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Abstract VILO is a lazy learner system designed for
malware classification and triage. It implements a near-
est neighbor (NN) algorithm with similarities computed
over Term Frequency x Inverse Document Frequency
(TFIDF) weighted opcode mnemonic permutation fea-
tures (N-perms). Being an NN-classifier, VILO makes
minimal structural assumptions about class boundaries,
and thus is well suited for the constantly changing mal-
ware population. This paper presents an extensive study
of application of VILO in malware analysis. Our exper-
iments demonstrate that (a) VILO is a rapid learner
of malware families, i.e., VILO’s learning curve stabi-
lizes at high accuracies quickly (training on less than
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20 variants per family is sufficient); (b) similarity scores
derived from TDIDF weighted features should primar-
ily be treated as ordinal measurements; and (c) VILO
with N-perm feature vectors outperforms traditional N-
gram feature vectors when used to classify real-world
malware into their respective families.
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1 Introduction

New malware are frequently related to previous mal-
ware through evolution. In order to combat detection
by anti-virus scanners, malware frequently evolves by
way of rapid modify-and-release cycles, creating nu-
merous variants from a common origin. This common-
ality defines a ‘family’ to which related variants be-
long. Consider the data from “Microsoft Security Intel-
ligence Report Volume 8: July through December 2009”
[83]; there were 126,204,254 variants of malware found
within the second half of 2009. Clearly, the multitudi-
nous nature of the observed malware indicates that it
cannot all have been built ex novo. Instead, the vast
majority are merely modified previous versions. These
modifications are generally indicative of polymorphism,
i.e., malware that changes its decryption or unpacking
code for each variant, or metamorphism, i.e., malware
for which all variants are functionally equivalent, but
their internal structures differ [6,49,6]. These two tech-
niques allow for rapid creation of an essentially unlim-
ited number of variants. According to Microsoft’s data,
only a few hundred families are observed in the wild in
a typical half-year period. For a malware analyst, the
ability to quickly identify the family to which a mali-
cious executable belongs is a boon.

Classification techniques from machine learning and
statistics have often been used to classify malware, such
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as viruses and worms [d1,[,24,79,86]. Two different
types of malware classification are possible: binary and
familial. In the binary malware classification problem,
an unknown executable is classified as either being ma-
licious or benign. Conversely, in the familial malware
classification problem, a known-to-be malicious execut-
able is classified as belonging to a particular group of
malware. Familial classification can be used in malware
triage—labeling and prioritizing suspicious executables
for further analysis. While it has been shown that no
detector for a particular family of malware without false
positives can exist [@,00], and by extension, no perfectly
accurate familial classifier can either, past works in fa-
milial classification [&7,49, 7] have shown promising re-
sults.

In this paper we describe VILO, a malware classifi-
cation system that is suitable for familial classification
of malware, and thus triage. VILO makes use of three
components for effective familial classification: N-perm
feature vectors, Term Frequency x Inverse Document
Frequency (TFIDF) weighting of features [IR], and the
nearest neighbor search algorithm. N-perms are a varia-
tion of N-grams—a commonly used feature in malware
classification obtained by sliding a window of size n
over program objects (bytes, opcodes, etc.). N-perms
are identical to N-grams except that the order of char-
acters within the N-perm is irrelevant for matching pur-
poses. They are robust against some code obfuscations,
such as instruction reordering [§]. TFIDF weighting of
features ensures that features that are common across
many types of executables are not overly emphasized.
Nearest neighbor search is simple and effective as it does
not require construction of a classification model while
also making minimal structural assumptions about the
separability of classes of data. Retraining involves sim-
ply adding a new variant to the database, as opposed to
the explicit model building required by other classifiers
like decision trees and support vector machines.

N-perms were introduced in our previous work [I9]
in the context of clustering for phylogeny generation. In
[&7], it was shown that usage of N-perm feature vectors
provided greater accuracy in the malware classification
scenario than did N-gram feature vectors when applied
to an artificially constructed data set. However up until
now, no results have been presented that describe the
efficacy of either type of VILO feature vector when used
to classify actual in-the-wild malware. In this paper, we
present results of the first such study and we show that
usage of N-perms provides greater accuracy than does
usage of N-grams for real-world malware classification.

TFIDF weighting has previously been used in mal-
ware classification for byte N-grams [24] and opcode N-
grams [36]. We propose its application for N-perms in

the familial classification scenario. We also show empir-
ically that for any nearest neighbor algorithm, TFIDF
weighted similarity scores depend on the relative sample
sizes of the classes represented in the training database.
This implies that similarity scores should be treated as
ordinal measurements.

We evaluated VILO’s efficacy in familial classifica-
tion and studied the per-family training set size nec-
essary to obtain high accuracy. We found that VILO
can achieve high familial classification accuracy when
trained on few variants from each family (less than 20).
Since VILO uses nearest neighbor search, a small train-
ing database implies quick query resolution. This ability
to learn rapidly makes VILO suitable for production en-
vironments. Further gains in classification accuracy are
attainable in exchange for greater memory consumption
and query resolution time.

The contributions of this paper are:

— It describes the VILO method for familial malware
classification, and shows that VILO is a quick and
efficacious learner of real-world malware.

— It presents an evaluation which suggests that usage
of N-perm feature vectors results in between 0.14%
and 5.42% fewer misclassifications than does usage
of N-gram feature vectors when used in the context
of familial malware classification.

— It shows that TFIDF weighted similarity scores should
be treated as ordinal measurements whenever pos-
sible.

— It presents an evaluation which indicates that us-
age of the VILO system is not suitable for binary
classification of malware.

The rest of this paper is organized as follows: In
Section B, we give some background and discuss related
work. In Section B, we discuss some of the challenges in
classifying executables that arise when using machine
learning methods for the purpose of malware classifi-
cation. The VILO system for malware classification is
described in Section B. Our malware and benign data
sets are described in Section H. Section B presents dis-
cussion and evaluations of the VILO system’s efficacy
when used in the familial malware classification sce-
nario, as well as comparison against other methodolo-
gies. Discussion and evaluations pertaining to the us-
age of the VILO system in the binary classification of
maliciousness scenario are presented in Section [@. The
conclusions drawn from the present work are discussed
in Section B.
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2 Background and Related Work

The methods used for malware classification can be cat-
egorized into expert-based and learning-based. Expert-
based methods rely on domain experience of an AV
analyst to determine rules for malware classification.
Learning-based methods, on the other hand, automat-
ically learn the rules from examples. Learning-based
methods can be categorized into two types: supervised
and non-supervised. Supervised methods train a clas-
sifier on labeled examples whereas unsupervised meth-
ods use unlabeled examples and group them into clus-
ters using some measure of similarity. VILO is based on
supervised learning, where a collection of labeled mali-
cious executables is used for training.

The construction of learning-based classifiers involves
multiple stages. First, properties of data are extracted
into feature vectors. This is followed by selection of the
most relevant features. Then, a learning algorithm is
used to learn from training data (labeled examples).
Finally, the performance of the classifier obtained after
learning is evaluated using methods like cross-validation.

The use of the “right” kind of features is critical to
the success of learning-based methods. Masud et al. [28]
describe a variety of features for worm detection, intru-
sion detection, botnet detection, and malicious execut-
able detection. One of the earliest works on learning-
based methods for malware detection, by Tesauro et
al. [44], used byte tri-grams as features. In an influ-
ential paper by Schultz et al. [42], three types of fea-
tures were proposed: byte sequences (N-grams), print-
able strings, and DLL calls. In both the works ([d4] and
[@2]), features were boolean, i.e., they represented pres-
ence or absence in the executable. In a departure from
the use of boolean features, Kolter et al. [23,24] pro-
posed using continuous weights of byte sequences called
TFIDF. TFIDF has been used widely in text catego-
rization [43] and is defined as TF x IDF. TF or term
frequency is the number of occurrences of a particular
term ¢ (T'C;) in a document (e.g., an executable) nor-
malized by the total number of terms (]D|) in the doc-
ument (T'F; = TC;/|D|). Document frequency (DF;) is
the number of documents containing the term. Inverse
document frequency is defined as IDF = |D|/DF;, or
IDF = log,,(|D|/DF;) if log scaling is desired. VILO
uses the definition of IDF without the log scaling:

Wang et al. [A8] were the first to propose the use
of N-grams of instruction opcodes (obtained from dis-
assembling the executable) as features. Later, Karim
et al. [T9] used instruction mnemonics to construct N-
perms—instruction reordering resistant N-grams. Mos-
kovitch et al. [BG] did an extensive study on opcode
based malware detection. They show classifiers using

opcode N-grams perform better than classifiers using
byte N-grams. VILO can use either N-perms and N-
grams of instruction opcodes with TFIDF weights.

Most of the previous works on learning-based meth-
ods have been concerned with binary classification, in
which a given executable of unknown class is classi-
fied as malicious or benign. There is another classifi-
cation problem, called familial classification, where a
malicious executable of unknown family is classified as
belonging to a known malware family. Familial classi-
fication is used in triage for prioritizing sample queues
[37]. It can also be used for sample examination and
observation with static and behavioral features, respec-
tively. Familial classification can be used for attribute
discovery of a sample during the examination phase
of automated filtering. The results in this paper show
VILO to be a more effective method for familial classi-
fication than it is for binary classification.

Towards familial classification of malware, Stamp
et al. [A9,86,40] have achieved success using Hidden
Markov Models (HMMsS) to learn about and detect vari-
ants of a metamorphic virus, i.e., a virus for which
all variants are functionally equivalent, but their in-
ternal structures differ. An HMM models a memory-
less stochastic process in which the states themselves
cannot be directly observed, but rather only external
observations can be made from which it may be pos-
sible to infer with some probability the current state.
Using opcode sequences extracted from related viruses
as observations, Stamp et al. trained the HMM to best
fit the observed sequences. After learning the HMM,
they were able to use it to determine the likelihood
that other executables belonged to the same virus fam-
ily. Another project in which familial classification was
performed is BitShred [I7]. BitShred is a feature-type
agnostic approach to malware triage classification that
uses feature hashing and a probabilistic variation on
traditional Jaccard similarity. Using byte 16-grams as
features, BitShred attained high accuracy in familial
classification of malware. These two approaches are re-
visited in Subsection BA4.

3 Issues in Classifying Executables

The application of machine learning methods to the
problem of classifying malware is not straightforward.
There are domain-specific issues that must be accounted
for when applying machine learning methods to the
purpose of classifying malware in particular. Some of
these issues are discussed below:

1. Change Sensitivity: A good executable classifier
should ensure that minor variations between the ex-
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ecutables do not significantly throw off the reported
match. Thus, the similarity function used to com-
pare executables must be insensitive to such mi-
nor variations. For instance, the similarity function
should be insensitive to the differences in branch
targets due to instruction reordering or insertion. If
a malware author adds statements to the beginning
of her program, then all of the subsequent branch
targets will move. Any algorithm or function that
is not overly sensitive to such changes is more suit-
able. Simple reorderings of modules, procedures, or
even individual instructions should similarly be ac-
counted for. The need for change sensitivity is most
clearly expressed in metamorphic malware, of which
Lin and Stamp [27] provide a good discussion of
the metamorphic techniques employed by malware
authors. Many of the common differencing or sim-
ilarity functions for strings are not suitable in this
regard, because they focus specifically on such or-
derings. Sequencing, after all, is the defining charac-
teristic of a string. Examples of such matching tech-
niques include longest common subsequence, Lev-
enshtein or edit distances, and Hamming distances.
Techniques such as these have previously been ap-
plied to find matching source code [21], however
they are not suitable for the purposes of executable
matching due to the specific insensitivities required.
. Handling common code: Many even unrelated
executables often share some commonalities, such
as standard function prologues and epilogues. The
match method should account for these commonal-
ities so that emphasis is not unduly placed on fea-
tures that are relatively insignificant with respect to
identifying matches.

. Efficiency: Efficiency is always an issue. Although,
higher level abstractions of programs like control
flow graphs, program slices, or semantic-level rep-
resentations could be more useful, they are compu-
tationally more expensive to extract. Certainly var-
ious similarity measures can be defined over such
higher-level representations, such as control flow [I2,
11,8, 25,1,22]. However, besides being potentially more
costly and difficult to scale to thousands of program
comparisons, these methods are more vulnerable to
obfuscations [Z6]. As such, it is important to explore
what can be done with the near-minimum abstrac-
tion of the extracted information from a program.

These are some of the issues that the VILO method,

described in the next section, addresses.

4 VILO Method for Malware Classification

In this section, we present and describe a malware clas-
sification system called VILO (derived from VIrus phy-
LOgeny). VILO, at its core, is an executable similarity
measurement engine upon which we have implemented
a l-nearest neighbor classifier. The VILO system, N-
grams, and N-perms, etc., have all also previously been
discussed in our group’s prior work [I9,47].

4.1 VILO Overview

The VILO system is an adaptation of text retrieval
methods that use TFIDF term-vector query matching.
These methods have previously been used for matching
text documents to queries, and for the related task of
detecting duplicate documents [60,15].

This subsection overviews the techniques that are
employed by VILO in order to ensure that the approach
meets the previously identified challenges in matching
executables (sensitivity to change, handling common
code, and efficiency). The details of the topics overviewed
are covered more thoroughly in the subsequent subsec-
tions. These techniques can be summarized as follows:

1. Whole programs are compared, meaning the set of
features that are compared are relatively compre-
hensive. The features we use, “N-perms”, are ex-
tracted from abstracted disassemblies and are not
very sensitive to minor changes introduced in mal-
ware variants. This can be contrasted to traditional
signature based techniques which look for a highly
focused but diagnostic feature, such as a unique byte
sequence.

2. A vector model is used for comparison. Feature counts
are converted into vectors that can be compared by
measuring their cosine similarity. This is fast and
simple to calculate.

3. Feature weights are calculated from the corpus of
executables on which VILO has been trained. The
weighting scheme addresses the identified concern of
handling common code effectively.

4.2 VILO Specifics
4.2.1 Feature types: N-gram and N-perms

Text-based comparison methods frequently use “N-grams”.
An N-gram is a sequence of n characters found in suc-
cession within some document. Various different def-
initions of “characters” can be used: it could be let-
ters, words, sentences, or paragraphs, and some could
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STRING 2-GRAMS
The catisin. th he ec ca at ti is si in

Isthe catin? is st th he ec ca at ti in

Fig. 1: 2-grams on ASCII text

be modified (e.g., made lower case) or filtered entirely
(e.g., filtering spaces). Figure 0 shows an example us-
ing 2-grams on text, while mapping to lower case and
filtering out spaces and punctuation. From the list of
2-grams, the differences and commonalities are tallied.
The differences are {si, st} and the commonalities are
{at, ca, ec, he, in, is, th, ti}; both of which are then
counted to arrive at a similarity score. N-grams are sim-
ple to extract (using a sliding n-sized window), and are
easy to compare. However, by their very nature, such
character sequences may be overly sensitive to local se-
quencing, especially for larger values of n.

It is possible to reduce the importance of sequence
information. This is accomplished by using “N-perms”,
which we first described in Karim et al. [[9] and which
were also described independently by Wong et al. [24].
N-perms are exactly like N-grams except that the or-
dering of the characters is not considered during the
matching. For any sequence of n characters that can
be taken to be an N-gram, an N-perm represents ev-
ery possible permutation of that sequence. For exam-
ple, the possible 3-grams of abcab are abe, bca, cab, each
with only one occurrence. However, for the same string,
there is only one 3-perm, abc, which has three occur-
rences. Statement reorderings tend to have less of an
effect when using N-perm feature vectors. Usage of N-
perms in favor of N-gram feature vectors also provides
the benefit of reducing the feature vector space, as was
seen by the need to store only the single N-perm feature
abc in the above example.

There are many ways to apply N-grams and N-
perms to programs. The most commonly reported tech-
nique is to use raw bytes as characters [4,1,20]. How-
ever, extracted embedded strings, disassembled instruc-
tions, or some combination of all of these could be used.

For our VILO system, we have chosen to use ab-
stracted assembly as characters. The abstracted assem-
bly of a given instruction is simply its mnemonic. For
example, the abstracted assembly of the x86 assembly
language instruction mov eax, 5 is mov. Figure B further
illustrates the usage of abstracted assembly for the gen-
eration of N-perms and N-grams. In prior work, we con-
cluded that usage of 5-grams and 10-perms is a suitable
choice for malware classification when using abstracted
assembly as features [[9], and we will use those values
for m in our subsequent analyses.

4.2.2 Feature weights: TFIDF

For each executable VILO will use in the classification
process, a feature vector is generated. An executable’s
feature vector contains all of its unique features, either
as N-perms or N-grams, and each of those features’ as-
sociated number of occurrences within the executable.

Not all features are equally useful for classification
purposes. Certain sequences of instructions are common
to many Windows Portable Executable (PE) [34] files,
such as function prologues and epilogues. These fea-
tures should not be heavily considered when attempt-
ing to find matches, as they commonly belong to even
unrelated executables. Conversely, a feature which only
occurs in a small subset of executables is more likely to
be useful for classification. It is not desirable to manu-
ally specify these weights by, for example, requiring an
expert to create a list of common operation sequences
to be filtered (i.e., a “stoplist”).

In order to set the weight of each feature automat-
ically, we employ a Term Frequency x Inverse Docu-
ment Frequency (TFIDF) weighting scheme [I8]. In this
scheme, a feature is weighted by the inverse of how fre-
quently it appears in the set of executables. In the case
of text retrieval, this weighting encodes the heuristic
logic that a match on the relatively rare word “con-
stitution”, say, will tend to be more meaningful than
matches on the more common word “the.” For exam-
ple, given the feature sets for two viruses v; = [3 4 2 1]
and ve = [4 5 1 0], using standard cosine similarity,

. V1 - V2
sim(v1,vg) = 7|vl||1}2|
_ 3x44+4x5+2x1+1x0

V32 42 422 +12y/42 4+ 52 4+ 12 4 (2
= 0.957

If there are 10 programs in the database and the four
features’ document frequencies are 9, 8, 3, and 2 re-
spectively, then weighted versions of the vectors are
wy = [3/9 4/8 2/3 1/2] = [.33 .25 .66 .50] and wy =
[4/95/81/3 0/2] = [.44 .63 .33 .00], and the similarity
becomes sim(w;, wy) = 0.795. The lowered similarity
score reflects the reduced importance of the features
that occur in many files.

Smart application of feature weighting enables VILO
to quickly learn which sequences of opcode mnemonics
are most indicative of a particular family of malware,
and conversely, which sequences are irrelevant to the
matching process. Indeed, our empirical results indi-
cate that through usage of TFIDF weighting, VILO is
able to learn about malware families quickly. Because
feature weights are updated each time a new variant of
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55 push
p& 11 00 00 00 mov
89 a5 mov
57 push
99 cltd

56 push
c7 45 4 11 00 00 00 | mov

ebp
$0x1l,eax
esp, ebp
edi

esi
S0x11,0x£fffffed (ebp)

(a) disassembly

FEATURE TYPE FEATURES EXTRACTED

2-grams
2-perms

push_mov,
push_mov,

mov_mov,
MovV_Mov,

mov_push, push_cltd,
push_cltd

(b) features extracted from operations (boxed column)

Fig. 2: Feature extraction from abstracted disassembly

a malware family is added to the training data, VILO’s
understanding of the features which serve to identify
that malware family evolve along with the family itself.

4.2.3 Classification algorithm: Nearest-neighbor

VILO uses the nearest-neighbor algorithm, which is es-
sentially a lazy learning method [I4]. Lazy learners store
all the training data and delay the classification until
a query is given to the classifier. For an unknown exe-
cutable U, VILO finds U’s most similar matches from
its training database of existing feature vectors. It it-
eratively calculates the pairwise similarity between U
and every feature vector in the database, then sorts
the result in descending order of similarity. The final
result is a ranked list and the classification we subse-
quently assign to U is that of the executable at the
head of that list, i.e. the nearest neighbor. The algo-
rithm is O(NM) where N is the number of programs
in the database and M is the vector length. The advan-
tage of using a lazy learning method is that VILO need
not build a new classification model each time a new
variant is added to the training database. Since new
variants of malware appear in the wild frequently, the
training database may be updated to improve the accu-
racy without the overhead of building a new model. An-
other advantage is that nearest neighbor classifiers are
low bias classifiers with minimal structural assumptions
about classes in data. Our results indicate effectiveness
of this algorithm in familial classification of malware.

4.3 Implementation

VILO employs the linear sweep disassembler objdump®
to obtain the abstracted assembly of entire executables;
all bytes, including those in both the code and data sec-
tions, are disassembled. We selected objdump in favor
of more sophisticated disassemblers, such as IDA Pro?
or that built into OllyDbg®, because we are primarily
concerned with obtaining as many representative fea-
tures as possible, including instructions disassembled
from non-code data. Disassembling all of the bytes of
a binary is much easier to accomplish with objdump
than it is with the other disassemblers. Furthermore,
the ability to match homogeneous features drawn from
both code and data likely outweighs the marginal ben-
efit obtained from more accurate disassembly.

A feature vector generator and a VILO search server
are implemented in C. The feature vector generator
takes as input the modified objdump’s abstracted as-
sembly output, and generates either N-perm or N-gram
feature vectors. The VILO search server then reads
these feature vectors into a database and calculates
the feature weightings. It then listens for queries, which
consist of other feature vectors to be matched against.
The returned result for a query is a ranked list com-
prised of both the matches found and their respective
weighted cosine similarities.

1 http://www.gnu.org/software/binutils/
2 http://www.hex-rays.com/products/ida/index.shtml
3 http://www.ollydbg.de/
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5 Data Set

Our data set consists of malicious executables belonging
to the following four families: Backdoor.Win32.Hupigon,
Backdoor.Win32.PcClient, Rootkit.Win32.Agent, and
Virus.Win32.Parite. The malware was acquired from
an AV vendor who established the ground truth, i.e.,
determined to which of those families each of the mali-
cious executables belong. The ground truth was deter-
mined by human analysts conducting manual analysis,
and thus we consider it quite reliable.
Backdoor.Win32.Hupigon is the backdoor compo-

nent of a greater family of malware called Win32.Hupigon.

It is registered as a system service and opens a back-
door server that allows other computers to connect to
and control the infected computer in various ways [30].
Backdoor.Win32.PcClient is a backdoor trojan family
whose variants contain several malicious components,
including a key logger, backdoor, and a rootkit [37].
Rootkit.Win32.Agent installs a rootkit on the infected
system. A rootkit is software that provides an attacker
with continued administrator level access to the in-
fected computer while actively hiding its own presence.
Virus.Win32.Parite is a polymorphic file infecting virus
that infects all Windows portable executable files found
on local and shared drives [31].

We have attempted to ensure that the binaries are
not packed or compressed by using the packer identifi-
cation tool PEiD. We generally assume that the famil-
ial identification of each malicious executable as deter-
mined by the antivirus vendor is accurate. However, we
recognize that a mislabeled sample within a small train-
ing set may significantly skew the results. Therefore,
our experiments are designed to be resilient against
such inaccuracies.

In Section @, we also use a set of benign executa-
bles which we gathered from the system directories of
several fresh installations of Microsoft Windows.

6 Familial Classification of Malware

The ability to effectively classify a malicious executable
into its family is particularly important when conduct-
ing malware related triage. The first concern in a triage
scenario is to identify the intent and capability of the
aggressor, therefore quick identification of the type of
malware used by an attacker is of the utmost impor-
tance. In this section, we describe and subsequently em-
ploy our evaluation method to determine and compare
the effectiveness of both N-perm and N-gram VILO fea-
ture vectors for the purpose of classifying malicious ex-
ecutables into their respective families.

6.1 Effect of Familial Training Set Size

In order to evaluate and compare the effectiveness of N-
perm and N-gram VILO feature vectors, several eval-
uation parameters must be defined. Such parameters
include the values of N for the N-perm and N-gram
VILO feature vectors (for which we have previously se-
lected 10 and 5 respectively [[9]). Another such evalua-
tion parameter is the per-family training set size to be
used. This subsection presents an experiment we con-
ducted that shows the effect of incrementally increasing
the per-family training set size on the average classifi-
cation accuracies observed when using either N-perm
or N-gram VILO feature vectors.

6.1.1 Ezxperimental Design

It should be recognized that the evaluation of malware
classifiers presents domain specific issues that must be
accounted for in the selection of an evaluation method-
ology. For example, it is common in classifier evalua-
tions to train on larger amounts of data than what may
be needed. The often-seen k-fold cross-validation eval-
uation technique makes use of a large training set and
a relatively smaller verification set. However, it may be
unnecessary and unreasonable to only evaluate a mal-
ware classifier when it is trained on a very large sam-
ple from each malware family. For a malware classifica-
tion system such as VILO, each time a new unknown
executable is to be classified, its similarity with every
executable in the training set must be calculated; ob-
viously a costly computation. As such, it is important
for malware classifiers such as ours to be accurate even
if they are only allowed to be trained on small sam-
ples for some or all of the known malware families. The
present experiment determines how quickly the VILO
system, using either type of feature vectors, is able to
learn about the families in its training set.

0.1.2 Procedure

We randomly selected from each of our four malware
families 100 malicious executables, which we further
partitioned into training and verification sets comprised
of 40 and 60 malicious executables from each malware
family, respectively. Both N-perm and N-gram VILO
feature vectors were generated for each malicious ex-
ecutable. Then, for both types of feature vectors, we
employed the following algorithm:
for j =1 — 40 (the size of the training sets) do
From the training set of each malware family, select
the first j feature vectors and train VILO on them.
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for each feature vector V' in the combined verifi-  that such obfuscation techniques may indeed be used
cation set with samples from each malware family = by malware authors to evade detection and identifica-
do tion.

Make VILO classify V. Learning curves for each of the four individual mal-
Record if Vs classification is correct or not. ware families are in the Appendix. The curves for the
end for four individual families look generally similar to that of
Calculate and record the percentage of correct clas-  the combined learning curve in Figure B. One notable
sifications for the current value of j. exception is that of Backdoor.Win32.Hupigon, whose
end for N-perm curve peaks at 92% when the training size is

The entire experiment was run twenty times with
randomly selected samples, and the percentages of cor-
rect classifications for each value of j were averaged
across all of the twenty runs. The averaged percentages
of correct classifications represent the average classifi-
cation accuracy when VILO is trained with j samples
from each family, and averaging over multiple experi-
mental runs helps to ensure that the results of train-
ing on a mislabeled malicious executable do not signif-
icantly skew our findings. Finally, we plot the recorded
average classification accuracies against the size of the
familial training sets in order to construct a learning
curve [4].

6.1.3 Results

The learning curves generated by our experiment for
both N-perm and N-gram VILO feature vectors are
shown in Figure B. The per-family training sample size
is on the x-axis and the accuracy obtained is on the
y-axis. When the per-family training sample size was 5,
the average accuracy when using N-grams was 70.17%
and for N-perms it was 76.29%; for samples of size
10, the average accuracies were 76.38% and 81.94% re-
spectively; for samples of size 20, the average accura-
cies were 80.04% and 84.75% respectively; and for sam-
ples of size 40, the average accuracies were 83.65% and
86.44% respectively.

6.1.4 Discussion

We observe that usage of N-perm VILO feature vectors
provides greater accuracy than N-gram VILO feature
vectors for each size of the training set. Additionally,
we note that the classifier appears to reach near-optimal
accuracy quickly; the accuracy climbs dramatically as
the training set size initially increases before quickly
leveling off. These results show, for the first time, that
usage of N-perm VILO feature vectors is preferable over
usage of N-gram VILO feature vectors when attempt-
ing to classify real-world malicious executables. Because
one impetus behind the creation of N-perm VILO fea-
ture vectors was to make malware classification resilient
against code-reordering obfuscations, we further infer

4. As the training size increases beyond 4, the accu-
racy gradually falls (by less than a fraction of 1% on
average). This indicates that overtraining may cause a
decrease in accuracy for some malware families.

6.2 Matched Pairs T-Test for a Specified Training Set
Size

Having shown graphically the differences in accuracy
between usage of N-perm and N-gram VILO feature
vectors for familial malware classification, we now present
and employ a method for statistically quantifying the
difference in accuracy for a specified per-family training
set size.

6.2.1 Ezxperimental Design

In order to select the size of the sample from each family
on which to train the VILO database in our subsequent
analyses, we recognize two factors. First, we must again
concern ourselves with keeping the size of the training
set as small as possible in order to reduce the time and
space costs of performing malware classifications. Sec-
ond, we have shown via the previous experiment that
the overall increase in accuracy as the per-family train-
ing set size increases is subject to the law of diminishing
returns. We therefore strive to select a value which is
not prohibitively large but that also provides a non-
negligible increase in accuracy over a training set size
of one less from each family.

We arbitrarily choose that an average increase in
accuracy, provided by incrementation of the per-family
training set beyond some fixed size, of less than 0.5% is
to be considered negligible. We find that this occurs for
N-perms when the training set size per family is 10 and
for N-grams when the training set size is 11. As such,
we select a per-family training set size of 11 on which
to conduct further analyses.

An experimental set was constructed, consisting of
191 randomly selected malicious executables sampled
from each of our four malware families. From each fa-
milial set of 191 malicious executables, 180 malicious
executables were randomly selected to be members of
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Fig. 3: Combined Learning Curve

the verification set. Thus, the size of the whole veri-
fication set was 720. The remaining 11 malicious exe-
cutables from each family were joined to construct the
training set with total size 44.

6.2.2 Procedure

Let T and V' be the aforementioned training and verifi-
cation sets respectively. Generate N-perm and N-gram
VILO feature vectors for the samples in both 7" and V,
which results in N-perm sets Tp and Vp, and N-gram
sets T and V. For the N-perm feature vector sets,
train VILO on Tp, then Vv € Vp, determine the near-
est neighbor vector. If the family of the nearest neighbor
vector matches that of v, then the result is said to be a
correct classification, otherwise a misclassification has
occurred. Similarly, for the N-gram feature vector sets,
train VILO on T, then Vv € Vi, determine the nearest
neighbor vector and record the classifications results in
the same manner as before.

For each malicious executable in the verification set
and for both types of feature vectors derived from those
executables (Vp and Vg), we record whether or not
a misclassification occurred. A misclassification is en-
coded as a 1 and a correct classification as a 0. Fur-
thermore, we calculate the difference of the N-perm

and N-gram misclassification encodings. To illustrate,
see Table 0 for some sample results. The first column
gives the unique identifier of the particular malicious
executable under consideration. The second and third
columns indicate whether or not that malicious execut-
able was correctly classified using N-perm or N-gram
VILO feature vectors respectively. The fourth column
is the difference of the second and third columns. From
Table [, we see that the malicious executable with iden-
tifier Parite_5 was misclassified when N-gram feature
vectors were used, but when using N-perm feature vec-
tors it was correctly classified as belonging to the Parite
malware family.

Because each observation for an N-perm feature vec-
tor has a matched observation in the results for an N-
gram feature vector, the table consists of dependent
matched pairs. This type of data lends itself to being
analyzed using a paired T-test on the differences [I].

0.2.3 Results

When the per-family training set size threshold S at
which negligible increase in accuracy was obtained was
chosen to be 11, the mean difference (mean = -0.0278,
standard deviation = 0.3605, sample size = 720) was
significantly less than zero, t(719)= -2.0675, two-tail



10 Arun Lakhotia et al.
[ file_id [ nperm_misclassified [ ngram_misclassified [ difference ]
Hupigon_8 0 0 0
Parite_5 0 1 -1
PcClient_2 1 1 0

Table 1: Extract of Misclassification Results.

p = 0.0390, providing evidence that usage of N-perm
VILO feature vectors provides greater accuracy over
usage of N-gram VILO feature vectors. A 95% confi-
dence interval about mean misclassification difference
is (-0.0014, -0.05415). This means that we can be 95%
confident that usage of N-perm VILO feature vectors
results in between 0.14% and 5.42% fewer misclassifica-
tions than does usage of N-gram VILO feature vectors
when the samples are drawn from the four malware
families described above.

6.2.4 Discussion

For the four malware families available to us, our sta-
tistical analysis reveals that usage of N-perm VILO fea-
ture vectors for familial malware classification is signif-
icantly more accurate than is usage of N-gram VILO
feature vectors. As such, we further conclude that us-
ing N-perm VILO feature vectors may be favorable to
N-gram VILO feature vectors for the purpose of famil-
ial malware classification over the universe of malware.
Of course, this hypothesis may be further tested by
running similar experiments on samples from a greater
number of malware families.

For real world usage of the VILO system, the per-
family training set size to be used must be carefully
selected by observing the trade-off incurred when in-
creasing classification accuracy at the costs of slowing
performance and requiring more space.

As with most systems for which many parameters
must be chosen ahead of time, it is a very difficult task
to choose the best values for VILO’s parameters. We
acknowledge that our chosen values for n in N-perms
and N-grams and our selected training set size may not
be the best in all cases. Conducting more analyses to
determine best values for these parameters provides a
good basis for future work.

6.3 Evaluation of Familial Classification using K-fold
Cross Validation Estimates

We recognize that our approach for evaluating a mal-
ware classifier for familial classification differs from that
generally seen in the literature. Works which evalu-
ate the performance of a malware classifier often make

use of the k-fold cross-validation technique (e.g. [23,
a5]). For the reasons previously detailed, k-fold cross-
validation does not necessarily lend itself well to classi-
fier evaluations where it is desirable to have a smaller
training set than verification set. Hence, we constructed
a tertiary experiment which makes use of the 10-fold
cross validation technique while retaining our ability to
limit the number of files on which the classifier is al-
lowed to be trained.

6.3.1 Ezxperimental Design

In k-fold cross-validation (see Rodriguez et al. [89] for
a good primer on the technique), the data set S is ran-
domly partitioned into k folds (subsets) of equal size.
For each fold, one partition is used as verification or
the test set and the remaining partitions are used as
the training set. The classifier is trained and tested for
each fold until all partitions have been used as test set.
The accuracies obtained for each fold are averaged to
obtain the cross validation estimate.

6.3.2 Procedure

As in Subsection B2, we use 11 as the learning curve
threshold at which accuracy stabilizes. From each of our
four malware families, we gathered random samples of
size 1,000. Each family sample was subsequently broken
into 10 disjoint folds of 100 variants, then one fold was
selected to be the verification set while the remaining
nine folds were joined into a training set of size 900.
11 malware were randomly selected from these 900 on
which to train VILO. We conducted ten such runs such
that each fold was used as the verification set exactly
once. For each run, we generated N-gram VILO feature
vectors and N-perm VILO feature vectors for all of the
executables in the verification and training sets. Then
we trained VILO on the training set, verified with the
verification set, and finally we recorded the results.

6.3.3 Results

Combined across all runs, usage of N-perm VILO fea-
ture vectors resulted in 3,286 correct classifications out
of a total possible 4,000, whereas usage of N-gram VILO
feature vectors resulted in 3,236 correct classifications.
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The resulting 10-fold cross-validation prediction error
estimations are thus (4000 — 3286)/4000 = 0.178 and
(4000 — 3236)/4000 = 0.191, respectively.

6.3.4 Discussion

Once again, we have shown that usage of N-perm VILO
feature vectors provides greater accuracy in familial
classification of malware than does usage of N-grams.
Additionally, the difference in classification accuracy
observed with the usage of the 10-fold cross-validation
technique falls well within the confidence interval gen-
erated by our previous analyses, thereby serving to fur-
ther confirm that result.

6.4 Comparison to Other Systems

An obvious system to compare VILO against would be
commercial anti-virus software, as has been done in re-
lated work (e.g. [44]). However, two factors hinder com-
parison between VILO and commercial AV.

First, commercial AV vendors are more concerned
with detecting whether an executable is malicious than
with associating the correct familial label to it. As such,
these commercial AV products often classify malware
into generic ‘bucket families’, e.g., Avast’s Win32:Trojan-
gen, Avira’s TR/Downloader.Gen, BitDefender’s Tro-

jan.Generic, and ClamAV’s Trojan.Dropper. Indeed, mal-

ware analysts have told us that we should put little faith
in any family labels given by their product [35]. See Sec-
tion 2.2 of Bailey et al. [2] for further discussion on this
topic.

The second hindrance is in setting up a fair com-
parison. The purpose of malware triage classifiers like
VILO is to identify the family of an unknown malicious
executable; if its family could be determined by the an-
alyst’s AV software, then the need to employ a more
complex system such as VILO would be obviated. As-
suming this VILO use-case, the AV product should only
have signatures as of the moment the analyst would
have received the new file. Since at that moment the
commercial AV product can have no signature for the
new malicious executable (otherwise it would not be
unknown to the analyst), it would not be capable of
detecting it. Thus, if the AV products had the signa-
ture they would have during real world usage of VILO,
then VILO would perform much better than them; on
the other hand, comparing VILO against AV products
with more up-to-date signatures is a poor choice as it
violates the VILO use-case.

We instead compare VILO against other machine
learning based familial triage classifiers found in related
works. In Wong et al. [49], a Hidden Markov Model over

disassembled opcode observations was learned and used
to detect viruses created in-lab with NGVCK®. They
reported success detecting viruses from that particular
family (perfect true positive vs. false negative accuracy
in detecting NGVCK viruses), however other malware
was also classified as belonging to the NGVCK family
(false positives). Jang et al. [I7] described and evaluated
a system called BitShred for malware triage. Their data
set consisted of 102,391 malware with family labels (i.e.,
ground truth) determined by the ClamAV anti-virus
product. Using byte 16-grams to find a malicious exe-
cutable’s five nearest-neighbors, they reported 94.2%
precision and 92.2% recall. While BitShred’s results
suggest familial classification accuracy greater than our
own, at least one of the families BitShred classified mal-
ware into was a generic bucket family, Trojan.Dropper.
We suspect that BitShred’s familial classification accu-
racy would be more similar to VILO’s if their ground
truth did not include bucket families and was deter-
mined in a more precise fashion than from application
of a single commercial anti-virus product; in contrast,
ground truth for our data set was established via man-
ual analysis by trained malware analysts.

We have shown that VILO, when used for famil-
ial malware classification, can attain an accuracy of
86.44% while training on relatively few variants per
family. Such accuracy is competitive with other ap-
proaches [49, 7], though due to differences in data sets,
methods for determining ground truth, and evaluatory
methodologies, direct comparison of reported accura-
cies is difficult.

7 Binary Classification Using VILO

Binary classification is the process of classifying an un-
known executable as either being malicious or benign.
Thresholding is employed in order to perform binary
classification with VILO: if the similarity of an exe-
cutable with respect to its nearest neighbor is below a
certain threshold, it is likely not known malware. Us-
age of VILO for binary classification gives rise to two
issues:

— Threshold selection: Since VILO uses TFIDF, for
which weights vary depending on the familial sam-
ple sizes in the training database, the selection of a
particular threshold depends on the current compo-
sition of the training set.

— Abstaining classification: If an executable’s nearest-
neighbor similarity lies below a certain threshold,

4 NGVCK (Next Generation Virus Creation Kit) is a meta-
morphic virus generator that outputs syntactically different,
semantically equivalent x86 ASM source code for viruses.
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then we can say that it is not similar to anything in
the training database. However, we cannot say that
it is benign, as the training database itself may just
be lacking. Hence, saying “I don’t know” is a safer
approach than definitively declaring such an execut-
able benign. Classifiers like these have been called
abstaining classifiers in machine learning literature
The following two subsections discuss these issues in
more detail, then in Subsection I3 we evaluate VILO’s
efficacy in performing binary classification of unknown
executables when trained on real-world malware. The
summary result of the evaluation is that VILO is not
suited for binary classification.

7.1 Dependence of Threshold on Training Database
Contents

The goal of using TFIDF weighting in the VILO sys-
tem is to reduce the importance of features that appear
commonly in many vectors while giving more consider-
ation to features that are specific to smaller subsets of
the vectors in the VILO database. A possible concern in
this approach is that when the VILO database is largely
populated with related vectors, if another related vec-
tor is matched against the VILO database, then the
TFIDF weighting may reduce the similarity score of
the nearest neighbor vector to a significant degree. The
end result of such a reduced nearest neighbor similar-
ity score may be that the closest match returned, while
correct, may appear to be relatively dissimilar. We il-
lustrate the dilemma with a quick inline experiment.

We hypothesize that a VILO database populated
with many related vectors will result in a lower near-
est neighbor similarity score when matching against an-
other related vector than will a VILO database popu-
lated with fewer related vectors.

N-perm VILO feature vectors were generated from
100 unique variants belonging to the malware family
Backdoor.Win32.Hupigon. Additionally, N-perm VILO
feature vectors were generated from 100 known-to-be
benign Windows executables. Two more Hupigon vari-
ants were selected and N-perm VILO feature vectors for
them were generated to be used in verification against
the VILO database trained with vectors from the larger
sets. For both of the verification vectors, the following
steps were performed:

for i =1 — 100 do
Train VILO on i malware vectors and (100 - i)
benign vectors.
Compute the similarity score of the two Hupigon
samples with corresponding nearest neighbor.

end for

Figure @ illustrates the results of implementing the
described process. In both cases, as the percentage of re-
lated malware vectors in the VILO database increases,
the similarity score of the nearest neighbor vector when
matching against another related malware vector de-
creases. The result is as we intuitively expect TFIDF
weighting to behave.

These graphs show that due to the use of TFIDF
weighting, as the percentage of a malware family as a
part of the whole trained VILO database increases, the
similarity scores returned by all members of that fam-
ily decrease. It follows then that it is not possible to
fix a universal similarity score threshold that a nearest
neighbor vector must meet in order to be considered a
true match. If such a threshold is to be used, it must de-
pend on the size of the largest familial training set, and
must therefore be determined uniquely for each running
of the classifier.

The results of this experiment indicate that a given
similarity score computed by the VILO system is not
necessarily indicative of either a ‘good’ or ‘bad’ match.
Rather, it is generally better to treat such weighted sim-
ilarity scores as ordinal measurements whenever possi-
ble. In cases where the actual similarity scores must
be treated as interval scale measurements, such as in
the binary classification of malicious versus benign, care
must always be taken to select an appropriate similar-
ity score threshold with regard to the current contents
of the VILO database.

7.2 Benign as a Class

Some prior evaluations of binary classifiers have in-
cluded benign executables in the training data [&1, 24,
79). However, we think benign executables should not
be used for training and the binary classification should
be viewed as an abstaining classification problem [38].
This is because most machine learning based classifiers,
such as VILO, learn about classes in a positive manner,
i.e., the existence of previously seen malicious features
in some unknown executable indicates that it is likely
malicious as well. If the match of a query to the nearest-
neighbor in the training data is below a certain simi-
larity threshold, then it is safer to abstain and say “I
don’t know” than declaring it benign.

If benign executables must be matched against, then
that matching should take place via comparison with
a white-list, i.e. an expert-selected set of known-to-be
benign executables against which a perfect match, and
only a perfect match, indicates benignness with much
confidence.
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Fig. 4: TFIDF Effect on Nearest Neighbor Similarity Score

7.3 Evaluation of Binary Classification with VILO

For classifiers that generate a similarity score or prob-
ability value for a given input, a standard technique
to evaluate the classifier is to generate the Receiver
Operating Characteristic (ROC) curve [I3]. For a set
of generated classification results where ground truth
is known, an ROC curve plots the true positive rate
against the false positive rate as the required similarity
or probability threshold for a positive classification is
incrementally increased from 0 to 1.

We generated ROC curves for VILO’s binary classi-
fication using both N-perm and N-gram feature vectors.
Samples of 800 executables were taken from each of our
four malware families; 600 of which were added to the
training set and the remaining 200 were added to the
testing set. The testing set was extended by adding 200
benign executables to it. The ROC curves generated
using this data are shown in Figure B.

As is evident from the presented ROC curves, nei-
ther usage of N-perm nor N-gram feature vectors pro-
vided desirable results in the binary classification sce-
nario. For both types of feature vectors, the true posi-
tive rate only surpasses 50% when the false positive rate
is greater than 60%. As such, we conclude that VILO
is not suitable for use in binary classification.

8 Conclusions

VILO is a nearest-neighbor algorithm based system for
malware triage that uses TFIDF weighted features from

unpacked disassembled binaries. VILO is effective for
familial classification and it learns about malware fam-
ilies quickly, i.e., it attains high accuracy while only
training on relatively few variants from each malware
family. On the other hand, VILO is not as satisfactory
in binary classification of maliciousness. Our evalua-
tions using statistical tests and k-fold cross-validation
show VILO performs better with N-perms compared to
N-grams, which suggests that N-perms may provide a
performance boost in many systems that employ tradi-
tional N-grams. Additionally, we showed that similarity
scores calculated over weighted feature vectors should
be treated as ordinal measurements whenever possible.

Appendix

Learning curves derived from usage of both N-perm and

N-gram VILO feature vectors for Backdoor.Win32.Hupigon,

Backdoor.Win32.PcClient, Rootkit.Win32.Agent, and
Virus.Win32.Parite are shown herein (Figs B, @, B, @).
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