
Improved Malware Classification Through

Sensor Fusion Using Disjoint Union ⋆

Charles LeDoux1, Andrew Walenstein2, and Arun Lakhotia1

1 Center for Advanced Computer Studies, University of Louisiana at Lafayette,
Lafayette, LA, U.S.A.

cal@louisiana.edu arun@louisiana.edu
2 School of Computing and Informatics, Computer Science Program, University of

Louisiana at Lafayette, Lafayette, LA, U.S.A.
walenste@ieee.org

Abstract. In classifying malware, an open research question is how to
combine similar extracted data from program analyzers in such a way
that the advantages of the analyzers accrue and the errors are minimized.
We propose an approach to fusing multiple program analysis outputs by
abstracting the features to a common form and utilizing a disjoint union

fusion function. The approach is evaluated in an experiment measuring
classification accuracy on fused dynamic trace data on over 18,000 mal-
ware files. The results indicate that a näıve fusion approach can yield
improvements over non-fused results, but the disjoint union fusion func-
tion outperforms näıve union by a statistically significant amount in three
of four classification methods applied.

1 Introduction

A fundamental problem encountered in the automatic classification of malware is
constructing features extracted from the malicious programs such that accurate
classification is achieved. A significant, underlying cause of this difficulty is the
fact that program analysis has general limits to accuracy and that weaknesses are
often exploited by malware through program obfuscation [8]. Thus, all malware
classification work that utilizes features generated from program analysis face the
threat of inaccurate or missing features that can lead to inaccurate generalization
and misclassifications. Effective methods are therefore needed to address this
omnipresent problem for malware classification. One such promising method
is using data fusion [10]. Data fusion involves combining data from disparate
sources such that the information is in some sense “better” (more complete or

⋆ c©Springer. 2012. This is the author’s version of the work. It is posted
here with permission of Springer for your personal use. Not for re-
distribution. The definitive version was published in Information Systems,
Technology and Management Communications in Computer and Informa-
tion Science, 2012, Volume 285, Part 7, 360-371, DOI: 10.1007/978-3-642-
29166-1 32 The final publication is available at www.springerlink.com URL:
http://www.springerlink.com/content/x02884k103700654/

http://www.springerlink.com/content/x02884k103700654/

accurate, say) than would be possible if the sources are considered independently.
Sensor fusion is a type of data fusion that combines data outputs from multiple
sensors which, in the case of malware, are often program analyzers such as
disassemblers or tracers.

In order to perform any data fusion, a fusion function must be defined. This
task is relatively simple when the types of information extracted by the differ-
ent program analyzers are fundamentally different, since the information can be
combined independently. The issue, however, is not so simple when the sensors
measure similar but not identical types of information, with differing levels of
accuracy. Consider the problem of fusing program behavior data extracted by
two different program tracers: one generating system call traces by intercepting
system calls and another generating instruction traces by running the program
in a specially-instrumented emulator. Both tracers extract information about be-
havior, but with many potential differences; they are not perfectly substitutable.
Additionally, the tracers are susceptible to different obfuscations, so that an ob-
fuscated program might successfully hide salient behaviors from one tracer but
not the other. Moreover, while fusing the results might yield a more complete
picture, how can we know that the fusion does not serve to multiply the errors
of both and lead to decreased accuracy? Thus, an important open problem in
malware classification is knowing how to fuse outputs from program analyzers
generating related information.

In this paper, we propose a two step approach to solving the problem of
fusing similar data in malware classification. We first find a common abstraction
that permits combination, and then use a disjoint union fusion function. The key
insight is the realization that the commonalities and differences in the outputs
of the program analyzers may provide useful information for malware classifi-
cation. That is, apart from the direct benefit of combining two sources of data
for a more complete picture, we propose that there is additional useful informa-

tion to be mined from how sensors agree and disagree. The proposed disjoint
union approach is utilized to fuse results of the program tracers CWSandbox [9]
and Anubis [2]. We report on an experimental evaluation of the proposed fusion
approach using over 18,000 malicious files and four machine learning classifiers.
The results show that accuracy improved by a statistically significant amount
for three of four classifiers when using the disjoint union fusion as compared to
either a näıve union of features or using any single tracer output.

2 Fusing Related, Imperfect Program Data

To achieve the promises of sensor fusion, important problems must be solved
in terms of finding a suitable common basis for fusion and in defining a fusion
function that yields maximal benefit and minimizes potential problems.

2.1 The Unreliable Sensor Problem

Malware classification faces a unique set of difficulties. First, extracting a com-
plete and accurate set of relevant features about programs is impossible in the

general since many of the program attributes that may identify related malware
are not generally computable [8]. Second, analyzers attempting to extract simi-
lar results can have a myriad of variances in models and assumptions resulting
in outputs containing varying information with differing qualities. For example,
program tracers running different versions of operating systems (patched versus
unpatched, for example) can generate traces that are different even for identical
programs.

The problem is further compounded by the existence of an adversarial con-
text. Malware authors frequently utilize techniques know as obfuscations to
prevent complete or accurate extraction of program properties. For example,
Chen et al. [7] found that 40% of the 6,700 malicious files they examined uti-
lize “anti-VM” or “anti-debugger” evasion methods. This adversarial context is
distinct from the classic adversarial classification problem [14] in which adver-
saries attack the learning algorithms that utilize the features rather than feature
extraction itself. Thus, taken in the context of both the limitations of feature
extraction and the adversarial element, sensor fusion appears to be particularly
advantageous.

2.2 Fusing Sensors for Robustness and Completeness

In this paper we are specifically concerned with what Boudjemaa et al. [6] classify
as “fusion across sensors.” Fusion across sensors combines information obtained
from multiple sensors measuring the same attribute. In malware, a possible
example is fusing results from two different disassemblers in order to combine
the strengths of both. Given the limitations of program analysis reviewed above,
one can expect several benefits due to fusion across sensors:

1. Completeness of information. Two different traces of a program collected
under different execution conditions can yield a more complete profile of its
possible behaviors. For example, a more complete set of system calls might
be collected.

2. Combination of strengths. All obfuscations necessarily target some class
of sensors [8] due to the impossibility of perfectly obfuscating all properties
to all data collectors [4]. So, in a heterogeneous collection of sensors, a given
set of obfuscations may negatively affect only a portion of the collection. For
example, a junk byte insertion obfuscation can prevent correct disassembly
by a linear sweep disassembler, but does not affect a recursive traversal
disassembler [13].

3. Decoupled integration. While it is possible to create new tools which
combine the strengths of existing tools (Kruegel et al. [13] combine aspects
of recursive traversal and linear sweep disassembly, for example), it is gen-
erally difficult to create such new tools on a continual and ongoing basis.
It would advantageous to instead be able to define a fusion function that
combines the strengths of existing tools in a fully decoupled manner not re-
quiring repeated algorithm revision and combination of current best-of-breed
implementations.

2.3 Sensor Fusion Function Problem

In the domain of program analysis, combining multiple analyzers can be a dif-
ficult problem because the models of program information generated by the
program analyzers often differ between analyzers, even analyzers measuring the
same property. For example, consider the case of the tracers CWSandbox and
Anubis. Both tracers generate reports of interactions with the system. Anubis,
however, reports registry keys that are “created or opened”, whereas CWSandbox

reports registry key opens and creates separately. Some method for resolving the
differences between models must be adopted.

A second important problem for defining a sensor fusion function is to define
one that combines the strengths and not the weaknesses of individual sensors. If
this problem is not handled correctly, it is possible that composing an accurate
sensor with a less accurate sensor will result in a loss of improvement due to the
inaccuracies introduced.

3 Sensor Fusion Using Disjoint Union

We describe a general method for fusing the outputs of program analyzers in
cases where the analyzers extract the same class of attributes but have differences
in their outputs. The heart of the approach is the construction of a feature set
using a disjoint union. We illustrate the approach by deriving a fuser for two
dynamic program tracers.

3.1 Approach Through Disjoint Union of Features

The proposed approach fuses features as illustrated in Figure 1. For this form of
fusion, the main design questions are how to assure the features can be combined,
and deciding on a fusion function. In our approach, we ensure the ability to
combine features by defining a feature abstraction and use disjoint union as our
fusion function.

Definition. Let I be an ordered set indexing a set of program analyzers run on
some input program. Let Θ = {σi‖∀i ∈ I} be the sets of outputs corresponding
to the program analyzers in I. A feature abstraction for Θ is then defined as

Fig. 1: Feature fusion in malware classification

the pair (F,A) where F is a set of features, and A is the family of functions
A = {αi‖∀i ∈ I, αi(σi) ⊂ F} such that ∀i, j ∈ I, si ∈ αi(σi), sj ∈ αj(σj), [(si =
sj) → (σi ≈si σj)], where x ≈z y means analyzer output x is similar to analyzer
output y according to some attribute z.

Example Given disassembler D and program tracer T which both provide infor-
mation about the set of function calls the program may perform, let the output
of the disassembler, σD, be a list of system calls with abstract parameter types,
and the output of the tracer, σT , be a sequence of calls with their concrete pa-
rameters. Let us assume that the system calls in σD and σT are represented by
their symbolic names. We define a feature abstraction (F,A) over Θ = {σD, σT }
such that F is the set of all symbolic names contained in either σD or σT and
both αD and αT are functions which remove the parameters of the system calls
and leave only the symbolic names. We then consider that σD ≈f σT if a call
to function f is present in both σD and σT . In Figure 1, each of the Extractor

components implements one of the αi abstraction functions.

Definition. Let {Si‖i ∈ I} be the sets of features extracted via the feature
abstraction function from the program analyzers indexed by I. That is, Si =
αi(σi). Then, fusion by disjoint union is defined as

⊔
i∈I =

⋃
i∈I{(f, i)‖∀f ∈

Si, i ∈ I}. This gives us a set containing the ordered pairs (f, i) where f is a
feature extracted from the output of sensor i.

Example Let there be three sensor which generate outputs σ1, σ2, and σ3. Fea-
ture abstraction functions αi are applied to each σi to generate S1 = {f1, f2},
S2 = {f2, f3}, and S3 = {f1}. The fused feature set,

⊔
i∈I = {(f1, 1), (f2, 1), (f2, 2), (f3, 2), (f1, 3)},

indicates that feature f1 was extracted from the outputs of sensors 1 and 3, fea-
ture f2 was extracted from the output of sensors 1 and 2, and feature f3 was
extracted only from the output of sensor 2. In Figure 1, the Fuser component
implements the fusion function.

The proposal to use disjoint union is based on the following hypothesis: the
information about which sensors generate which output is additional information
that will assist in correct classification, so preserving it in the fusion will aid
classifiers. There are two intuitions underlying this hypothesis.

1. Information Present in Differences. Programs that are related are likely
to generate similar sets of commonalities and differences in the outputs of
sensors. Consider two programs x, y, both containing an obfuscation against
sensor 1. If sensor 2 is not susceptible to this obfuscation, then S2 will contain
certain system calls that S1 does not. Since the disjoint union records that
the hidden system calls are found by sensor 2 and not by sensor 1, this
information can be used to determine both x and y use the obfuscation.

2. Reputation. Not all program analyzers for a given attribute will generate
equally reliable information. For example, classification accuracy might be
significantly higher using one sensor rather than another simply because
one sensor generates more consistent sets of features for related inputs than

the other does. By labeling which sensor generates which feature, this is
information the classification algorithms can use to factor (in some way) the
reliability of input sensors into account.

If the above hypothesis is true, then fusion using disjoint union should tend to
result in better classification performance than either näıve union or classification
with individual sensors.

3.2 Trace Fusion Example

Our example fusion is of two web-based behavioral analysis systems, Anubis

(formerly TTAnalyze) [2] and CWSandbox [9]. Both of these sensors trace pro-
gram execution and report on program behavior, particularly interactions with
the operating system through system calls. Anubis and CWSandbox collect data
at different system layers and run programs in differing runtime environments.
Anubis runs in a modified version of the system emulator Qemu and works by
inserting itself between the operating system and the hardware [19]. Instead
of the operating system directly communicating with and controlling the hard-
ware, it instead communicates with the virtualized hardware provided by Anubis

through Qemu. CWSandbox, on the other hand, uses DLL hooking to insert itself
between the Application Binary Interface (ABI) and the operating system [5].
In Windows, the ABI is contained in a collection of DLL files. Whenever one
these DLLs are loaded into memory CWSandbox modifies the functions in the DLL
so that system calls are first “hooked” and control flow redirected to CWSandbox

instead of directly going to the operating system.
These two analyzers are appropriate choices to illustrate the fusion approach

because there must be both expected overlap and differences between the sensor
outputs. The hypothesis behind using disjoint union as the fusion function is
that the differences between sensor outputs provide additional information. If
there are either no differences or no commonalities, then this hypothesis will not
hold true. Since Anubis and CWSandbox collect similar but not identical data using
two different methods susceptible to different obfuscations, these requirements
are held.

In order to fuse the outputs of Anubis and CWSandbox, we first need to define
the abstract features and the abstraction function. The abstract features used
are an adaptation of those presented in [5] and [17]. A feature is an action
taken upon a resource, divided into three parts: category, action, and data.
The category of a feature corresponds to the type of object that an action was
taken upon. These are things such as DLLs, files, processes, etc. For example,
the data stored for files is the path to the file and the data stored for registry
actions is the registry key. The abstraction function removed all actions unique
to a single sensor and converted a few actions to a common abstract feature.
For example, in the case of CWSandbox, file open events are turned into file read
events, and file copy events are turned into file create events. Actions unique to
a single sensor were not included because our focus in the paper is on the in case
where sensor information is nominally the same. Thus eliminating these actions

ensure measured improvements in classification accuracy are due to combining
strengths of the tracers rather than provision of a more comprehensive collection
of features. The list of possible features together with some example concrete
data are given in Table 1.

Table 1: List of possible features with concrete examples

Possible feature types Concrete example

Category Actions Data Action Concrete Data

DLL load path load c:\windows\system32\mlang.dll

Mutex create name create aashea

Registry create, modify, read key read hklm\software\classes\chkfile

File create/modify, read path read c:\windows\winvrn.exe

Process create name create c:\windows\charmapnt.exe

4 Evaluation

An experiment was conducted to evaluate the hypothesis that fusion by disjoint
union can succeed in improving classification, and that the additional informa-
tion in the pattern of sensor responses helps combine strengths of sensors without
combining weaknesses. The essential test is to compare trained classifier perfor-
mance for statistically significant differences when using different feature sets on
three treatments: single sensor, regular union fusion, and disjoint union fusion.
Specifically, the experiment tests the following:

1. Increased Performance. The application of sensor fusion using disjoint
union is expected to increase the accuracy of malware classification. This is
tested by comparing the accuracies obtained when no feature fusion is used
to the accuracies obtained when feature fusion is used. If the fusion func-
tion increases accuracy, we should be able to observe statistically significant
differences in the dependent variable of classifier accuracy.

2. Increased Performance Due to Patterns of Differences. It is possible
that any increase in accuracy observed in the fusion case is due solely to
the composition of information from multiple sensors and no additional im-
provement is made through the use of patterns of sensor differences. We test
against this by comparing accuracies obtained using disjoint union as the
fusion function to accuracies obtained using regular set union as the fusion
function. If the disjoint union provides additional useful information to the
classifiers, we should be able to observe a statistically significant increase in
the dependent variable of classifier accuracy.

4.1 Data Set

The sample of malware used contained 18,422 executables and was composed of
six malware families plus a set of benign (non-malicious) executables gathered
from three different sources. The files belonging to the Agent, Parite, PcClient,
and the Benign families were obtained from a commercial anti-virus vendor.
The Banker and SDBot families were provided by OffensiveComputing.net. The
Storm class was self-collected from the Storm botnet. The benign files were
collected from system and third party executables from clean Windows 2000
and Windows Vista systems. Table 2 gives the number of malware files in each
family.

Table 2: Malware files in sample, organized by family

Family # Files % of Collection Source

sdbot 5,956 32.33% OffensiveComputing.net

agent 1,930 10.48% Commercial AV

benign 5,460 29.64% Clean Systems

banker 1,118 6.07% OffensiveComputing.net

pcclient 1,562 8.49% Commercial AV

parite 1,841 9.99% Commercial AV

storm 575 3.12% Self Collected

4.2 Procedure

The overall procedure followed was to submit the malware files to the sensors
and retrieve the raw data, extract the features from the raw data, create the
fused and non-fused feature sets, determine classification accuracies, and per-
form statistical analysis. The feature set reductions, cross validation, and the
classifications for the paired t-tests were performed using the open source tool
RapidMiner [16]. The dependent pairs t-tests were performed using the Data
Analysis ToolPak in Microsoft Excel 2007.

Feature Set Generation. There were four types of feature sets extracted. The
Anubis feature set contained only features that were detected by Anubis, the
CWSandbox feature set contained only features detected by CWSandbox, the Union
feature set was created using union as the fusion function, and the Disjoint
feature set was created using disjoint union as the fusion function. The total
number of features for each feature type are given in Table 3. Information gain
was used to reduce the features used to a manageable subset. The number of
features detected by each sensor are given in Table 4

Table 3: Number of features by feature
set

Before After

Feature Type Reduction Reduction

Anubis 24,767 661

CWSandbox 40,854 906

Union 58,924 1,363

Disjoint Union 58,924 1,265

Table 4: Number of features by sensor

Number of

Detected By Features

Only Anubis 18,070

Only CWSandbox 34,157

Anubis and CWSandbox 6,697

Anubis or CWSandbox 58,924

Accuracy Measure Collection. The learning algorithms used for classification are:
Näıve Bayes, Rule Induction, Decision Tree, and K-Nearest Neighbor (KNN) as
implemented by the RapidMiner [16] application. 10-Fold Cross Validation was
used to obtain accuracy estimations for all combinations of classifier and feature
set types. Hold-Out classification was performed to obtain measurements for the
statistical tests. This was due to limitations of RapidMiner as it did not provide
mechanisms to collect the needed data using Cross Validation.

Statistical Tests. Paired t-tests were performed only against combinations of
feature sets using the same classifier. The experiment was focused on how the
feature sets rather the classifier affected classification accuracy. In the same
way, statistical tests were not performed to compare classifications using the
CWSandbox feature set against those using the Anubis feature set.

4.3 Results

The overall accuracies obtained from Cross Validation are given in Table 5. The
bold accuracies indicate the feature type with the highest accuracy for each
classifier. For the Näıve Bayes classifier, the CWSandbox feature set achieved the
highest accuracy with 81.40%. For the Rule Induction, Decision Tree, and KNN
classifiers, Disjoint Union had the highest accuracies with 91.30%, 92.83%, and
95.30% respectively.

Table 5: Classification accuracies

Feature Type Näıve Bayes Rule Induction Decision Tree KNN

Anubis 67.78% 75.32% 78.20% 86.29%

CWSandbox 81.40% 86.98% 88.91% 91.65%

Union 76.45% 84.11% 90.48% 92.85%

Disjoint 79.88% 91.30% 92.83% 95.30%

The p-values from the paired t-tests are given in Table 6. The difference in
accuracies between the two feature sets is statistically significant if the p-value
is less than 0.05. The places where statistical significance is not achieved are
indicated by bold text. This is only between the Union and CWSandbox feature
sets for the KNN classifier (6.11×10−2), the Disjoint and CWSandbox feature sets
using the Näıve Bayes classifier (2.02×10−1), and the Disjoint and Union feature
sets using the Decision Tree classifier (8.41× 10−2).

Table 6: P-values from the paired t-tests

Feature Types Näıve Bayes Rule Induction Decision Tree KNN

Union & Anubis 1.00× 10−16 1.00× 10−16 1.00× 10−16 1.00× 10−16

Disjoint & Anubis 1.00× 10−16 1.00× 10−16 1.00× 10−16 1.00× 10−16

Union & CWSandbox 2.29× 10−6 1.11× 10−4 1.33× 10−4 6.11× 10−2

Disjoint & CWSandbox 2.02× 10−1 9.42× 10−7 8.58× 10−9 1.63× 10−9

Disjoint & Union 1.00× 10−15 1.00× 10−13 8.41× 10−2 1.02× 10−6

4.4 Discussion

The results support the hypothesis that sensor fusion using disjoint union im-
proves the accuracy of malware classification. As can be seen in Table 5, disjoint
union obtained a statistically significant increase in accuracy over the classi-
fications performed without feature fusion in all but one case. For the Näıve
Bayes classifier, the CWSandbox feature set had an accuracy of 80.40%, while dis-
joint union had an accuracy of only 79.88%. However, according to Table 6, the
p-value for these two classifications is 0.202 indicating this difference in not sta-
tistically significant. All increases in accuracy disjoint union obtained over one
of the non-fused feature sets, however, were statistically significant. For the Rule
Induction, Decision Tree, and KNN classifiers, the CWSandbox feature set obtained
accuracies of 86.98%, 88.91%, and 91.65%, while disjoint union obtained higher
accuracies of 91.30%, 92.83%, 95.30%. The p-values for these classifications were
9.42× 10−7, 8.58× 10−9, and 1.63× 10−9.

The results also lend evidence to support the hypothesis that the additional
information captured by disjoint union contributes to the improvement in clas-
sification accuracy. This can be seen by comparing the accuracies of Disjoint
features to Union features. Looking at Table 5, we find that Disjoint consistently
achieves a higher accuracy than Union (79.88% vs. 76.45%, 91.30% vs. 84.11%,
92.83% vs. 90.48%, 95.30% vs. 92.85%) and these increases are statistically sig-
nificant, except when using the Decision Tree classifier (p-values of 1 × 10−15,
1 × 10−13, 1.02 × 10−6, and 8.41 × 10−2). Lending further evidence is the fact
that while Disjoint consistently achieved higher accuracies than no fusion, Union

only performed better than the CWSandbox feature set when using the Decision
Tree and KNN classifiers (90.48% vs. 88.91% and 92.85% vs. 91.65%), and only
the increase using the Decision Tree classifier was statistically significant with a
p-value of 1.33× 10−4 (KNN had p-value of 6.11× 10−2).

5 Relations to Other Work

The concept of utilizing patterns of differences in sensor outputs to understand
malware was previously explored in several prior works. Kang et al. [12] and
Balzarotti et al. [3] use divergences in the execution behavior of the same mal-
ware running on both reference hardware and an emulation environment to au-
tomatically detect circumstances where the malware is detecting the emulated
environment and modifying its behavior as a result. Allen et al. [1] describe a
method called cross-view diff which uses discrepancies between different views
of the same data structure to detect malware attempting to hide by modify-
ing the data structure. While these three works cleanly illustrate the promise
of exploiting the patterns of differences between sensor outputs, they only used
these differences to identify malware which contains a specific type of obfusca-
tions. The present work instead utilizes the insight to improve machine learning
classifiers.

The idea of using data fusion in malware classification has also been explored
by previous works. Islam et al. [11] combine function length frequency and print-
able string features. While Islam et al. did not have a specified motivation for the
features chosen to combine, Lu et al. [15] combine features which are meant to be
complementary, specifically static and dynamic features. Walenstein et al. [18]
provide a review of work combining program metadata with various other data.
None of these works address the problems associated with fusion across sensors.

6 Conclusion

In this paper, we have introduced a method of performing sensor fusion using
disjoint union to combine the strengths of program analyzers (“sensors”) while
minimizing their weaknesses in the context of malware classification. We present
an implementation of our approach and evaluate it through an experimental case
study. We found that the application of sensor fusion using disjoint union typi-
cally increased the accuracy of classification by a statistically significant amount.
Additionally, the results from the case study lend evidence to the additional in-
formation provided through the use of disjoint union rather than a näıve union
contributing to this increase in accuracy.

One question left by this paper to be addressed in later work is the nature
of the additional information provided through the use of disjoint union. It is
evident that it is useful to provide the classifier with provenance information
on the features, but the question still remains: Why? There are several possible
answers to this question. It could be that obfuscations are affecting the sensors
differently, or perhaps the provenance information helps the classifier decide

which features are trustworthy from which sensor. It is worthwhile to explore
this question further.

7 Acknowledgments

This research work was sponsored in part by funds from Air Force Research
Lab and DARPA (FA8750-10-C-0171) and from Air Force Office of Scientific
Research (FA9550-09-1-0715). We would like to thank Craig Miles, Anshuman
Singh, and Daniel Hefner for help with test design and implementation.

References

1. Allen, W.H., Ford, R.: How not to be seen II: The defenders fight back. IEEE
Security & Privacy 5(6), 65–68 (2007)

2. Anubis: Analyzing unknown binaries (June 2011), http://anubis.iseclab.org
3. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient

detection of split personalities in malware. In: Network and Distributed System
Security (NDSS) (2010)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Killian, J. (ed.) Advances
in Cryptology – CRYPTO 2001: Proceedings of the 21st Annual International
Cryptology Conference (2001)

5. Bayer, U., Kruegel, C.: TTAnalyze: A tool for analyzing malware. Proceedings
of the 15th European Institute for Computer Antivirus Research (EICAR 2006)
Annual Conference (2006)

6. Boudjemaa, R., Forbes, A.: Parameter estimation methods for data fusion. NPL
Report CMSC 38(04) (2004)

7. Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an understanding
of anti-virtualization and anti-debugging behavior in modern malware. In: Proceed-
ings of the IEEE International Conference on Dependable Systems and Networks.
pp. 177–186. Anchorage, AK, U.S.A. (2008)

8. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional (2009)

9. CWSandbox: behavior-based malware analysis (June 2011),
http://mwanalysis.org

10. Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the
IEEE 85(1), 6–23 (1997)

11. Islam, R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on
string and function feature selection. Cybercrime and Trustworthy Computing,
Workshop 0, 9–17 (2010)

12. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of the 1st ACM Workshop on Virtual Machine
Security. pp. 11–22. ACM, Chicago, Illinois, USA (2009)

13. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated
binaries. In: Proceedings of the 13th USENIX Security Symposium. pp. 255–270.
Usenix (2004)

14. Laskov, P., Lippman, R.: Machine learning in adversarial environments. Machine
Learning 81, 115–119 (2010)

http://anubis.iseclab.org
http://mwanalysis.org

15. Lu, Y., Din, S., Zheng, C., Gao, B.: Using multi-feature and classifier ensembles
to improve malware detection. Journal of C.C.I.T. 39(2) (November 2010)

16. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid pro-
totyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos,
D., Eliassi-Rad, T. (eds.) Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 935–940. ACM (2006)

17. Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction set for behavior-
based analysis. Tech. Rep. TR-2009-07, University of Mannheim (2009)

18. Walenstein, A., Hefner, D., Wichers, J.: Header information in malware families
and impact on automated classifiers. In: Proceedings of the 5th International Con-
ference on Malicious and Unwanted Software. pp. 15–22. IEEE CSP (2010)

19. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Security & Privacy 5(2), 32–39 (2007)

	 Improved Malware Classification Through Sensor Fusion Using Disjoint Union

