our algorithm, a module

is assigned coincidental cohesion only if every pair of output variables is coincidentally

cohesive. This eliminated the problem with an earlier algorithm that assigned coincidental

cohesion to a module as long as there was at least one pair of output variables that was

coincidentally cohesive, even when majority of the output variables were highly cohesive.

35

Chapter 4
Empirical Validation of the

Proposed Measure for Cohesion

This chapter presents the results of an experiment, referred to as Experiment 1,

conducted to validate the proposed measure for cohesion. The objective of this experiment

was to investigate correlation between our measure for cohesion and the original definition

of cohesion as defined by Stevens et al. [Stevens74]. This was done by asking several

graduate students to determine the cohesion of functions in a set of programs and comparing

their responses with those of CMT, a tool that implements our measure, using both

nonparametric statistical tests for nominal data and parametric tests under a stronger

assumption that the data constitute an ordered scale. Experiment 1 can be viewed as using a

comprehension paradigm whereby subjects (programmers) classify the stimulus materials

(programs) and their classifications are compared with those made by CMT.

4.1 Subjects

Fifteen students from a graduate level course in software engineering at the

University of Southwestern Louisiana voluntarily participated as the subjects for the

experiment. Information about their educational background and relevant programming

experience is summarized in Tables 4.1 and 4.2.

Table 4.1 Subjects' background information

Subject Background Variable Low Mean High
Years of programming 2 4.6 11
Number of computer science courses in BS 0 10 24
Number of computer science courses in Grad school 3 8 15
Number of programming languages known 1 4 7

36

Table 4.2 Subjects' familiarity with the C language and cohesion concepts, on the scale of
0 to 10, where 0: never used/heard, 5: about average, and 10: expert

Subject Background Variable Low Mean High
Familiarity with C language 5 7.6 9
Familiarity with cohesion concepts 3 6.1 8

4.2 Experimental Programs

Four C programs obtained over the internet were used for the experiment. These

programs were selected from a set of 26 programs used by Goradia in experiments

conducted for his Ph.D. thesis [Goradia93]. Their modest size, simplicity, and

understandability were the key factors for their selection. Table 4.3 summarizes some size

related characteristics of these programs.

Table 4.3 Programs used in the Experiment 1 and their size measures

Program
Code

Program
Name

No. of
Lines

No. of
Functions

Avg. lines/
function

P-1 Expression evaluation 83 5 16.6
P-2 Tax form 161 6 26.8
P-3 Accounting 245 6 40.8
P-4 Bank promotion 172 4 43.0

4.3 Experiment Material

The following materials were used to conduct the experiment: (i) material to the

administrator of the experiment, (ii) material to the subjects of the experiment, and (iii)

CMT, the software tool that implements our measure for cohesion.

The material for the administrator of the experiment contained the following items:

(i) description of the experiment, (ii) instructions on how to conduct the experiment, (iii)

informed consent forms used to obtain the consent of the subjects, (iv) a copy of the text

book chapter on module cohesion used for the lecture on module cohesion, (v) experiment

packets to be given to the subjects, (vi) copies of a quiz to assess the knowledge of the

37

subjects, and (vii) slips containing program and subject codes used for assignment of

programs to subjects in a random manner.

The packet given to each subject of the experiment contained the following materials:

(i) description of the experiment, (ii) instructions to the subjects, (iii) chapter on module

cohesion from a text book [Page-Jones88], (iv) source code listing of an experimental

program, (v) a sheet to collect the subject's responses, (vi) a sheet to collect the subject's

comments about the experiment, and (vii) a questionnaire to collect the subject's educational

background.

CMT, a software tool that implements our measure for cohesion, was used to analyze

each function of every experimental program and assign it a cohesion level.

A copy of all the material used for the experiment can be found in Appendix C.

4.4 Experiment Procedure

The experiment was conducted in four stages. The activities of each stage are briefly

discussed below,

Stage 1:

The administrator of the experiment talked to the students of a graduate level

course in software engineering about the experiment and distributed the informed

consent forms. The students were encouraged to participate as subjects for the

experiment, but were never forced. Fifteen students volunteered to be the subjects

and signed the informed consent form; one student refrained.

Stage 2:

The subjects were given a lecture on the concepts of module cohesion, based

on Stevens et al.'s work. Experiment packets, containing material mentioned earlier,

were distributed to the subjects.

The experiment packets were prepared in the following manner. There were a

total of sixteen packets, four for every program used in the experiment (see Table

38

4.3). Each packet was labeled with a program code and a subject code. The program

codes were P1, P2, P3, or P4 (see Table 4.3). The subject codes were formed as

follows: Sij indicating the jth subject assigned to the program Pi. A subject looked at

only one program. The experiment employed between-subjects design, an

experimental design method where subjects are randomly assigned to independent

groups [Fenton91]. In our experiment, subjects assigned to each program constitute a

group. A maximum of 4 subjects was assigned to any program.

Randomness in assignment of subjects to programs was achieved by having

the subjects pick the program code they were to analyze by a random draw. The

subjects were assigned code based on their program code (by coding their experiment

packet). To ensure anonymity of the subjects, we did not associate subject names

with their codes. The names of the subjects were gathered only on informed consent

forms during Stage 1 of the experiment. Also, the informed consent forms had no

indication of any kind of codes used in the experiment.

The subjects took the experiment packets home and studied the program

assigned to them. They were given one week from the day of Stage 2 to complete

their task. They were asked to complete and return the following items: (i) data sheet

for assigning cohesion level to functions of the subject program, (ii) remarks form

containing the subjects' comments on their task, and (iii) background questionnaire

containing information about the subjects' educational background.

Stage 3:

In the third stage, a subject studied the program assigned to him/her and

assigned cohesion level to each function based on the original definition of module

cohesion by Stevens et al. The subjects recorded this information on the data sheet

provided to them. They also noted their comments about their task on the remarks

form and completed a questionnaire about their educational background.

39

Stage 4:

In the fourth stage, the subjects were given a quiz on module cohesion. This

quiz was to be used to detect and eliminate data by those participants who did not

demonstrate an understanding of the basic concepts of module cohesion. The intent of

the quiz was not to judge or evaluate the individuals participating in the experiment,

but rather to check the validity of the data obtained from the experiment. The subjects

returned the quiz in the packet along with the material completed in Stage 3.

4.5 Subjects' Responses

The cohesion levels assigned by the experimental subjects to the functions of

Programs P-1 through P-4 are presented in Tables 4.4 through 4.7. The columns marked

Tool contain the cohesion levels assigned by CMT and the columns labeled LOC contain the

size of a function as measured in lines of code.

Table 4.4 Cohesion assignments for the Expression Evaluation program (P-1)

Function Name LOC Tool S-11 S-12 S-13 S-14

compute 23 functional logical logical communicational logical
operand_value 4 functional functional functional functional functional
get_token 7 sequential sequential sequential functional procedural
evaluate 22 functional functional logical procedural functional
main 11 functional communicational sequential functional procedural

Table 4.5 Cohesion assignments for the Tax Form program (P-2)

Function Name LOC Tool S-21 S-22 S-23

initialize 19 coincidental temporal temporal temporal
schedule_A 15 functional functional functional functional
figure_tax 33 functional functional logical functional
compute_tax 20 functional sequential functional sequential
valid_data 17 functional temporal logical functional
main 26 coincidental sequential functional sequential

40

Table 4.6 Cohesion assignments for the Accounting program (P-3)

Function Name LOC Tool S-31 S-32 S-33 S-34

initialize 15 sequential functional temporal coincidental temporal
change_monthly 22 sequential functional functional temporal sequential
process_transaction 15 communicational communicational logical sequential communicational
process_end_of_month 22 sequential functional temporal functional temporal
process_report 29 not defined sequential logical temporal procedural
main 41 sequential communicational logical coincidental procedural

Table 4.7 Cohesion assignments for the Bank Promotion program (P-4)

Function Name LOC Tool S-41 S-42 S-43 S-44

assess_cashflow 31 coincidental communicational logical communicational communicational
assess_account_status 19 functional functional functional functional functional
recommended_account 22 functional functional functional functional functional
main 57 not defined procedural sequential functional communicational

Figure 4.1 shows the percent distribution of each cohesion level for all subjects and

for the tool.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������

���
���
���

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

P
er

ce
n

ta
g

e
o

f
co

h
es

io
n

 le
ve

ls

0

5

10

15

20

25

30

35

40

45

50

Functional Sequential Communicational Procedural Temporal Logical Coincidental Undefined

���
���

Subjects
���
���

Tool

Figure 4.1 Cumulative percentage distribution of cohesion levels for subjects and the tool

41

4.6 Data Analysis

This experiment investigates the following questions: (i) Do the subjects agree

amongst themselves on the cohesion of a function in a program? (ii) Do the subjects agree

with the tool on the assignment of cohesion level to functions in a program? These two

questions can be stated in terms of the following two experimental hypotheses:

Hypothesis 1: Stevens et al.'s definition of module cohesion is objective.

Null hypothesis (H0): Subjects are incapable of using the categories of Stevens et al.,
and therefore their assignments of cohesion levels will be randomly distributed.

Alternative hypothesis (H1): Subjects will display some above-chance consistency
amongst themselves in using the categories of Stevens et al.

Hypothesis 2: Our measure is consistent with that of Stevens et al.

Null hypothesis (H0): The tool developed to objectify the Stevens et al. definition of
module cohesion will display chance-level agreements with subjects' ratings.

Alternative hypothesis (H1): The tool developed to objectify the Stevens et al.
definition of module cohesion will be at above-chance levels in accounting for the
variance displayed by subjects' cohesion level assignments.

The above hypotheses were tested using both nominal and interval statistical tests. In

using a nominal statistical test, we viewed the seven levels of cohesion as simple categories,

not as scalar values. The binomial test was used as the nominal statistical test for analyzing

simple category agreements between subjects and tool. After the nominal test, we applied

analysis of variance statistical tests with the assumption that the seven levels of cohesion are

ordered levels of cohesiveness, as claimed by Stevens et al. The reliability of subjects was

analyzed using analysis of variance. Pearson's product-moment correlation test was applied

to analyze the agreement between the tool and subjects.

4.6.1 Analysis of data using Binomial test

We have analyzed the experiment data using binomial test. For an experiment to

qualify as a binomial experiment, it must have the following four properties [Mosteller67]:

42

1) There must be a fixed number of trials.

2) Each trial must result in a "success" or "failure", i.e., it is a binomial trial.

3) All trials must have identical probabilities of success.

4) The trials must be independent of each other.

Experiment 1 satisfies these properties, as justified below:

1) For each program used in the experiment, the number of functions when viewed

as number of trials is fixed.

2) Each test for agreement on cohesion level assigned to a function results in a

success/match or a failure/no-match.

3) All trials have identical probability of success, i.e., the probability of successful

match on cohesion level of one function does not affect the probability of

successful match on cohesion level of another function.

4) Assignment of cohesion level to one function is independent of the assignment of

cohesion level to another function. Thus, the trials are independent of each other.

Tables 4.8 through 4.11 provide, for each experimental program, the percentage of

agreement between each pair of subjects, and also percentage of agreement between each

subject and the tool.

Table 4.8 Percentage of agreement amongst subjects and between each
subject and the tool for the Expression Evaluation program

Program: Expression Evaluation (P-1)
S-11 S-12 S-13 S-14 Tool

S-11 - 60% 20% 60% 60%
S-12 - 20% 40% 40%
S-13 - 20% 40%
S-14 - 40%

Table 4.9 Percentage of agreement amongst subjects and between each
subject and the tool for the Tax Form program

Program: Tax Form (P-2)
S-21 S-22 S-23 Tool

S-21 - 33% 83% 33%
S-22 - 33% 33%
S-23 - 50%

43

Table 4.10 Percentage of agreement amongst subjects and between each
subject and the tool for the Accounting program

Program: Accounting (P-3)
S-31 S-32 S-33 S-34 Tool

S-31 - 17% 17% 17% 17%
S-32 - 0% 33% 0%
S-33 - 0% 0%
S-34 - 33%

Table 4.11 Percentage of agreement amongst subjects and between each
subject and the tool for the Bank Promotion program

Program: Bank Promotion (P-4)
S-41 S-42 S-43 S-44 Tool

S-41 - 50% 75% 75% 50%
S-42 - 50% 50% 50%
S-43 - 75% 50%
S-44 - 50%

 The cumulative probability of observing r or more successes, p-value, in a binomial

experiment is computed using the equation

b x n p
x r

n

(; ,)
=

∑ , where b x n p
n

x n x
p qx n x(; ,)

!

!()!
=

−
−

where n is the number of binomial trials, r is the number of successes, p is the probability of

success, and q is the probability of failure. The subjects assign one of seven levels of

cohesion. Therefore, the probability of success of a binomial trial is 1/7 or 0.143 under the

assumption that these levels should be equally probable.

Tables 4.12 through 4.15 provide, for each of the programs used in the experiment,

the cumulative probabilities (p-value) of success of a binomial test. An entry with '∗∗'

represents an agreement with a 0.05 level of significance; an entry with a '∗' represents an

agreement with a 0.10 level of significance; other entries are not statistically significant. The

significance level, denoted by α, of a test is the probability of rejecting the null hypothesis

when it is true (Type I error in a statistical test) [Newmark92].

44

Table 4.12 Cumulative binomial probabilities (p-values)
for the Expression Evaluation program

Program: Expression Evaluation (P-1)
S-11 S-12 S-13 S-14 Tool

S-11 - 0.023** 0.538 0.023** 0.023**

S-12 - 0.538 0.152 0.152
S-13 - 0.538 0.152
S-14 - 0.152

Table 4.13 Cumulative binomial probabilities (p-values)
for the Tax Form program

Program: Tax Form (P-2)
S-21 S-22 S-23 Tool

S-21 - 0.207 0.000** 0.207
S-22 - 0.207 0.207
S-23 - 0.042**

Table 4.14 Cumulative binomial probabilities (p-values)
for the Accounting program

Program: Accounting (P-3)
S-31 S-32 S-33 S-34 Tool

S-31 - 0.604 0.604 0.604 0.604
S-32 - 1.000 0.207 1.000
S-33 - 1.000 1.000
S-34 - 0.207

Table 4.15 Cumulative binomial probabilities (p-values)
for the Bank Promotion program

Program: Bank Promotion (P-4)
S-41 S-42 S-43 S-44 Tool

S-41 - 0.101* 0.010** 0.010** 0.101*

S-42 - 0.101* 0.101* 0.101*

S-43 - 0.010** 0.101*

S-44 - 0.101*

We can observe from Tables 4.12 through 4.15 that (i) there is little agreement

amongst subjects on the assignment of cohesion to various functions, and (ii) there is also

little agreement between subjects and the tool. The only exception to the above observations

is the case of program P-4. For this program, there is a strong agreement among the subjects

S-41, S-43, and S-44 with a 0.05 level of significance. As may be seen from Tables 4.7 and

4.11, these subjects generally agreed on three of the four functions.

45

There is no statistically significant evidence to reject the null hypothesis of

Hypothesis 1. We also cannot completely reject the alternative hypothesis of Hypothesis 1 as

the analysis of Bank Promotion program (P-4) supports the alternative hypothesis with a

minimum α of 0.1. The results of the test of Hypothesis 1 are, therefore, inconclusive.

Testing of Hypothesis 2 is based on the acceptance of the alternative hypothesis for

Hypothesis 1 since it is meaningless to investigate whether the subjects agree with the tool

when there is not much agreement amongst subjects. Because the null hypothesis for

Hypothesis 1 could not be rejected, the data for Hypothesis 2 were not analyzed further in

this series of analyses.

4.6.2 Reliability of subjects using analysis of variance

In using binomial test, we have analyzed the data for a strict match on categories of

cohesion. From the results of the binomial test, we have found that there is not much

agreement on strict categorical testing. An alternative to categorical testing is to investigate

the extent to which subjects agree that some functions are more cohesive than others, i.e.,

relative ordering of functions on cohesiveness. For example, we can take subjects'

assignment of cohesion levels for a given program as representing values on a scale of

cohesiveness, and check the extent to which a group of subjects reliably use such a scale.

This may be analyzed using an analysis of variance examining reliability of measurements,

as discussed in [Winer71, pp 283-289].

Tables 4.16 through 4.19 provide, for each experimental program, the values

obtained by transforming the subjects' cohesion level assignments into numbers, where 1

represents functional and 7 represents coincidental, using the original ordering of cohesion

levels.

46

Table 4.16 Subjects' assignment of cohesion levels for the
Expression Evaluation program

Function Name Tool S-11 S-12 S-13 S-14

compute 1 6 6 3 6
operand_value 1 1 1 1 1
get_token 2 2 2 1 4
evaluate 1 1 6 4 1
main 1 3 2 1 4

Table 4.17 Subjects' assignment of cohesion levels for the
Tax Form program

Function Name Tool S-21 S-22 S-23

initialize 7 5 5 5
schedule_A 1 1 1 1
figure_tax 1 1 6 1
compute_tax 1 2 1 2
valid_data 1 5 6 1
main 7 2 1 2

Table 4.18 Subjects' assignment of cohesion levels for the
Accounting program

Function Name Tool S-31 S-32 S-33 S-34

initialize 2 1 5 7 5
change_monthly 2 1 1 5 2
process_transaction 3 3 6 2 3
process_end_of_month 2 1 5 1 5
process_report - 2 6 5 4
main 2 3 6 7 4

Table 4.19 Subjects' assignment of cohesion levels for the
Bank Promotion program

Function Name Tool S-41 S-42 S-43 S-44

assess_cashflow 7 3 6 3 3
assess_account_status 1 1 1 1 1
recommended_account 1 1 1 1 1
main - 4 2 1 3

Table 4.20 through 4.23 show the results of the analysis of variance test, as described

in [Winer71, pp 283-289], for each of the four programs used in the experiment. An entry

for value of F marked with '***' represents reliability at the 0.01 level of significance; an

47

entry with a '**' represents reliability at the 0.05 level of significance; an entry with '*'

represents 0.10 level of significance; and other entries are not significant.

Table 4.20 Analysis of variance for the Expression Evaluation program

Source of variation SS df MS F
Between functions 38.7 4 9.675 4.21**

Within functions 34.5 15 2.300
 Between subjects 6.0 3 2.000
 Residual 28.5 12 2.375

Table 4.21 Analysis of variance for the Tax Form program

Source of variation SS df MS F
Between functions 36.0 5 7.20 2.7*

Within functions 32.0 12 2.67
 Between subjects 5.33 2 2.67
 Residual 26.67 10 2.67

Table 4.22 Analysis of variance for the Accounting program

Source of variation SS df MS F
Between functions 21.0 5 4.20 1.03
Within functions 73.5 18 4.08
 Between subjects 32.5 3 10.83
 Residual 41.0 15 2.73

Table 4.23 Analysis of variance for the Bank Promotion program

Source of variation SS df MS F
Between functions 21.188 3 7.063 7.21***

Within functions 11.751 12 0.98
 Between subjects 2.188 3 0.729
 Residual 9.563 9 1.063

48

Based on these results, it appears that there is significant reliability for programs 1

and 4 at the 0.05 or above level of significance, and for program 2 at the 0.1 level of

significance.

Table 4.24 shows the unbiased theta (θ) and the unbiased estimate of the reliability of

the mean of the k subjects, rk, values for each of the programs used in the experiment.

Table 4.24 Theta and estimate of the reliability of the mean of the k subjects for
experimental programs

Program Program
Code

θθ rk

Expression Evaluation P-1 0.6614 0.7257
Tax Form P-2 0.4157 0.555
Accounting P-3 -0.0212 -0.0929
Bank Promotion P-4 1.251 0.833

These reliability estimates of Table 4.24 are conservative, as the analysis of variance

did not correct for end anchor effects. However, corrected analyses revealed essentially the

same patterns of results.

4.6.3 Analysis of data using correlation test

In this section, we compute the correlation coefficient between the tool and subjects

for each of the experimental programs using Pearson product-moment correlation

coefficient, as recommended in Couch [Couch87].

Tables 4.25 through 4.28 provide, for each experimental program, the values

obtained by transforming the cohesion level assignments of subjects and tool into numbers.

The function process_report of Accounting program (P-3) was excluded from the analysis as

the tool was unable to assign a cohesion level to this function. The function main of Bank

Promotion program (P-4) was also excluded from the analysis for the same reason.

49

Table 4.25 Data for Pearsons test for the Expression Evaluation program

Function Name Tool Subjects' Average

compute 1 5.25
operand_value 1 1
get_token 2 2.25
evaluate 1 3
main 1 2.5

Table 4.26 Data for Pearsons test for the Tax Form program

Function Name Tool Subjects' Average

initialize 7 5
schedule_A 1 1
figure_tax 1 2.67
compute_tax 1 1.67
valid_data 1 4
main 7 1.67

Table 4.27 Data for Pearsons test for the Accounting program

Function Name Tool Subjects' Average

initialize 2 4.5
change_monthly 2 2.25
process_transaction 3 3.5
process_end_of_month 2 3
main 2 5

Table 4.28 Data for Pearsons test for the Bank Promotion program

Function Name Tool Subjects' Average

assess_cashflow 7 3.75
assess_account_status 1 1
recommended_account 1 1

Table 4.29 provides the Pearsons product-moment correlation coefficient, r, for each

of the programs involved in the experiment.

Table 4.29 Pearsons product-moment correlation coefficient between each
subject and tool for experimental programs

Program Name Program Code Pearsons r
Expression Evaluation P-1 -0.198

Tax Form P-2 0.333
Accounting P-3 0.075

Bank Promotion P-4 0.566

50

As can be see from the Table 4.29, none of the four coefficients is significant at

conventional levels. We also computed the Pearsons product-moment correlation coefficient

oever all programs and again found that the coefficient was not significant at conventional

levels.

4.7 Power of the Experiment

The power of a statistical test is defined as the probability of rejecting H0 when H0 is

false. This probability is equal to 1 - β, where β is the probability of a Type II error. A Type

II error occurs when we fail to reject H0 when H0 is false. It is not possible to specify an

exact value for the power of statistical tests conducted in this experiment because H1 is an

inexact hypothesis. Since it did not seem appropriate, at this preliminary, exploratory stage,

to specify how much of a match our subjects and tool should exhibit, an exact value for

power could not be calculated. Given the approach adopted here, this was not of grave

concern. Nevertheless, some factors that affect the power of statistical tests in our experiment

are outlined here:

1. The power of a statistical test can be increased by avoiding Type II errors. If Type II

errors are to be avoided, then a relatively large sample size or a larger α value is

required. As the sample size increases, the power of a statistical test increases. In our

experiment, since the sample size is too small (at most four subjects per program), the

power of the experiment is weak. As the alpha level becomes more stringent (goes from

.05 to .01), the power decreases. This situation did not happen in our experiment as we

have used alpha level of 0.05 or 0.10. In our experiment, the major contributor to the

weak power seems to be the small sample size.

2. In our experiment, the programs used did not contain many functions (at most six

functions per program) and majority of these functions displayed functional cohesion, as

measured by the tool. Therefore, the stimulus materials used did not contain sufficiently

51

large number of functions and the functions did not exhibit a good distribution of

cohesion levels. These conditions also affected the power of the experiment.

In order to have an experiment with more power, we need to assign more subjects per

program or employ within-subjects design as opposed to between-subjects design, use

programs with sufficiently large number of functions, and use programs where functions

exhibit a good distribution of cohesion levels.

4.8 Subjects' Performance on Quiz

As noted earlier, in Stage 4, each subject was quizzed on his/her knowledge on the

concept of cohesion. The quiz consisted of one true/false question regarding the definition of

module cohesion, one question in which a list of cohesion levels in no particular order had to

be rearranged in increasing order of cohesion, seven fill-in the blanks type questions where

the definition of a cohesion level had to be related to the name of the cohesion level, and six

small code fragments, commonly used in the literature on module cohesion, for which the

subjects had to assign a cohesion level. The subjects' answers in the first three components of

the quiz were 95% correct which shows that they understood the concepts of module

cohesion. The answers of the subjects in the last component (assignment of cohesion to code

fragments) had some variations. This again shows that the original definitions are subjective

in nature and difficult to apply to determine precisely the cohesion of a code fragment.

4.9 Feedback from the subjects

As a part of the experiment, each subject was asked to complete a remarks form. The

remarks form contained the following questions, with possible answers to each question

being easy, average, difficult, or very difficult:

1) How did you find the lecture on module cohesion to understand?

2) How did you find the material on module cohesion to read and understand?

3) How did you find the definitions of cohesion levels to understand?

52

4) How did you find the program assigned to you to understand?

5) How did you find the task of assigning of cohesion level to functions?

The feedback from the students to the above questions are summarized in the

following table. The values in the Table 4.30 indicate the number of subjects who found the

task, as indicated by the question number, as either easy, average, difficult, or very difficult,

respectively.

Table 4.30 Summary of feedback information from subjects

Question # Easy Average Difficult Very difficult
1. 4 7 3 1
2. 8 7
3. 8 5 2
4. 10 4 1
5. 3 8 4

Most of the subjects reported that the task of assigning cohesion level to functions

was not difficult, even though the degree of variation in their responses to the experiment

treatment is quite high. One reason for this variation may be that the original definitions of

module cohesion by Stevens et al. are more intuitive, hence easy to understand. Since they

are not objective, they are hard to apply.

The subjects were also asked to provide any comments they might have about the

experiment. Some of their comments were very interesting and emphasized the need for

empirical research in software engineering, the intuitive and subjective nature of the Stevens

et al.'s definition of module cohesion. Some comments of the subjects are quoted below:

1. "The definitions of levels of cohesion are intuitive. Therefore, assigning a

level of cohesion to a function is also intuitive. It is hard to do so

objectively."

2. "The first three levels of cohesion (functional, sequential,

communicational) were straightforward and easy to understand. The

remaining levels of cohesion were confusing."

53

3. "It is not very easy to give an accurate cohesion level assignment for the

given source code."

4. "Making the final choice of cohesion level for each function is only as

good as my best estimate."

From the feedback data collected and the general comments of the participants of the

experiment, we can infer that the intuitive nature of the original definitions of module

cohesion is the primary reason for great variations observed in the subjects' responses. This

experiment reemphasizes the general agreement that the original rules may be easy to

understand, but they are difficult to apply and determine the cohesion of a module precisely.

4.10 Deficiencies of the Experiment

Some limitations/deficiencies of this experiment are presented in this section. As a

result of this experiment, we have learned some lessons in how to design and conduct

controlled experiments. Future experimental studies involving our measure for module

cohesion will address the following limitations:

1) The experiment had only 15 participants, a number not high enough for the between-

subjects experiment design used. A better alternative to between-subjects design with

the same number of subjects could have been repeated-measures or within-subjects

design. A repeated-measures or within-subjects design requires that all subjects

analyze all programs used in the experiment [Fenton91]. This design method has the

advantage of requiring fewer experimental subjects and allows for a more efficient

use of subjects. The problem of fewer participants could have also been solved by

simply using more than 30 subjects since that would then meet the criterion of "large

enough" sample, according to the Central Limit Theorem [Newmark92].

2) The programs used in the experiment did not contain functions with even distribution

of cohesion, at least as assigned by CMT. A different set of programs with a better

distribution will increase the significance of this experiment.

54

3) It may be that the levels of cohesiveness discussed by Stevens et al. are easy to

identify by expert programmers, but not by non-experts. Future studies varying

experience level of the raters can address this issue.

4.11 Conclusions

In this experiment, we have made an attempt to validate our measure for module

cohesion against the measure proposed by Stevens et al. for module cohesion. The

experiment has reinforced our assertion that the Stevens et al.'s definition of cohesion is very

subjective, since the responses given by the subjects to the experiment treatment have great

variations. As a result we have very little data against which the cohesion assigned by our

measure can be compared and evaluated.

55

Chapter 5
Analysis of the Cohesion of Large Programs

This chapter presents the results of analyzing, using CMT, some large software

systems ranging in size from 650 to 19000 lines of code. The software systems analyzed

were obtained from course projects and repositories in the public domain. The analysis of

these large systems is presented as two separate experiments, referred to as Experiment 2 and

Experiment 3. Experiment 3 can be regarded as using production paradigm in which subjects

produce stimulus materials (programs) and their productions are evaluated to see if they fit

an expected level of cohesion.

Both the experiments are similar in that they analyze multiple implementations of

each software systems. They do, however, differ on how the multiple implementations are

arrived at. In Experiment 2, the multiple implementations of a program are essentially

successive releases of the same software system, whereas in Experiment 3, multiple

implementations constitute programs for the same problem implemented by different

programmers.

There is yet another difference in the programs used in the two experiments. The

programs for Experiment 2 have been taken from repositories on the Internet. They are

actually used by people around the world and, as may be inferred from their multiple

releases, have been actively "maintained" by their original developers or other volunteer

programmers. These programs are large in size and may be considered to be "real-world"

programs. The programs of Experiment 3, on the other hand, have been developed as part of

a course taught at the University of Southwestern Louisiana. They are smaller in size as

compared to the programs in Experiment 2, but have the benefit that the specification of

every function in the program is known.

The data from the two experiments may be used primarily for exploring traits and

trends in the cohesion of software systems so as (a) to formulate hypotheses for future

56

investigations and (b) to improve the cohesion measure itself. A summary of the

experimental subjects, the procedure, and the data collected in the two experiments is

presented in Sections 5.1 and 5.2. Observations from the data and other discussions of the

two experiments are presented in Section 5.3.

5.1 Experiment 2: Analysis of Real-World Software

In Experiment 2, several versions of two public domain software systems, SC and

UEMACS, were analyzed. The system SC is a spreadsheet software and UEMACS

(MicroEmacs) is a text editor software. These systems were obtained on Internet from the ftp

site ftp.uu.net. The purpose of this experiment is to observe the distribution of cohesion

levels over various versions of a software system. We have analyzed three versions of the SC

system, namely SC-4.1, SC-5.1, and SC-6.8. Their size related characteristics are presented

in Table 5.1. The original authors of SC are James Gosling and Mark Weiser.

Table 5.1 Sizes of the three versions of spreadsheet SC

Program Name Author Lines of Code Number of functions

SC-4.1 Robert Bond 4469 88
SC-5.1 Robert Bond 6255 109
SC-6.8 Jeff Burht 10121 198

Figure 5.1 shows, for the three versions of SC, the percentage of functions assigned

each level of cohesion by CMT. The data are analyzed in Section 5.3.

�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������
��������������
�������
�������
��������������
�������

���
���
������
���
������
������
���
������
���
������
���
���
������
���
������
������
���
������
������
���

�����
�����
����������
�����
����������
���������������
����������
���������������
����������
�����

���
���
������
���
������
������
���
������
���
������
���
���
���

�������
�������
��������������
�������
��������������

�
�
��
�
��

�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

���
���
������
���
������
������
���
������
���
������
���
���
������
���
������
���

�������
�������

�
� ��������������

�������
�������

��
�
�

�������
�������
��������������
�������
��������������
���������������������
��������������
��������������

���
���
������
���
������
������
���
������
������

	�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�	

	
	
		
	
		
		
	
		
	
		
	
	
		
	
		
		
	
		

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
��������������
�������
��������������

���
���
������
���
������

�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������

�
�
��
�
��
��
�
��
��
�
��
��
�
��

���
���
������
���
������

�
�
��
�
��

�����
�����
����������
�����
����������
���������������
����������
����������

���
���
������
���
������
������
���
������
������

��������������
�������
��������������
�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������
�������

��
�
��
�
�
��
�
��
��
�
��
�
��
�
�
��
�
��
��

��������������
�������
��������������
�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
��������������

������
���
������
���
���
������
���
������
������
���
������
���
������
���
���
������

��������������
�������
��������������
�������
�������
��������������
�������

��
�
��
�
�
��
�

��������������
�������
��������������
�������
�������
��������������
�������
��������������
�������

��
�
��
�
�
��
�
��
�

��������������
�������

������
���

��������������
�������
��������������
�������
�������
�������

��
�
��
�
�
�

��������������
�������
��������������
�������
�������
��������������
�������

��
�
��
�
�
��
�

P
er

ce
n

ta
g

e
o

f
fu

n
ct

io
n

s

0

5

10

15

20

25

30

35

Functional Sequential Communicational Procedural Logical Coincidental Undefined

32

19

6

25

1
3

14

29

20

7

23

0

7

14

31

26

10

13

2

8
10

������
���

SC-4.1
���
������ SC-5.1
������
���

SC-6.8

Figure 5.1 Percentage of functions demonstrating various cohesions in the three versions
of spreadsheet SC

57

We analyzed four versions of UEMACS system, namely UEMACS-3.6, UEMACS-

3.7, UEMACS-3.8b, and UEMACS-3.9. The size related characteristics of UEMACS software

are presented in the Table 5.2. The UEMACS was originally written by Dave Conroy. The

four versions analyzed were written by Daniel Lawrence.

Table 5.2 Sizes of the three versions of text editor UEMACS

Program Name Author Lines of Code Number of functions
UEMACS-3.6 Daniel Lawrence 9771 191
UEMACS-3.7 '' 12592 268
UEMACS-3.8b '' 16023 315
UEMACS-3.9 '' 18884 359

Figure 5.2 shows the percentage of functions assigned each level of cohesion for the

four versions of UEMACS. The data is analyzed in Section 5.3.

��������������
�������
��������������
���������������������
��������������
�������
��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������

����������
�����
����������
���������������
����������
�����
����������
����������
���������������
����������
���������������
����������
���������������
����������
�����

��������������
�������
��������������

����������
�����
����������
���������������
����������
�����
����������
����������
���������������
����������
���������������
����������
���������������
����������
����������

��������������
�������
��������������

��������������
�������
��������������
���������������������
��������������
�������
��������������
�������

��������������
�������
��������������
���������������������
��������������
�������
��������������
�������

	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������������
�������
�������

��������������
�������
��������������
���������������������
��������������
�������
��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

���� �������
��������������
�������
�������
��������������
�������
��������������
��������������
�������
�������

����������
�����
����������
���������������
����������
�����
����������
����������
���������������
����������
���������������
����������
���������������
����������
���������������

�����
����������
�����
�����
����������
�����
����������
���������������
����������
���������������
����������
���������������
����������
���������������
����������
���������������
����������

�������
��������������
�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������

�����
����������
�����
�����

�������
��������������
�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
��������������

�����
����������
�����

�������
��������������
�������
�������
��������������
�������
��������������

�������
��������������
�������
�������
��������������
�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

����������
�����
����������
���������������
����������
�����
����������
����������
���������������
����������
���������������
����������
���������������
����������
���������������
����������

��������������
�������
��������������
���������������������
��������������
�������
��������������
��������������
���������������������
��������������
���������������������
��������������

��������������
�������
��������������
�������

��������������
�������
��������������
���������������������
��������������
�������
��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

��������������
�������
�������

����������
�����
����������
���������������
����������

��������������
�������
��������������
���������������������
��������������
�������
��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

P
er

ce
n

ta
g

e
o

f
fu

n
ct

io
n

s

0

5

10

15

20

25

30

Functional Sequential Communicational Procedural Logical Coincidental Undefined

29

22

3

23

3

10 10

24

18

2

21

1

10

24
25

18

3

23

2

7

22

25

18

4

22

2

7

22

������ UEMACS-3.6
���
������ UEMACS-3.7
 � � UEMACS-3.8B
!�!
!�!!�! UEMACS-3.9

Figure 5.2 Percentage of functions demonstrating various cohesions in the four versions
of text editor UEMACS

5.2 Experiment 3: Analysis of Course Projects

In Experiment 3, several different implementations of three different programming

problems were analyzed. These programs were developed in a senior level software

58

engineering course offered during the Spring 92, Spring 93, and Spring 94 semesters at the

University of Southwestern Louisiana (USL). The three programs developed are called

lex.scheme, calc, and kwic, respectively. The purpose of this experiment is to investigate how

well the cohesion of a module inferred from its specification matches that assigned to its

implementations by CMT.

An interesting and important property of the programs analyzed in this experiment is

that every implementation of each of the three systems contained a common set of functions

or modules, which we call interface functions. The functional and interface specification of

these interface functions were provided by the course instructor. Each of the programs

implemented these specifications. Compliance with these specifications was strictly enforced

by way of severe penalty for any deviation. Even though the functional and interface

specification of the interface functions were fixed, the choices of data structures, algorithms,

and other "hidden" functions were left to the programmer. Therefore, there are significant

differences between the multiple implementations of each function of each program.

Table 5.3 summarizes the characteristics of the three systems in terms of the number

of available implementations for each system and the average size of implementations for

each system.

Table 5.3 Characteristics of the lex.scheme, calc, and kwic systems

Semester System Name No. of implementations Avg. lines of code
Spring 92 lex.scheme 14 891
Spring 93 calc 20 938
Spring 94 kwic 24 667

Sections 5.2.1 through 5.2.3 describe the interface functions for the lex.scheme, calc,

and kwic systems, the average size (lines of code) of the implementations of the interface

functions for the three systems, and the results of the analysis of these systems by CMT.

Section 5.3.4 summarizes the results of the Experiment 3.

59

5.2.1 Analysis of the lex.scheme system

The program lex.scheme, a lexical analyzer for Scheme in C, was developed during

Spring 92. This program reads a sequence of characters from the standard input and

generates a sequence of tokens to the standard output. There were a total of twenty students

in the course. Each of the students developed an implementation of lex.scheme system.

The design of the lex.scheme system provided by the instructor had eleven interface

functions. Of the twenty implementations, fourteen were selected for consideration in this

experiment. The remaining six implementations were rejected because they contained

missing and/or inconsistent interface functions.

Table 5.4 provides the names of the interface functions, the average size of each

interface function, and the distribution of cohesion levels assigned by CMT. The numerical

value in a given row and column, with the exception of the column labeled "Avg. LOC", of

the Table 5.4 indicates the number of implementations of the corresponding interface

function that were found to have the level of cohesion that labels the column. The column

labeled "Stevens et al." gives the cohesion of interface functions based on Stevens et al.'s

definition.

Table 5.4 Analysis of lex.scheme: average size of interface functions and the number of
implementations of interface functions exhibiting various cohesions.

Shaded boxes denote cases discussed in Section 5.3.

Function Name Avg.
LOC

Stevens et
al.

Func Seq Comm Proc Logi Coin Undef

compare_token 24 functional 11 2 1
get_char 14 functional 6 7 1
get_token 72 functional 5 6 1 2
is_eof_char_stream 9 functional 13 1
is_eof_token 8 functional 13 1
main 22 functional 3 11
open_char_stream 31 functional 12 2
open_token_stream 46 functional 2 9 3
print_token 42 functional 8 1 1 4
unget_char 11 functional 6 1 1 6
unget_error 7 functional 3 11

60

5.2.2 Analysis of the calc system

The students in the Spring 93 semester developed the program calc, a simple

calculator in C. The calc system displays the prompt "calc> ", at which the following

commands can be given: (i) set <variable_name> to <expression> (ii) print

<variable_name> (iii) quit.

The design of the calc system presented by the instructor had ten interface functions.

Of a total of twenty two implementations of this system, twenty implementations were

included in this experiment. The remaining two implementations contained missing and/or

inconsistent interface functions and therefore were not included in the experiment. Table 5.5

provides the names of the interface functions, the average size of each interface function, and

cohesion levels assigned by CMT.

Table 5.5 Analysis of calc: average size of interface functions and the number of
implementations of interface functions exhibiting various cohesions.

Shaded boxes denote cases discussed in Section 5.3.

Function Name Avg.
LOC

Stevens et
al.

Func Seq Comm Proc Logi Coin Undef

assign_value 29 sequential 8 8 1 3
create_symtab 10 functional 19 1
evaluate_a_line 59 logical 1 6 13
get_token 65 functional 6 7 1 6
get_token_string 5 functional 20
get_token_type 5 functional 20
get_value 18 functional 9 9 2
initialize_calculator 12 temporal 20
main 24 functional 3 17
match_token_type 8 functional 18 2

5.2.3 Analysis of the kwic system

During Spring 94 the program kwic was developed. This program reads a set of lines

from a file and outputs KWIC index of the file to the standard output. The KWIC index of a

file S is the alphabetically ordered sequence of all the circular shifts of all lines in S. A line is

circularly shifted by repeatedly removing its first word and appending this word to the end of

61

the remaining line. There were 24 students in the course. Each student developed an

independent implementation of kwic system.

The design of the kwic system presented by the instructor had fourteen interface

functions. All the twenty four implementations of kwic system were included in this

experiment. Table 5.6 provides the names of the interface functions, the average size of each

interface function, and the results of the analysis by CMT.

Table 5.6 Analysis of kwic: average size of interface functions and the number of
implementations of interface functions exhibiting various cohesions.

Shaded boxes denote cases discussed in Section 5.3.

Function Name Avg.
LOC

Stevens et
al.

Func Seq Comm Proc Logi Coin Undef

alphabetize 22 functional 10 13 1
append_to_line 28 sequential 3 18 1 1 1
circular_shift 30 sequential 10 12 1 1
circulate_and_add_
line

33 sequential 22 1 1

dump_line 13 functional 14 1 9
dump_line_storage 22 functional 14 3 1 6
empty_line_storage 11 functional 23 1
get_line 18 functional 12 10 2
line_cmp 23 functional 6 8 7 1 2
line_to_string 23 functional 12 10 2
main 28 functional 11 13
num_of_lines 11 functional 19 3 2
num_of_words 14 functional 16 3 1 4
string_to_line 31 functional 15 6 3

Figure 5.3 summarizes the data of Table 5.4, Table 5.5, and Table 5.6. For each of

the programs, lex.scheme, calc, and kwic, the graph shows the percentage of implementations

exhibiting various levels of cohesion taking into account all the interface functions of a given

program. Tables B.5 through B.7 of Appendix B provide information on average number of

processing elements for implementations of the interface functions for each of three systems

studied in Experiment 3.

62

��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
��������������

������
������
������
���
������
������
���
������
������
���
������
������
���
������
������

��������������
��������������
���������������������
��������������
�������

��
��
��
�
��
�

��������� ��������������
��������������

��
��

����������
����������
���������������
����������
�����

������
������
������
���
������
���

��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�

��������������
��������������
���������������������
�������

������
������
������
���
���

	�	�	�	�	�	
�
�
�

�
�
�

�
�
�

�
�
�

�������������� �� ��������������
��������������
�������

��
��
�

������
������
���������
������
���������
������
���������
������
���������
������

��������������
��������������
���������������������
��������������
���������������������
��������������
��������������

��
��
��
�
��
��
�
��
��

�������������� ��
����������� ����������� ��������������

�������
��
�

��������������
��������������
�������

��
��
�

P
er

ce
n

ta
g

e
o

f
Im

p
le

m
en

ta
ti

o
n

s

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

Fu nc tiona l S e quen tia l C om m u n ica tiona l P roce dura l Lo g ica l C o inc id en ta l U nd e fin ed

53 .2 1

18 .8 7

0 0 .71 0

6 .5

20 .7 1

15 .5

1 .5

7

0

4

10

49 .1 3

32 .4 6

2 .38
0 .29

1 .79

5 .62
8 .33

62

������ le x .s c h e m e
���
���

c a lc
������ k w ic

Figure 5.3 Percentage of implementations in each cohesion category
for lex.scheme, calc, and kwic systems

From the graph of Figure 5.3, we can observe that a high percentage of

implementations of all functions indeed exhibit reasonably good levels of cohesion. In

general, functional cohesion, sequential cohesion, and communicational cohesion are

considered acceptable levels of cohesion. There is a small fraction of implementations with

coincidental cohesion. The reasons for this could be one or more of the following: (i) poor

design/implementation of the given specifications, (ii) possible side effects or poor

information hiding in the implementation, and (iii) implementation limitations of CMT in

canonicalizing identifiers representing function names and dealing with reference parameters

(see discussion in Section 5.3). The data presented in Figure 5.3 is discussed further in

Section 5.3.

5.3 Analysis of the data collected in the Experiments

In this section, we will analyze the data collected in Experiments 2 and 3. This is

done by making some observations of the data and providing rationale for these

observations.

63

Observation 1: The cohesion for 76%, 85%, and 54% implementations of function main of
the three programs lex.scheme, calc, and kwic, respectively, is undefined.
This ratio is much higher than for other functions, with the exception of the
function unget_error of program lex.scheme.

When is cohesion undefined? What is the reason for such high undefined
cohesion, especially for the function main?

CMT assigns an undefined cohesion to a function if it cannot recognize any variables

that constitute as output variables from that function. A variable is treated as an output

variable if it is a reference formal parameter or a global variable and there is at least one

definition of that variable within the function. The identifier corresponding to the name of a

function is also considered as an output variable if the function returns an explicit value

using a return statement. Since the assignment of cohesion level to a function is mainly

based on the interactions among output variables, the cohesion of a function with no output

variables is considered undefined.

It is possible to provide some situations which will lead to the assignment of cohesion

level of a function as undefined. The main function in a C program is a good candidate for

the assignment of undefined cohesion level if the program does not declare any global

variables. A function that merely uses the values of formal parameters and/or global

variables without actually changing them is also a good candidate for undefined cohesion

level. This happens in the case of functions that print the values of variables but do not

change them. In addition, functions that have no formal parameters and do not modify any

global variables, and functions with empty code sections are good candidates for the

assignment of undefined level of cohesion.

Observation 2: The total number of functions with undefined cohesion in all the programs,
see Figures 5.1, 5.2, and 5.3, range from 8.33% to 24%. The latter three
versions of the UEMACS show 22% to 24% functions with undefined
cohesion, whereas the functions with undefined cohesion in all the revisions
of SC range from 10% - 14%.

Why is the number of functions with undefined cohesion so high for
UEMACS?

64

In case of UEMACS-3.7, UEMACS-3.8b, and UEMACS-3.9, the percentage of

functions in the undefined category is significantly high, approximately 24%. Upon studying

the code of the corresponding functions, we found the following reason for this high number:

In all three versions, there are forty functions with the peculiarity that each has just one

statement, a call to another function. Each of these forty functions calls the same function

with some differences in the parameters. Since all the formal parameters of the forty

functions are passed by value, these variables do not constitute as output variables.

Therefore, CMT cannot determine cohesion for these functions.

Observation 3: Having functions with coincidental cohesion is not considered to be good
software engineering practice. Still 3% to 10% of functions in Experiment 2
are coincidental.

Is this large number alarming? Do the functions identified to have
coincidental cohesion really have coincidental cohesion?

From the analysis of our implementation of CMT, we can provide primarily two

reasons why our tool assigns coincidental cohesion to a function incorrectly:

1) Limitations of algorithm for canonicalizing variables: At present, CMT canonicalizes

only local variables. Global variables and formal parameters are not canonicalized.

However, we had not taken appropriate steps not to canonicalize definitions made to the

name of a function where a function returns explicit values using return statements. In

such cases, there will be several output variables without much relationship among them,

which leads to the assignment of coincidental cohesion.

2) An actual parameter corresponding to a formal reference parameter is considered as

being defined at the call site whether or not it is actually modified in the called function.

If this actual parameter is global in scope in the calling function or a formal parameter in

the calling function, then it will be treated as an output variable in the calling function.

Treatment of reference parameters in this manner may result in multiple output variables

for a fucntion without meaningful dependencies between these output variables and/or

65

between these output variables and other output variables that are really modified. The

relationships between such output variables tend to be coincidental.

Observation 4: About 65% of implementations of the function evaluate_a_line of the
program calc, see Table 5.5, are assigned procedural cohesion. This is the
only function in all the programs of Experiment 3 with such high numbers
of implementations with procedural cohesion.

The function evaluate_a_line is the only function of the lex.scheme, calc, and kwic

systems exhibiting high number of implementations with procedural cohesion. Examination

of the design specification of the calc system showed that this function performs a set of

activities (e.g., set, print, quit) that appeared to be logically cohesive. However, the

implementations of this function seem to be performing these activities within a common

procedural unit like a "while" loop. Therefore, the tool assigns procedural cohesion to the

implementations of the function evaluate_a_line.

Observation 5: About 75% implementations of the function append_to_line and 92%
implementations of the function circulate_and_add_line are assigned
sequential cohesion. Though quite a few of the implementations are
assigned sequential cohesion, the ratios for these particular functions are
high.

Examination of the specification of the function append_to_line showed that this

function takes pointers to two strings and returns the result of concatenating these strings.

The specification also indicates that the function may destroy the contents of one of these

strings as a possible side-effect. From this specification, we may infer that most of the

implementations did in fact change the contents of one of the strings and the changed string

depended on the other string for concatenation. The changed string must have been returned

using a return statement. Therefore, the output variables are those representing the function

name and the changed string. The output variable representing the function name is then

dependent on the changed string variable. This is clearly a case of sequential cohesion.

66

Twenty two implementations, out of a total of twenty four, of

circulate_and_add_line function were assigned sequential cohesion by CMT. Stevens et al.'s

definition would clearly assign sequential cohesion to this function since there are two

activities and the output of one activity (circulate) forms the input to the other (add). Here,

the assignment of sequential cohesion by CMT to this function clearly agrees with that of the

function's specification, and the intuition behind the Stevens et al.'s definition of sequential

cohesion.

Observation 6: About 71% to 81% of implementations in Experiment 3 are assigned
functional and sequential cohesion and only 7% to 13% implementations
are assigned other levels, except undefined.

Given that these programs were developed based on a "sound" design, does
the distribution convey anything about the cohesion measure?

Assuming that the design of the three systems is good and that the implementations

do not disagree with the design, one may infer from the distribution levels of Experiment 3

that an assignment of functional and sequential levels of cohesion, based on our measure,

indicates a module with a good design.

67

Chapter 6
Related Work

In this chapter, we investigate recent attempts at defining an objective measure for

module cohesion. Our focus will be on approaches to computing module cohesion for

function-based software systems where the term module refers to a procedure or a function in

a Pascal-like language. Patel [Patel92], Rising and Calliss [Rising92], and Embley and

Woodfield [Embley87] have proposed measures and/or guidelines for computing cohesion of

abstract data type based software systems where a module refers to a package-like construct

in Ada. These latter approaches are not discussed here as the presented research deals only

with function-based software systems.

6.1 Slice Based Cohesion Measures

In this section, we present some work on measures of cohesion based on program

slicing and Weiser's slice based metrics.

Program slicing is a method of program reduction or decomposition originally

proposed by Weiser [Weiser81, Weiser84]. Starting from a subset of a program's behavior,

slicing reduces that program to a minimal form of program, called a slice, that reflects the

same subset of behavior. The desired subset of behavior is specified using a slicing criterion.

A slicing criterion of a program P is a tuple <i,V> where i denotes a specific statement

number in P and V is a subset of variables in P. A slice S, of program P on slicing criterion

<i,V>, is an executable program that is a subset of P and whose execution behavior is the

same as what would be observed in the module P. Figure 6.1 shows the slice obtained for the

module sum_and_product1 of Figure 2.3 on slicing criterion <16,sum>.

Slices have since been used during software development in a number of ways. These

include debugging [Weiser82, Weiser86], software maintenance [Gallagher89], program

integration [Horwitz88], and software metrics [Longworth85, Thuss88, Ott89, Ott91]. These

68

applications use a restricted form of slicing in the sense that a slice is taken with respect to a

variable that is defined at or used at a program point p, whereas Weiser's definition of slicing

allows a program to be sliced with respect to a program point p and an arbitrary set of

variables.

1 procedure sum_and_product1 (m: integer; var sum: integer);
2 var i: integer;
3 begin
4 sum := 0;
6 i := 1;
7 while i <= m do begin
8 sum := sum + i;
10 i := i + 1;
11 end;
12 end;

Figure 6.1. Slice of sum_and_product1 with slicing criterion <16,sum>

6.1.1 Ott and Thuss

Ott and Thuss attempt to show that a connection exists between the intersection of

slices generated from the output variables of a module and the cohesion of a module [Ott89,

Thuss88]. They regrouped Stevens et al.'s seven levels of cohesion into four groups. The

four levels of cohesion they chose to use and their equivalents in Stevens et al.'s definitions

are:

Low Cohesion - Coincidental and Temporal

Control Cohesion - Logical and Procedural

Data Cohesion - Communicational

High Cohesion - Sequential and Functional

A variable is defined to be an output variable if it retains its value after the module

has completed execution. Slices are obtained for the output variables at the end statement of

a module. These slices are sometimes called end-slices [Lakhotia91a]. Slice profiles,

developed by Longworth [Longworth85], were used as a convenient representation for

revealing slice patterns within a module. A slice profile of a module is a table which includes

one column for each output variable of the module. Only variable-referent executable

69

statements (VRES) are shown in a slice profile. A "|" in a cell indicates that the

corresponding statement is included in the slice of the program with respect to the output

variable listed for that column. Table 6.1 shows the slice profile for the procedure

sum_and_product1 of Figure 2.3.

Table 6.1 Slice profile for procedure sum_and_product1

Line Sum Prod Statement
1 procedure sum_and_product1(m,n: integer; var sum,prod: integer);
2 var i,j: integer;
3 begin
4 | i := 1;
5 | sum := 0;
6 | while i <= m do begin
7 | sum := sum + i;
8 | i := i + 1;
9 end;

10 | j := 1;
11 | prod := 1;
12 | while j <= n do begin
13 | prod := prod * j;
14 | j := j + 1;
15 end;
16 end;

The level of cohesion of a module is then estimated by inspecting the intersection of

the slices obtained for the output variables of the module. These levels of cohesion are

defined as follows:

1) A module falls into low cohesion group if the intersection of slices of the output

variables is empty. The procedure sum_and_product1 of Figure 2.3 is an example of

low cohesion module.

2) A module exhibits control cohesion if the intersection of slices of the output variables

primarily contains control statements and definitions for the control variables. The

module sum_and_product2 of Figure 2.4 has control cohesion since the intersection of

the slices generated from the output variables contains only a loop statement and

statements that define loop variables.

70

3) A module tends to exhibit data cohesion if the intersection of slices of the output

variables contains non-control variable data definitions. The procedure

sum_and_product3 of Figure 2.5 is an example of module with data cohesion. This

module has three output variables x, sum, and prod. The module first defines the values

of the array X. The computation of sum and prod depends on the array X. The

intersection of the slices generated from the output variables contains the definition of

array X.

4) A module exhibits high cohesion if the slice of one output variable is entirely contained

in the slice of another output variable. The module sum_and_average of Figure 2.9 has

two output variables sum and average. The slice with respect to the variable average

totally contains the slice on variable sum. Therefore, the module has high cohesion.

Ott and Thuss's approach to determining module cohesion has the following limitations:

1) The definitions of control cohesion and data cohesion are subjective as they are not

precisely defined. Ott and Thuss do not explain how the cohesion of a module is

determined if the intersection of the slices of the output variables contains both control

and non-control statements as well as data definitions, i.e., they do not consider the

possibility that the processing elements of a module may be associated by more than one

level of cohesion.

2) Assignment of cohesion to a module using their approach is not consistent with that of

Stevens et al. Ott and Thuss classify the module sum_and_product4 of Figure 2.6 as

having control cohesion whereas Stevens et al. assign communicational cohesion (data

cohesion in terms of Ott and Thuss) to the same module.

3) Ott and Thuss's classification of levels of cohesion does not preserve the linear order

defined by Stevens et al. They classify temporal cohesion to be lower than logical

cohesion whereas Stevens et al. classify logical cohesion to be lower than temporal

cohesion.

71

4) The subset of language constructs considered in Ott and Thuss's approach does not

include procedure calls which are crucial to the communication between the modules of a

program.

6.1.2 Cohesion measures based on Weiser's slice based metrics

Weiser suggested the use of slicing as a basis for program metrics and proposed

several slice-based metrics that provide information about the structuring of a program

[Weiser81]. These metrics are called Coverage, Overlap, Clustering, Parallelism, and

Tightness. These metrics are not proposed originally as cohesion metrics by Weiser.

However, some of these metrics were later found to be indicators of module cohesion.

6.1.2.1 Longworth, Ott and Thuss

Weiser's slice based metrics were first applied to measuring cohesion by Longworth

[Longworth85]. He found that coverage, overlap, and tightness appeared to be related to

cohesion. Longworth applied these metrics to slices obtained using Weiser's definition of

slicing. In most cases, these metrics were found to be indicators of cohesion with some

exceptions. Longworth discovered the sensitivity of these metrics to the size and position of

the processing elements in a module. In some situations, this caused relatively low metric

values in modules having data or high cohesion.

Ott and Thuss [Ott91] attributed the sensitivity of these metrics to the absence of used

by relationships of the sliced variable in the corresponding slice. Slices as defined by Weiser

capture only the uses relationship of a sliced variable, i.e., they contain only those statements

which may have an effect on the value of the sliced variable at the statement prescribed by

the slicing criterion. These slices do not capture the used by relationship of a sliced variable,

i.e., they do not contain the statements that may be affected by the value of the sliced

variable. Ott and Thuss defined a new form of slicing to take into account both uses and used

by relationships of a sliced variable. These slices are called metric slices. A metric slice for

72

the variable v in module M, denoted by MSLICE(M,v), is defined in terms of relevant slice

(or backward slice) for the variable v, denoted by RSLICE(M,v), and dependent slice (or

forward slice) for the variable v, denoted by DSLICE(M,v). RSLICEs represent uses

relationships and DSLICEs represent dependent or used by relationships. The metric slice for

the variable v in module M is defined as

MSLICE(M,v) = RSLICE(M,v) ∪ DSLICE(M,v)

Ott and Thuss claim that metric slices can eliminate the sensitivity problems due to

the size and positioning of the processing elements. They have also expanded the list of

metrics to contain the following: Coverage, Overlap, Tightness, Parallelism, MinCoverage,

and MaxCoverage. The definitions of Coverage, Overlap, Tightness and Parallelism are

based on Weiser's original work [Weiser81] with some modifications made by Longworth

[Longworth85]. The definitions of MinCoverage and MaxCoverage are due to Ott and Thuss

[Ott91].

Table 6.2 provides the definitions of Coverage, Overlap, Tightness, Parallelism,

MinCoverage and MaxCoverage. Let VM be the set of all variables used by module M and

let V be a subset of VM containing only those variables considered in the metric

computations. The variables vi ε V are enumerated and the symbol SLi corresponds to the

slice obtained for vi. Let SLint be the intersection of all the SLi, that is

SL SL
i

V

iint = ∩
=1

.

Coverage (CM) is a comparison of the length of the slices to the length of the

module. Overlap (OM) is a measure of the average number of overlapping statements in all

the slices considered. Tightness (TM) is a measure of the number of statements included in

every slice. Parallelism (PM) measures the number of slices with few statements in

common. MinCoverage (MINM) measures the length of the shortest slice as a ratio to the

module length. MaxCoverage (MAXM) measures the length of the longest slice as a ratio to

the module length. All the metrics, except for PM, range from 0 to 1. For all metrics, except

73

for PM, higher metric values would indicate higher levels of cohesion. PM ranges from 0 on

up, with the assumption being that 0 indicates the highest level of cohesion.

Table 6.2 Definitions of slice based cohesion metrics

Metric Definition
Coverage (CM)

C
V

SL

MM
i

i

V

=
=

∑1

1

Overlap (OM)

O
V

SL

SLM
ii

V

=
=
∑1

1

int

Tightness (TM)

T
SL

MM = int

Parallelism (PM)
P SL SL SL j iM i i j= ∩ < <>{ } such that for all τ

MinCoverage (MINM)

MIN
M

SLM
i

i= 1
min

MaxCoverage (MAXM)

MAX
M

SLM
i

i= 1
max

Ott and Thuss have illustrated, using an example program, how slice profiles along

with slice based metrics may be used during maintenance process to indicate inappropriate

modularization or portions of the code that may require more effort to be understood

[Ott92a, Ott92c]. The slices obtained in these studies are intermodule slices. An intermodule

slice is similar to an intramodule slice except that the slice is computed through any

procedure invocations in the module being sliced [Horwitz90].

It is important to note that these slice based metrics are not true measures of

cohesion, although they appear to be useful as indicators of cohesion. Values of these metrics

that are between 0 and 1 only provide an indication of the level of cohesion if not an exact

level as defined by Stevens et al. These metrics are useful in the absence of any more precise

74

techniques that can provide true measures of module cohesion while still maintaining the

original intent of cohesion as defined by Stevens et al.

6.1.2.2 Bieman and Ott

Ott and Bieman studied the effects of software changes on module cohesion using a

variation of metric slice called metric data slice or data slice [Ott92b]. A metric data slice

contains, not statements, but data tokens, i.e., variable and constant definitions and

references. They could not make any sound conclusions except that the effects of changes on

module cohesion seemed to match their intuition concerning the expected effects on

particular cohesion attributes.

Bieman and Ott [Bieman94] continued this work on cohesion using metric data

slices. However, they concentrated on developing quantitative measures of functional

cohesion, the most desirable of the seven cohesion categories. In order to measure the

functional cohesion, they have defined the following terms: data slice, slice abstraction, glue

tokens, and super-glue tokens. Using these terms, they have provided three measures of

functional cohesion. These measures are called strong functional cohesion (SFC), weak

functional cohesion (WFC), and adhesiveness. The rest of this section provides the details of

these measures.

A data slice is defined as a sequence of data tokens (variable and constant definitions

and references) contained within the slice of the variable being considered. A slice

abstraction of a procedure P, SA(P), is a set of data slices of the output variables of the

procedure. A glue token is a data token that lies on more than one data slice. A super-glue

token is a data token that lies on all data slices in SA(P). The set of all glue tokens in

procedure P is denoted by G(SA(P)). Similarly, the set of all super-glue tokens is denoted by

SG(SA(P)). All super-glue tokens are also glue tokens, i.e., SG(SA(P)) ⊆ G(SA(P)). If

SA P() ≤ 2 , then SG(SA(P)) = G(SA(P)).

75

The three measure of functional cohesion SFC, WFC, and adhesiveness are now

defined in terms of the above pieces of information. Let tokens(p) denote the set of data

tokens in procedure p. Each appearance of a data token in a program is counted as a different

token, and each token can be in more than one data slice.

The strong functional cohesion (SFC) is defined as the ratio of super-glue tokens to

the total number of data tokens in a procedure p:

SFC p
SG SA p

tokens p
()

(())

()
= .

The weak functional cohesion(WFC) is defined as the ratio of glue tokens to the total

number of tokens in a procedure p:

WFC p
G SA p

tokens p
()

(())

()
= .

The adhesiveness of a token is the relative number of slices that it glues together. The

adhesiveness, α, of a token t in procedure p is defined as follows:

α

α

(,)
#

()
(())

(,) (())

t p
of slices in p containing t

SA p
t G SA p

t p t G SA p

= ∈

= ∉

if

if0

The overall adhesiveness, A, for procedure p is computed as the ratio of the amount

of adhesiveness to the total possible adhesiveness:

A p

of slices containing t

tokens p SA p
t G SA p()

#

() . ()
(())= ∈
∑

The value of these cohesion measures (strong functional cohesion, weak functional

cohesion, and adhesiveness) range from zero to one. Bieman and Ott show analytically the

following relationship between the three functional cohesion measures: SFC(p) ≤ A(p) ≤

WFC(p). In their work, they concluded that a module with only coincidental cohesion, as per

Stevens et al., will measure near zero for all the three of their measures. However, they did

76

not know how their measures would evaluate modules that fall into the other cohesion

classes.

6.2 Emerson's Approach

In an effort to measure cohesion, Emerson defined a discriminant metric for module

cohesion [Emerson84]. He grouped Stevens et al.'s seven levels of cohesion into three

groups: Type I = {functional, sequential, communicational}, Type II = {procedural,

temporal}, and Type III = {logical, coincidental}. In his approach, a program is represented

as a reduced flow graph. A reduced flow graph F of a program M is constructed from the

program's flow graph F' by deleting from F' any vertex corresponding to an executable

statement of M which does not contain a reference to a variable. For every vertex x deleted

from F', arcs terminated at x in F' now terminate at the successor vertex to x in F. For every

variable i referenced in the reduced flow graph F of a program, a reference set Ri is defined.

Ri is the set of vertices of F which refer to the i-th variable, assuming that the variables have

been enumerated 1,2,...v. The cohesion of a reference set Ri, denoted by k(Ri,F), is defined

as follows:

k R F
R R

VF T Fi
i i(,)

dim

{ } dim
=

−

where dim Ri is the number of elements in a maximal linearly independent set of complete

paths which pass through the vertex set Ri, VF is the number of vertices of F, T is the

terminal vertex, and dim F is the number of linearly independent paths in F.

Finally, the cohesion of the module M, denoted by k(F), is defined to be the average

cohesion of the reference sets as shown below:

k F

k R F

v

i
i

v

()

(,)

= =
∑

1

77

Intuitively, given that there are m maximally independent paths and n variables in a

program, Emerson's approach associates a high value of cohesion if each path references all

n variables. As the number of paths that do not reference one or more variables increases, the

cohesion of the program decreases.

Emerson claims, without much empirical evidence, that his measure discriminates

between the three groups of cohesion. He also provides boundary values between the three

groups of cohesion.

The choice of flow graph as means to model the program and to determine the

module cohesion seems to reduce the credibility of his measure. Program flow graphs only

represent the sequence of execution in a program and not the control or data dependence

between statements. Therefore, measuring cohesion, a concept that requires knowledge about

the control and/or data dependencies in a program, based solely on the flow graph

representation of a program, will lead to incorrect cohesion. Also, determining the cohesion

of a module using his approach is not easy because of the ambiguous nature of the range

values and the difficulties involved in getting meaningful values for these ranges for a given

language.

6.3 Other work on cohesion measures

There are several other studies that examined cohesion indicators rather than

attempting to measure cohesion directly [Troy81, Card86, Hutchens85, Selby91].

Troy and Zweben [Troy81], in their study of measuring the quality of structured

designs, had investigated the following design features as measures of cohesion:

1. The number of effects listed in the design document;
2. The number of effects other than I/O errors;
3. The maximum fan-in to any one box in the structure chart;
4. The average fan-in in the structure chart; and
5. The number of possible return values.

78

Troy and Zweben did not find evidence of a clear relationships between these design

features and the quality of the software. In their work, quality is measured by the number of

source code modifications. They did not attempt to show a relationship between these design

measures and cohesion. The results of their investigation may mean that cohesion is not

related to number of source code modifications or that these measures are not indicative of

cohesion.

Card, Church, and Agresti [Card86] conducted an empirical study of software design

practices in a FORTRAN-based scientific computing environment. The practices examined

affect module size, module cohesion, data coupling, descendant span, unreferenced variables,

and software reuse. Measures characteristic of these practices were extracted from

FORTRAN modules developed for five flight dynamics software projects monitored by

Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault

rate was then analyzed. In their study of module cohesion as a design practice, each

FORTRAN module was rated as performing as one or more of the following functions:

input/output, logic/control, and/or algorithmic processing. Those modules described as

having only one function were classified as high cohesion; those having two functions,

medium cohesion; and those having three or more functions, low cohesion. They found that

fifty percent of high-cohesion modules were fault free, whereas only eighteen percent of

low-cohesion modules were fault free. They did not find any significant relationship between

module cohesion and development cost. However, they concluded that developing high-

cohesion modules is a good practice.

Selby and Basili [Selby91] used data bindings [Hutchens85], a measure based on data

interactions, as the basis for calculating cohesion and coupling and analyzing system

structure. Routines (main program, procedure, or function) are placed into clusters based on

the data bindings. The coupling of a cluster with other clusters is determined. A ratio of the

cluster coupling to the internal strength of a cluster is computed. Their experiment indicated

that clusters with high coupling/strength ratio had the most errors and the highest error

79

correlation efforts. Selby and Basili, however, did not attempt to show a relationship

between their measure and cohesion.

6.4 Comparison with Related Works

This section provides a comparison of our approach to other approaches discussed in

related work using the sample programs listed in Chapter 2. Assignment of cohesion levels to

these modules by Stevens et. al's, Lakhotia and Nandigam's, Ott and Thuss's (four levels of

cohesion), and Emerson's approaches is provided in Table 6.3. Table 6.4 presents the

assignment of cohesion levels to the same modules using Ott and Thuss's (based on metric

slices), Ott and Bieman's (based on metric data slices), and Bieman and Ott's (based on

functional cohesion measures) approaches. A (*) in the following tables indicates that the

cohesion assigned to that module differs from that assigned by Stevens et al.

Table 6.3 Comparison of various cohesion measures - Part I

Approach →→
Module ↓↓

Stevens et al. Lakhotia and

Nandigam

Ott and Thuss

(1988-89)

Emerson

sum_and_product1 coincidental coincidental low Type II (*)

sum_and_product2 procedural procedural control Type II

sum_and_product3 communicational communicational data Type II (*)

sum_and_product4 communicational communicational control (*) Type II (*)

sum_or_product1 logical logical control Type III

sum_or_product2 logical logical low (*) Type III

sum_and_average sequential sequential high Type II (*)

compute_sum functional functional high Type I

Table 6.4 Comparison of various cohesion measures - Part II

Approach →→
Module ↓↓

Ott and Thuss
(based on metric slices;)

1991-92

Ott and Bieman
(based on metric data slices)

1992

Bieman & Ott
(functional cohesion)

1994

C O T Min Max C O T Min Max SFC WFC A

sum_and_product1 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0

sum_and_product2 0.71 0.6 0.43 0.71 0.71 0.71 0.6 0.43 0.71 0.71 0.43 0.43 0.43

sum_and_product3 0.57 0.51 0.29 0.49 0.64 0.6 0.51 0.3 0.49 0.65 0.3 0.58 0.49

sum_and_product4 0.71 0.6 0.43 0.71 0.71 0.71 0.58 0.42 0.71 0.71 0.42 0.42 0.42

sum_or_product1 0.55 0.16 0.09 0.55 0.55 0.56 0.22 0.13 0.56 0.56 0.13 0.13 0.13

sum_or_product2 0.5 0.0 0.0 0.5 0.5 0.53 0.11 0.06 0.53 0.53 0.06 0.06 0.06

sum_and_average 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

compute_sum 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

80

It can be seen from the Table 6.3 that the assignment of cohesion to modules using

our approach is consistent with that of Stevens et al. The data in Table 6.4 is difficult to

interpret and determining the level of cohesion of a module based on these numbers is not

objective, except when the value of the metric is either 1.0, indicating very high cohesion, or

0.0, indicating very low cohesion.

81

Chapter 7
Research Contributions and Future Work

7.1 Research Contributions

This dissertation makes the following contributions to the broad area of software

engineering and to the field of software metrics in particular:

1) An objective measure for determining the cohesion of a module has been proposed. It

has been shown that the proposed measure attempts to preserve the intent of the

original definitions of the same by Stevens et al.

2) The proposed measure for cohesion is algorithmically computable. To show that this

is indeed the case, a software tool, named CMT (for Cohesion Measurement Tool),

has been developed. To demonstrate that CMT is not a tool that can process only toy-

like programs and can, in fact, handle large programs, we have tested the tool on

industrial-strength software systems obtained from public domain sources.

3) Realizing the importance of empirical validation in software engineering and

software metrics, this research has attempted to validate the proposed measure using

a controlled experiment. The initial results of the data analysis of the experiment data

are very encouraging. The experience gained from the design and analysis of this

experiment will have profound impact on continuing and improving the similar kind

of empirical validation involving our measure for module cohesion.

4) The proposed measure for module cohesion is language-independent and therefore

makes it applicable to most procedural languages.

7.2 Future Work

There are several promising directions for continuing the work accomplished in this

research. The possible directions for extending this work broadly fall into five areas:

82

1) Better measures - the proposed rules for various levels of cohesion can be

analyzed formally and improved.

2) Language tools - development of metric tools for measuring the cohesion of

programs written in languages such as Pascal, FORTRAN, etc.

3) Program decomposition - techniques and tools to decompose a module which is

not cohesive into two or more sub-modules with higher cohesion than the parent

module. The challenging task here is to generate sub-modules that are executable.

4) Empirical studies - design of controlled experiments to investigate the effects of

module cohesion on such external product attributes as modifiability,

maintainability, reliability, etc.

5) Explanation capabilities - facilities for the explanation of why a certain cohesion

level was assigned to a module. This may encourage the programmer or

maintainer of the module to rewrite the module to improve the cohesion of the

module.

83

References

[Aho86] Aho, A. V., Sethi, R. and Ullman, J. D., Compilers Principles,
Techniques, and Tools, Addison-Wesley, 1986.

[Baker90] Baker, A. L., Bieman J. M., Fenton, N., Gustafson, D. A., Melton, A. and
Whitty, R., "A Philosophy for Software Measurement," Journal of
Systems Software, Vol. 12, 1990, pp 277-281.

[Bieman94] Bieman, J. M. and Ott, L. M., "Measuring Functional Cohesion," IEEE
Transactions on Software Engineering, Vol. 20, No. 8, August 1994, pp
644-657.

[Brooks80] Brooks, R., "Studying Programmer Behavior Experimentally: The
Problems of Proper Methodology," Communications of ACM, Vol. 23,
No. 4, April 1980, pp 207-213.

[Card86] Card, D. N., Church, V. E. and Agresti, W. W., "An empirical study of
software design practices," IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2, February 1986, pp. 264-271.

[Conte86] Conte, S. D., Dunsmore, H. E. and Shen, V. Y., A Software Engineering
Metrics and Models, Benjamin / Cummings, 1986.

[Couch87] Couch, J. V., Fundamentals of Statistics for the Behavioral Sciences, West
Publishing Company, 1987.

[Embley87] Embley, D. W. and Woodfield, S. N., "Cohesion and Coupling for
Abstract Data Types," Proc. 6th Phoenix Conf. on Computers and
Communications, Phoenix, Arizona, Feb. 1987, pp 229-234.

[Emerson84] Emerson, T. J., "A Discriminant Metric for Module Cohesion," 7th
International Conference on Software Engineering, March 1984, pp 294-
303.

[Fenton91] Fenton, N. E., Software Metrics - A Rigorous Approach, Chapman & Hall,
1991.

[Ferrante87] Ferrante, J., Ottenstein, K. J. and Warren, J. D., "The program dependence
graph and its use in optimization," ACM Transactions on Programming
Languages and Systems, Vol. 9, No. 3, July 1987, pp 319-349.

[Gallagher89] Gallagher, K. B., Using Program Slicing in Software Maintenance, PhD
thesis, University of Maryland, Baltimore, Maryland, December 1989.

84

[Goradia93] Goradia, T. S., Dynamic Impact Analysis: Analyzing Error Propagation in
Program Executions, Ph.D. Thesis, Dept. of Computer Science, New
York University, November 1993.

[Hecht77] Hecht, M. S., Flow Analysis of Computer Programs, North-Holland, Inc.,
1977.

[Horwitz88] Horwitz, S., Prins, J. and Reps, T., "Integrating Non-Interfering Versions
of Programs," Conf. Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, January 1988.

[Horwitz90] Horwitz, S., Reps, T. and Binkley D., "Interprocedural Slicing Using
Dependence Graphs," ACM Transactions on Programming Languages
and Systems, Vol. 12, No. 1, January 1990, pp 26-60.

[Hutchens85] Hutchens, D. H. and Basili, V. R., "System Structure Analysis: Clustering
with Data Bindings," IEEE Transactions on Software Engineering, Vol.
SE-11, No. 8, August 1985, pp. 749-757.

[Karstu94] Karstu, S., An Examination of the Behavior of Slice Base Cohesion
Measures, Master's Thesis, Michigan Technological University,
Department of Computer Science, August 1994.

[Lakhotia93] Lakhotia, A, "Ruled-based approach to computing module cohesion," 15th
International Conference on Software Engineering, May 1993.

[Lakhotia91a] Lakhotia, A, Insights into relationships between end-slices, CACS TR-91-
5-3, The Center for Advanced Computer Studies, University of
Southwestern Louisiana, Lafayette, La., September 1991.

[Lakhotia91b] Lakhotia, A. and Nandigam, J., Computing Module Cohesion, CACS TR-
91-5-4, The Center for Advanced Computer Studies, University of
Southwestern Louisiana, Lafayette, La., November 1991.

[Lengauer79] Lengauer, T. and Tarjan, R. E., "A fast algorithm for finding dominators
in a flow graph," ACM Transactions on Programming Languages and
Systems, Vol. 1, No. 1, July 1979, pp 121-141.

[Lewis91] Lewis, T. G., CASE: Computer-Aided Software Engineering, Van
Nostrand Reinhold, 1991.

[Longworth85] Longworth, H. D., Slice Base Program Metrics, Mater's Thesis, Michigan
Technological University, 1985.

[Mosteller67] Mosteller, F., Rourke, R. E. K. and Thomas, G. B., Probability and
Statistics, Addison-Wesley Publishing Company, 1967.

85

[Myers75] Myers, G. J., Reliable Software through Composite Design, Petrocelli /
Charter, 1975.

[Myers78] Myers, G. J., Composite / Structured Design, Van Nostrand Reinhold
Company, 1978.

[Newmark92] Newmark, J., Statistics and Probability in Modern Life, 5th edition,
Sanders College Publishing, A Harcourt Brace Jovanovich College
Publisher, 1992.

[Ott89] Ott, L. M. and Thuss, J. J., "The Relationship between Slices and Module
Cohesion," Proc. 11th International Conference on Software Engineering,
May 1989, pp 198-204.

[Ott91] Ott, L. M., Slice Based Metrics for Estimating Cohesion, Technical
Report CS-TR 91-04, Department of Computer Science, Michigan
Technological University, November 1991.

[Ott92a] Ott, L. M., Using Slice Profiles and Metrics during Software
Maintenance, Technical Report CS-TR 92-02, Department of Computer
Science, Michigan Technological University, January 1992.

[Ott92b] Ott, L. M. and Bieman, J. M., Effects of Software Changes on Module
Cohesion, Technical Report CS-TR 92-06, Department of Computer
Science, Michigan Technological University, March 1992.

[Ott92c] Ott, L. M. and Thuss J. J., Using Slice Profiles and Metrics As Tools in
the Production of Reliable Software, Technical Report CS-TR 92-08,
Department of Computer Science, Michigan Technological University,
April 1992.

[Page-Jones88] Page-Jones, M., The Practical Guide to Structured Systems Design, 2nd
Edition, Yourdon Press Computing Series, 1988.

[Patel92] Patel S., Chu, W. and Baxter, R., A Measure for Composite Module
Cohesion, Lockheed Software Technology Center, Lockheed Palo Alto
Research Laboratories, Orgn. 96-10, Bldg. 254E, 3251 Hanover Street,
Palo Alto, CA, 1992.

[Pressman92] Pressman, R. S., Software Engineering: A Practitioner's Approach, 3ed,
McGraw Hill, 1992.

[Reasoning85] REFINE User's Guide, Reasoning Systems, Palo Alto, CA, 1985.

[Reasoning89] DIALECT User's Guide, Reasoning Systems, Palo Alto, CA, 1989.

86

[Reasoning91] INTERVISTA User's Guide, Reasoning Systems, Palo Alto, CA, 1991.

[Reasoning92a] REFINE/C User's Guide, Reasoning Systems, Palo Alto, CA, 1992.

[Reasoning92b] REFINE/C Programmer's Guide, Reasoning Systems, Palo Alto, CA, 1992.

[Reasoning92c] YOYO control-flow-graph system,version 2, Reasoning Systems, Palo
Alto, CA, 1992.

[Reasoning92d] REFINE/C extension for generating control-flow graphs, Reasoning
Systems, Palo Alto, CA, 1992.

[Rising92] Rising, L and Calliss, F. W., "Problems with determining package
cohesion and coupling," Software - Practice and Experience, Vol. 22(7),
July 1992, pp 553-571.

[Selby91] Selby, R. W., and Basili, V. R., "Analyzing Error-Prone System
Structure," IEEE Transactions on Software Engineering, Vol. 17, No. 2,
February 1991, pp. 141-152.

[Sommerville89] Sommerville, I., Software Engineering, 3 ed, Addison Wesley, 1989.

[Stevens74] Stevens, W. P., Myers, G. J. and Constantine, L. L., "Structured Design,"
IBM Systems Journal, Vol. 13, No. 2, May 1974.

[Sundaresan94] Sundaresan, G., Constructing Control Dependence Graphs, Course
Project, The University of Southwestern Louisiana, Lafayette, La, 1994.

[Thuss88] Thuss, J. J., An Investigation into Slice Based Cohesion Metrics, Master's
Thesis, Michigan Technological University, 1988.

[Troy81] Troy, D. A., and Zweben, S. H., "Measuring the Quality of Structured
Designs," The Journal of Systems and Software, Vol. 2, pp 113-120, 1981.

[Weiser81] Weiser, M., "Program Slicing," Proc. 5th International Conference on
Software Engineering, March 1981, pp 439-449.

[Weiser82] Weiser, M., "Programmers use slicing when debugging," Communications
of ACM, Vol. 25, July 1982, pp 446-452.

[Weiser84] Weiser, M., "Program Slicing," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 4, July 1984, pp 352-357.

[Weiser86] Weiser, M. and Lyle, J., "Experiments on Slicing-Based Debugging
Aids," In Soloway, E. and Iyengar, S. (Editors), Empirical Studies of
Programmers, Ablex Publishers, Norwood, NJ, 1986.

87

[Winer71] Winer, B. J., Statistical Principles in Experimental Design, 2ed, McGraw-
Hill Book Company, 1971.

[Yourdon78] Yourdon, E. and Constantine, L. L., Structured Design, Yourdon Press,
1978.

[Yourdon79] Yourdon, E. and Constantine, L. L., Structured Design - Fundamentals of
a Discipline of Computer Program and Systems Design, Prentice-Hall,
Inc., 1979.

[Zuse91] Zuse, H., Software Complexity - Measures and Methods, Walter De
Gruyter, 1991.

88

Appendix A
Cohesion Measurement Tool (CMT)

We have developed a tool, named CMT (Cohesion Measurement Tool), that

determines the cohesion of functions in a C program. The CMT is a robust tool that has been

tested on several large software systems. This chapter describes the architecture of CMT, its

subcomponents, and an example session with CMT to demonstrate its use.

A.1 Architecture of the CMT

The CMT has been implemented on Software Refinery using the REFINE

programming language [Reasoning85]. It consists of the following components: Data-flow

Analyzer, Variable Canonicalizer, Control-dependence Analyzer, VDG Constructor, and

Cohesion Analyzer. Additionally, it also uses the REFINE/C interactive workbench and the

REFINE/C extension for Control-flow graphs provided by Reasoning Systems, Inc.

[Reasoning92a, Reasoning92b, Reasoning92c, Reasoning92d]. Figure A.1 gives the data

flow architecture of CMT.

The REFINE language provides an integrated treatment of set theory, logic,

transformation rules, pattern matching, and procedure. It provides a powerful object base and

primitives for manipulating objects in the object base. This object base is used to store

REFINE programs and other software-related objects from application domain. The Software

Refinery environment provides development tools such as the command interface, the

context mechanism, the on-line help system, browser/editor for the object base, interactive

user interfaces for REFINE applications, customizable lexical analyzers and parsers, and the

debugging system [Reasoning89, Reasoning91].

89

Figure A.1 The Data Flow Architecture of CMT

A.2 Components of the CMT

This section describes the following components of CMT: REFINE/C interactive

workbench, REFINE/C control-flow graph generator, control dependence analyzer, data-flow

analyzer, variable canonicalizer, VDG constructor, cohesion evaluator, and user interface.

A.2.1 REFINE/C Interactive Workbench

REFINE/C is an extensible, interactive workbench used to understand, analyze,

evaluate, and redocument existing C programs. REFINE/C performs the following actions

when analyzing a C program:

1) reads the C source code and represents the program as an abstract syntax tree (AST)

in REFINE's object base,

2) analyzes the AST and stores analysis results in a symbol table format.

90

REFINE/C also provides an Application Programmer's Interface (API) so that one can

use its reverse engineering features to build customized analysis tools. With the help of API,

CMT uses REFINE/C to achieve the first of the actions listed above. The second action

performed by REFINE/C is replaced with CMT's own analysis components.

Figure A.2 shows how REFINE/C represents the following C function definition in the

form of an abstract syntax tree (AST):

int fact(n)
int n;
{

if (n < 2)
 return 1;
else
 return n * fact(n-1);

}

Figure A.2 Function fact and its Abstract Syntax Tree

91

A.2.2 REFINE/C Cfg Generator

REFINE/C control-flow-graph generator is an extension of REFINE/C that generates

intraprocedural control-flow graphs for C functions [Reasoning92d]. REFINE/C cfg generator

works on top of CFG system provided by Reasoning Systems [Reasoning92c]. The CFG

system is a language-neutral system for representing and analyzing control-flow information

about programs. The CFG system represents a control-flow graph as a network of REFINE

objects. There are four main object classes used in representing control-flow graphs:

CONTROL-FLOW-GRAPH, CFG-NODE, CFG-EDGE, and CFG-CONDITION. These are

used to represent, respectively, the following: (1) an entire control-flow graph, (2) a node

(basic block) in a control-flow graph, (3) an edge between two nodes in a control-flow

graph, and (4) the condition under which a CFG-EDGE is taken to exit a CFG-NODE.

Figure A.3 shows the control-flow graph generated by REFINE/C Cfg Generator for

the following C function that computes the sum of integers 1 through n:

1 void compute_sum(int *s, int n)
2 {
3 int i;
4
5 *s = 0;
6 for (i = 0; i < n; i++)
7 *s = *s + i;
8 }

Figure A.3 Function compute_sum and its control flow graph

92

A.2.3 Control Dependence Analyzer

The control dependence analyzer constructs control dependence graphs of functions

using as input the control-flow graphs generated by the REFINE/C Cfg Generator. The control

dependence analyzer, developed by Sundaresan [Sundaresan94], implements the algorithms

presented by Lengauer et al. [Lengauer79] and Ferrante et al. [Ferrante87] to construct post

dominator trees and control dependence graphs. The algorithm by Lengauer et al.

[Lengauer79] requires modifying the control-flow graph generated by the REFINE/C Cfg

Generator by adding a special node called entry node and two edges. One edge is added from

the entry node to the start node and is labeled true. The second edge is added from the entry

node to the finish node and is labeled false. A control dependence graph is then constructed

based on the modified control flow graph. Figure A.4 shows the control-flow graph of

Figure A.3 with the modifications and the corresponding control dependence graph.

Figure A.4 A control flow graph and the corresponding control dependence graph

A.2.4 Data-flow Analyzer

The data-flow analyzer of CMT performs the following functions: (i) identifies the

definitions created within each basic block of a control-flow graph, (ii) implements the

93

iterative algorithm by Aho et al. for computing reaching definitions [Aho86], (iii) identifies

definitions that are used in the definition of a variable, and (iii) identifies definitions that are

transitively used in the definition of a variable.

As an example, Table A.1 shows, for the control-flow graph in Figure A.4, the

definitions created within each block (DEFS), the definitions that reach the top of each block

(RD-IN), and the definitions that reach the bottom of each block (RD-OUT). The data-flow

analyzer keeps track of more information about the definitions than could be presented in the

example without affecting clarity. This additional information includes the identification of

the function in which the definition was created, the expression which contains the

definition, whether the definition is local or global to the function, the line number of the

program statement that contains the definition, etc. In Table A.1, each tuple, representing a

definition, contains three fields: (i) variable defined, (ii) defining expression, and (iii)

number of source-level program statement that defines the variable. A "?" denotes that the

corresponding field is irrelevant to that definition.

Table A.1. A subset of information generated by the data-flow analyzer of CMT

Basic Block Id RD-IN DEFS RD-OUT
B0 {} {(s,?,1),(n,?,1)} {(s,?,1),(n,?,1)}
B1 {(s,?,1),(n,?,1)} {} {(s,?,1),(n,?,1)}
B2 {(s,?,1),(n,?,1)} {(s,*s=0,5),(i,i=0,6)} {(s,*s=0,5),(i,i=0,6),

 (n,?,1)}
B3 {(n,?,1),(s,*s=0,5),

 (s,*s=*s+i,7),
 (i,i=0,6),(i,i++,6)}

{} {(n,?,1),(s,*s=0,5),
 (s,*s=*s+i,7),
 (i,i=0,6),(i,i++,6)}

B4 {(n,?,1),(s,*s=0,5),
 (s,*s=*s+i,7),
 (i,i=0,6),(i,i++,6)}

{(s,*s=*s+i,7),
 (i,i++,6)}

{(s,*s=*s+i,7),
 (n,?,1),(i,i++,6)}

B5 {(n,?,1),(s,?,1),
 (s,*s=0,5),
 (s,*s=*s+i,7),
 (i,i=0,6),(i,i++,6)}

{} {(n,?,1),(s,?,1),
 (s,*s=0,5),
 (s,*s=*s+i,7),
 (i,i=0,6),(i,i++,6)}

94

A.2.5 Variable Canonicalizer

The variable canonicalizer is responsible for canonicalizing variables in a program.

A variable is canonicalized if all definitions of the variable are related, i.e., they are defined

to achieve a single purpose. A module in which every variable is canonicalized is said to be a

canonicalized module.

The variable canonicalizer performs this task by grouping definitions of a variable

within a module into one or more sets such that all definitions belonging to a set are

reachable at one or more uses of that variable. A variable is canonicalized if there exists only

one such set for that variable. A variable is not canonicalized if there are multiple sets of

definitions for that variable. Once this partitioning of definitions of variables is done, a

variable can be easily canonicalized by replacing, each occurrence of the variable from a set

with a unique name. This replacement will not affect the functionality of the module. The

replacement of variables with unique names is not done by changing the source code, but by

maintaining the information of the set to which a particular definition belongs to. The

variable canonicalizer implements the algorithms presented in Figure 4.22 for canonicalizing

variables. For example, consider the C function in Figure A.5:

1 compute_sum_and_prod(int m,int n,int *sum,int *prod)
2 {
3 int i;
4
5 *sum = 0;
6 for (i = 1; i <= m; i++)
7 *sum = *sum + i;
8 *prod = 1;
9 for (i = 1; i <= n; i++)
10 *prod = *prod * i;
11 }

Figure A.5 An example C function that computes sum and product of numbers

In the above module, the instances of variable i involved in the computation of sum

are not related to the instances of variable i involved in the computation of product. We can

95

safely replace every instance of the variable i involved in the computation of product, for

example, with a unique variable without affecting the functionality of the module. CMT does

not necessarily do the renaming of variables, but keeps information to distinguish the uses of

variable i involved in the computation of sum from the uses of variable i involved in the

computation of product.

A.2.6 VDG Constructor

The VDG Constructor uses control-flow, data-flow, and variable canonicalization

information to represent data and control dependencies between the variables of a module in

the form of a variable dependence graph (VDG). In a VDG, the nodes represent the variables

and edges represent data and/or control dependencies between the variables. The VDG

Constructor also performs interprocedural analysis by propagating any dependencies that

exist between the formal parameters of a called function as data dependencies between the

corresponding actual parameters at the call site.

Figure A.6 shows the VDG of function compute_sum_and_prod of Figure A.5. The

effect of variable canonicalization can be seen in Figure A.6 in the case of variable i which

was used in computing both sum and product. The variable canonicalizer determines that the

variable i in the computation of sum is different from the variable i in the computation of

product. This information is used by the VDG Constructor to create two separate nodes for

the variable i.

Figure A.6 Variable dependence graph for function compute_sum_and_prod

96

A.2.7 Cohesion Analyzer

The cohesion evaluator applies our rules of cohesion to the variable dependence

graph of a module and determines the cohesion of that module. The two REFINE functions

shown below encode cohesion rules for sequential and communicational cohesion levels. The

function sequential-cohesion? takes two REFINE objects of type vdg-node and returns true if

there is a data or control dependence edge from one node to another node; it returns false

otherwise.

Rule for Sequential Cohesion: x → y ∨ y → x (see Table 3.1)

function sequential-cohesion? (node-x: vdg-node,
node-y: vdg-node) : boolean =

 (ex (x) (x in vdg-node-out-edges(node-x) &
 vdg-edge-to(x) = node-y))
 or-else
 (ex (x) (x in vdg-node-out-edges(node-y) &
 vdg-edge-to(x) = node-x))

The function communicational-cohesion? also takes two REFINE objects of type vdg-

node and returns true if both these nodes have a data dependence on a same third node or a

third node has data dependence on both of these nodes.

Rule for Communicational Cohesion:

∃ → ∧ → ∨ → ∧ →z z x z y x z y zD D D D() () (see Table 3.1)

function communicational-cohesion? (node-x: vdg-node,
node-y: vdg-node) : boolean =

 (ex (x,y) (x in vdg-node-out-edges(node-x) &
 data-edge(x) &

 y in vdg-node-out-edges(node-y) &
 data-edge(y) &

 vdg-edge-to(x) = vdg-edge-to(y)))
 or-else
 (ex (x,y) (x in vdg-node-in-edges(node-x) &

 data-edge(x) &
 y in vdg-node-in-edges(node-y) &
 data-edge(y) &

 vdg-edge-from(x) = vdg-edge-from(y)))

97

A.2.8 CMT's User Interface

In CMT, the top-level description of a C program is defined as an instance of the

object class program, typically in ".prog" file. The ".prog" file is similar to a make file that C

programmers use to specify which C source files are compiled and linked to form an

executable. The ".prog" file specifies a program name, a directory, and a set of C source files

in that directory. REFINE/C provides two functions, called parse-program-file and parse-

program, to build a program object and analyze the individual C source files specified in the

program definition. An example of a program definition in ".prog" file is shown below:

program prog1
directory "~jn/TestCases/"
files "main.c"; "sum.c"

The CMT's consists of a collection of functions that can be invoked to get such

information as control-flow graph of a function, control dependence graph of a function,

reaching definitions for each block of a control-flow graph of a function, variable

dependence graph of a function, and variable dependence graphs of all functions in a

program. The tool also provides utilities to dump variable dependence graph and cohesion

level information of each function in a C program to external files.

A.3 An Example Session with CMT

In this section, we will analyze a C program with CMT to determine the cohesion

functions defined in a program. A typical session with CMT starts with the invocation of

REFINE. The customized Emacs makes editing REFINE programs more convenient and allows

invoking REFINE compiler using editor commands. The REFINE command interface uses ".>"

as its prompt. The example program to be analyzed by CMT is shown below:

98

#include <stdio.h>

void compute_sum(int *s, int n);
void compute_prod(int *p, int n);

int sum, prod;

main()
{

int m,n;
m = n = 5;
compute_sum(&sum,m*n);
compute_prod(&prod,n);
printf("%d %d \n",sum,prod);

}

void compute_sum(int *s, int n)
{

int i;
*s = 0;
for (i=1; i<=n; i++)
 *s = *s + i;

}

void compute_prod(int *p, int n)
{

int i;
*p = 1;
for (i=1; i<=n; i++)
 *p = *p * i;

}

The following sequence of commands show how to start REFINE, load REFINE/C, load

the control flow graph system, load REFINE/C CFG extension, and load CMT system.

%login
% start REFINE

 .> (load-system "c" "1-0")
 .> (load "<reasoning dir>/yoyo/control-flow-graph/v2/load.lisp")
 .> (load "<reasoning dir>/c/1-0/cfg-extension/ccat-package")
 .> (load "<reasoning dir>/c/1-0/cfg-extension/cfgs")
 .> (load "~jn/Cohesion/load.lisp")

The following sequence of commands to REFINE command interface illustrates the

steps needed to process a C program and view the resulting variable dependence graph and

cohesion level of functions in the program. In this session, we assume that the source code of

our example C program is in a file named prog7.c in the directory ~jn/TestCases and the

program definition for this program is in a file named prog7.prog in the same directory. The

REFINE function test-prog accepts a program definition file as input, parses the program,

99

analyzes all the functions in the individual files of the program, and returns a program

object. The information resulting from analysis performed by different components of CMT

is collected and maintained as a number of attributes defined on the program object.

 .> (test-prog "~jn/TestCases/prog7")

 .> (show-vdg last-pgm 'cls::|compute_sum|)

Vdg: compute_sum
Vdg Nodes: s, i, n
Vdg Edges: (i, s, loop, 21)

(n, s, loop, 21)
(n, i, loop, 21)

Output Variables: s
Module Cohesion: Functional

 .> (show-vdg last-pgm 'cls::|compute_prod|)

Vdg: compute_prod
Vdg Nodes: p, i, n
Vdg Edges: (i, p, loop, 29)

(n, p, loop, 29)
(n, i, loop, 29)

Output Variables: p
Module Cohesion: Functional

 .> (show-vdg last-pgm 'cls::|main|)

Vdg: main
Vdg Nodes: sum, prod, m, n
Vdg Edges: (n, prod, data)

(n, sum, data)
(n, prod, data)

Output Variables: sum, prod
Module Cohesion: Communicational

 .> (dump-all-vdg last-pgm "~jn/TestCases/prog7.vdgs")

 .> :exit

The cohesion of the function compute_sum is functional because this module has only

one output variable, namely s. The cohesion of the function compute_prod is also functional

100

because there is only one output variable, namely p. The cohesion of the function main is

communicational because it has two output variables, sum and prod, and both are data

dependent on a common variable n. Further, a loop dependence between the formal

parameters s and n of the function compute_sum is used to establish a data dependence

between the corresponding actual parameters sum, m, and n, at the call site in the calling

function main. Similar dependence has been established at the call site for the function

compute_prod. In fact, in our example program, all the dependencies between the variables

of the VDG of main are established through the interprocedural analysis and propagation of

the dependencies found between the formal parameters of functions compute_sum and

compute_prod.

101

Appendix B

B.1 Processing Element Information for Programs in Experiment 1

Tables B.1 through B.4 provide information about the number of processing elements

in each of the functions contained in programs P-1 through P-4 of Experiment 1, the highest

cohesion between each processing element pair, and the cohesion of the function/module.

Table B.1 Processing element information for the Expression Evaluation Program (P-1)

Program
Code

Function
Name

No. of
Processing

Elements (PE)
No. of

PE Pairs

Highest
Cohesion
between
PE pairs

Module
Cohesion

P-1 compute 1 0 {} Functional
operand_value 1 0 {} Functional
get_token 2 1 {Sequential} Sequential
evaluate 1 0 {} Functional
main 1 0 {} Functional

Table B.2 Processing element information for the Tax Form Program (P-2)

Program
Code

Function
Name

No. of
Processing

Elements (PE)
No. of

PE Pairs

Highest
Cohesion
between
PE pairs

Module
Cohesion

P-2 initialize 4 6 {all pairs Coincidental} Coincidental
schedule_A 1 0 {} Functional
figure_tax 1 0 {} Functional
compute_tax 1 0 {} Functional
valid_data 1 0 {} Functional
main 11 55 {all pairs Coincidental} Coincidental

Table B.3 Processing element information for the Accounting Program (P-3)

Program
Code

Function
Name

No. of
Processing

Elements (PE)
No. of

PE Pairs

Highest
Cohesion
between
PE pairs

Module
Cohesion

P-3 initialize 5 10 {9 pairs Coincidental,
1 pair Sequential}

Sequential

change_monthly 2 1 {Sequential} Sequential
process_transaction 2 1 {Communicational} Communicational
process_end_of_month 5 10 {8 pairs Coincidental,

2 pairs Sequential}
Sequential

process_report 0 0 {} Undefined
main 4 6 {3 pairs Coincidental,

3 pairs Sequential}
Sequential

102

Table B.4 Processing element information for the Bank Promotion Program (P-4)

Program
Code

Function
Name

No. of
Processing

Elements (PE)
No. of

PE Pairs

Highest
Cohesion
between
PE pairs

Module
Cohesion

P-4 assess_cashflow 2 1 {Coincidental} Coincidental
assess_account_status 1 0 {} Functional
recommended_account 1 0 {} Functional
main 0 0 {} Undefined

B.2 Processing Element Information for Programs in Experiment 3

Tables B.5 through B.7 provide, for various implementations of lex.scheme, calc, and

kwic systems used in Experiment 3, information about the average number of processing

elements when functions displayed the corresponding cohesion level.

Table B.5 Average number of processing elements for interface functions in lex.scheme

Function Name Func Seq Comm Proc Logi Coin Undef
compare_token 1 3 2
get_char 1 2.14 2
get_token 1 2.16 2 2
is_eof_char_stream 1 2
is_eof_token 1 2
main 1 0
open_char_stream 1 2
open_token_stream 1 2 2
print_token 1 2 2 0
unget_char 1 2 2 0
unget_error 1 0

Table B.6 Average number of processing elements for interface functions in calc

Function Name Func Seq Comm Proc Logi Coin Undef
assign_value 1 2 2 0
create_symtab 1 2
evaluate_a_line 1 2 2
get_token 1 2 2 2
get_token_string 1
get_token_type 1
get_value 1 2.4 3
initialize_calculator 1
main 1 0
match_token_type 1 2

103

Table B.7 Average number of processing elements for interface functions in kwic

Function Name Func Seq Comm Proc Logi Coin Undef
alphabetize 1 2.1 2
append_to_line 1 2.3 3 5 2
circular_shift 1 2 3 3
circulate_and_add_line 2.8 5 3
dump_line 1 2 0
dump_line_storage 1 2 2 0
empty_line_storage 1 2
get_line 1 2.2 5
line_cmp 1 3 2.9 2 2.5
line_to_string 1 2.3 2
main 1 0
num_of_lines 1 2 2
num_of_words 1 2 3 2
string_to_line 1 2.5 2

104

