AVA
AVAYAY UNIVERSIDADE ESTADUAL PAULISTA

u nesp Y& 40LIO DE MESQUITA FILHO”

Campus de llha Solteira

PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

TESE DE DOUTORADO

“Context-Sensitive Analysis of x86 Obfuscated
Executables”

DAVIDSON RODRIGO BOCCARDO

Ilha Solteira — SP
outubro/2009

A
AVAYAY UNIVERSIDADE ESTADUAL PAULISTA

WA
u nesp Y& 40LIO DE MESQUITA FILHO”

Campus de llha Solteira

PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

“Context-Sensitive Analysis of x86 Obfuscated
Executables”

DAVIDSON RODRIGO BOCCARDO

Orientador: Prof. Dr. Aleardo Manacero Junior

Tese apresentada a Faculdade de
Engenharia - UNESP — Campus de Ilha
Solteira, para obtengdo do titulo de
Doutor em Engenharia Elétrica.

Area de Conhecimento: Automacéo.

Ilha Solteira — SP
outubro/2009

FICHA CATALOGRAFICA

Elaborada pela Se¢ao Técnica de Aquisi¢do e Tratamento da Informagado
Servigo Técnico de Biblioteca e Documentagdo da UNESP - Ilha Solteira.

Boccardo, Davidson Rodrigo.

B664c Context-sensitive analysis of x86 obfuscated executables / Davidson
Rodrigo Boccardo. -- Ilha Solteira : [s.n.], 2009.
104 f.

Tese (doutorado) - Universidade Estadual Paulista. Faculdade de
Engenharia de Ilha Solteira. Area de conhecimento: Automacao, 2009

Orientador: Aleardo Manacero Janior
Bibliografia: p. 99-104

1. Andlise estatica. 2. Interpretacdo abstrata. 3. Ofuscagdo de codigo.

AV
VAT

unesp " UNIVERSIDADE ESTADUAL PAULISTA

CAMPUS DE ILHA SOLTEIRA
FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA

CERTIFICADO DE APROVAGAO

TITULO: Context-Sensitive Analysis of x86 Obfuscated Executables

AUTOR: DAVIDSON RODRIGO BOCCARDO
ORIENTADOR: Prof. Dr. ALEARDO MANACERO JUNIOR

Aprovado como parte das exigéncias para obtengdo do Titulo de DOUTOR em ENGENHARIA
ELETRICA , Area: AUTOMACAQ, pela Comissdo Examinadora:

s

Prof. Dr. ALEARDO MANACEROWNIOR
Departamento de Cienc Comp e Estatistica / Instituto de Biociéncias, Letras e Ciéncias Exatas de
Sao Jose do Rio Preto

Prof, Dr. SERGIO \Y
Departamento de Engen

OLIVEIRA
Elétrica / Faculdade de Engenharia de Ilha Solteira

’ O VILLARREAL ALVARADO
Departamento de Matematica / Faculdade de Engenharia de llha Solteira

ﬁ Qé@% (/42&/&&
Prof. Dr. RODOLFO JARDIM DE AZEVEDO
Instituto de Computagéo / Universidade Estadual de Campinas

Prof. Dr. ANDRE LUIZ MOURA DOS SANTOS
Centro de Ciéncias e Tecnologias / Universidade Estadual do Ceara

Data da realizagéo: 09 de outubro de 2009.

Dedication

I dedicate this work to my family.

Acknowledgements

I would like to thank everyone of the Sao Paulo State University, Department of
Computer Science and Statistics and Department of Electrical Engineering for teaching

quality, dedication and incentive in academics.

I would like to thank my advisors Aleardo Manacero Junior and Arun Lakhotia for
their guidance and encouragement over these years. They have taught me how to achieve
my goals and how to develop my ideas. Sincere thanks to André Luiz Moura dos Santos,
Rodolfo Jardim de Azevedo, Sérgio Azevedo de Oliveira and Francisco Villarreal Alvarado

for being on my dissertation committee.

I also would like to thank the Brazilian Ministry of Education (CAPES) for the fi-

nancial support through of my doctorate.

A warm thanks for the colleagues from the Software Research Lab (SRL), especially
Michael Venable and Anshuman Singh for dedicating their time to cooperate with the im-
plementation and formal semantics while I was visiting the Center of Advanced Computer

Studies at Lafayette.

A special thanks to my parents and family who helped me out on my problems and
doubts in all these years. I would also like to thank the Biessenberger family for helping

me while I was visiting the Center of Advanced Computer Studies at Lafayette.

Resumo

Ofuscagao de cédigo tem por finalidade dificultar a deteccao de propriedades intrinse-
cas de um algoritmo através de alteragoes em sua sintaxe, entretanto preservando sua
semantica. Desenvolvedores de software usam ofuscacao de codigo para defender seus
programas contra ataques de propriedade intelectual e para aumentar a seguranca do
codigo. Por outro lado, programadores maliciosos geralmente ofuscam seus cédigos para
esconder comportamento malicioso e para evitar deteccao pelos anti-virus.

Nesta tese, é introduzido um método para realizar analise com sensitividade ao con-
texto em bindrios com ofuscamento de chamada e retorno de procedimento. Para obter
semantica equivalente, estes binarios utilizam operacoes diretamente na pilha ao invés de
instrugoes convencionais de chamada e retorno de procedimento.

No estado da arte atual, a definicao de sensitividade ao contexto estd associada com
operacoes de chamada e retorno de procedimento, assim, analises interprocedurais classi-
cas nao sao confiaveis para analisar binarios cujas operagoes nao podem ser determinadas.
Uma nova defini¢ao de sensitividade ao contexto € introduzida, baseada no estado da pilha
em qualquer instrugao. Enquanto mudangas em contextos a chamada de procedimento
sao intrinsicamente relacionadas com transferéncia de controle, assim, podendo ser obti-
das em termos de caminhos em um grafo de controle de fluxo interprocedural, o mesmo
nao é aplicavel para mudancas em contextos a pilha.

Um framework baseado em interpretacao abstrata é desenvolvido para avaliar contexto
baseado no estado da pilha e para derivar métodos baseado em contextos a chamada de
procedimento para uso com contextos baseado no estado da pilha. O método proposto
nao requer o uso explicito de instrugoes de chamada e retorno de procedimento, porém
depende do conhecimento de como o ponteiro da pilha é representado e manipulado.

O método apresentado € utilizado para criar uma versao com sensitividade ao contexto
de um algoritmo para deteccao de ofuscamento de chamadas de Venable et al.. Resultados
experimentais mostram que a versao com sensitividade ao contexto do algoritmo gera
resultados mais precisos, como também, é computacionalmente mais eficiente do que a
versao sem sensitividade ao contexto.

Abstract

A code obfuscation intends to confuse a program in order to make it more difficult
to understand while preserving its functionality. Programs may be obfuscated to protect
intellectual property and to increase security of code. Programs may also be obfuscated
to hide malicious behavior and to evade detection by anti-virus scanners.

We introduce a method for context-sensitive analysis of binaries that may have obfus-
cated procedure call and return operations. These binaries may use direct stack operators
instead of the native call and ret instructions to achieve equivalent behavior. Since defini-
tion of context-sensitivity and algorithms for context-sensitive analysis has thus far been
based on the specific semantics associated to procedure call and return operations, classic
interprocedural analyses cannot be used reliably for analyzing programs in which these
operations cannot be discerned. A new notion of context-sensitivity is introduced that
is based on the state of the stack at any instruction. While changes in calling-context
are associated with transfer of control, and hence can be reasoned in terms of paths in
an interprocedural control flow graph (ICFG), the same is not true for changes in stack-
context.

An abstract interpretation based framework is developed to reason about stack-
context and to derive analogues of call-strings based methods for the context-sensitive
analysis using stack-context. This analysis requires the knowledge of how the stack, rather
the stack pointer, is represented and on the knowledge of operators that manipulate the
stack pointer.

The method presented is used to create a context-sensitive version of Venable et al.’s
algorithm for detecting obfuscated calls. Experimental results show that the context-
sensitive version of the algorithm generates more precise results and is also computation-
ally more efficient than its context-insensitive counterpart.

10

11

12

13

14

15

16

17

18

19

20

21

22

List of Figures

Example motivating context-sensitive analysis of obfuscated code. p.20
Hasse diagram of p({z,y,z}). p.30
Abstractions of p(Z). p. 38
The Interval abstract domain. p-39
Example of obfuscation of a call instruction. p.44
Example of obfuscation of a ret instruction. p-45
Concrete and abstract stacks.o p. 46
Sample program.o p. 46
Control flow graph for sample program in Figure 8. p-47
Possible abstract stacks at some program points. p-47
Abstract stack graph for sample program in Figure 8. p.48
Eclipse interface for DOC. p-50
Abstract stack graph and call-graph for code of Figure 1(a). p.o7
Abstract stack graph for the obfuscated code of Figure 1(c) p.58
Example to demonstrate context string derivation. p.61
An x86-like assembly language. oL p- 70
Semantic domains and functions for our semantics. p-71
Transition relation for our semantics. p. 72
Pseudo-code for the top-level procedure of our algorithm. p. 78
Fluxogram for the top-level procedure of our algorithm. p-79
I7# procedure of our algorithm. p. 80

Abstracted semantic functions. p-81

23

24

25

26

27

28

29

30

31

push-{ procedure of our algorithm. p. 82

pop-{ procedure of our algorithm. p-83
Obfuscated call using push/ret instructions. p. 84
Obfuscated call using push/jmp instructions. p. 86
Obfuscated return using pop/jmp instructions. p. 87
Time evaluation of the set of hand-crafted, obfuscated programs. p.93

Comparison of number of interpreted instructions between context-sensitive

and context-insensitive analyses.o p.94

Evaluation of the size of the value sets between context-sensitive and

context-insensitive analyses.o p. 94

Histogram of approximations for Win32.Evol.a. p-95

List of Tables

Examples of sequences of open and close contexts for the program of

Figure 15 and their respective context strings.
Examples of contexts and abstract contexts.
Examples of mapping contexts and T-contexts.

Stack contexts and associated values for interprocedural analysis of ob-

fuscated binaries.

Empirical measurements on (a) k-context-abstraction and (b) ¢-context-

abstraction.

List of abbreviations

ASG
AST
BDD
CFG
CG
COTS
DOC
LIFO
ICFG
RIC
SEH
VSA

abstract stack graph

abstract syntax tree

binary decision diagram
control flow graph

call graph

commercial off-the shelf
detector of obfuscated calls
last in first out
interprocedural control flow graph
reduced interval congruence
structured exception handling

value set analysis

X+
ec X*

(x 7)

a.r

(rest a.x)
YIX
s5€X
oecX”

N g0 = =

Uy

Mathematical notation

partially ordered set upon domain X

join operator

meet operator

powerset of X

least upper bound (lub)

greatest lower bound (glb)

least element

greatest element

least fixed point

Galois connection between domains C' and A
abstraction map

concretization map

widening operator

set of finite sequences over X

empty sequence

represents the i*" element of the sequence x
inserts a in the head of the sequence x
removes a from the sequence a.x

X element of the pair YV

program state

trace (sequence of program states)

set of instructions

set of instructions that open contexts

set of instructions that close contexts
context string

maps a trace to its context string
represents the effect of an individual program state
on the accumulated context string
k-context string

(-context string

set of finite sequences over [
set of finite sequences of open contexts
k-abstraction of the set of finite sequences of open contexts

(-abstraction of the set of finite sequences of open contexts

abstract syntax tree of the set of finite sequences of open contexts

maps a context string in (* to a k-context string in (*
maps a context string in (* to a f-context string in (°
maps (* to (r

open contexts for assembly programs

close contexts for assembly programs

version of function 7 for assembly programs

version of function II for assembly programs

(-abstraction of the set of finite sequences of open contexts
for assembly programs

k-abstraction of the set of finite sequences of open contexts
for assembly programs

concrete function F (F represents any given function)

abstract function F

1 Introduction

1.1 Motivation
1.2 State-of-the-art
1.3 Research Objectives . . .
1.4 Research Contributions .
1.5 Organization

2 Preliminaries

2.1 Domain Theory
211 Sets
2.1.2 Functions
2.1.3 Partial ordering .
2.1.4 Fixed points . . .

2.1.5 Galois connection

Contents

2.2 Abstract Interpretationo

2.2.1 Examples of concrete and abstract store domains
2.3 Disassemblyo
2.4 Code Obfuscation
2.5 Abstract Stack Graph
2.6 DOC: Detector of Obfuscated Calls

3 Proposed algorithm

3.1 Motivation and Intuition

17

.18

.21

.25

.25

.26

.28

.28

.28

.29

.30

.32

.33

.35

.37

.40

.42

.45

.49

.54

.54

3.2 Context-trace Semantics

3.3 Context Abstractions
3.3.1 Ek-Context
3.3.2 (-Context

3.4 Analysis of Obfuscated Assembly Programs
3.4.1 Programming languageo
3.4.2 Stack-context
3.4.3 Modeling transfer of control 0.
3.4.4 Semantic domain and algorithm
3.4.5 Soundness

3.5 Examples

3.6 Discussion

4 Empirical evaluation

4.1 Comparison of /- and k- Context Analyses

4.2 Improvement in Analysis of Obfuscated Code

4.3 Discussion

5 Conclusions and further work

5.1 Research Outcomes
5.2 Directions for Further Work
References

p- 89
p- 89
p-92

p.95

p- 96
p- 96

p- 98

p- 100

17

1 Introduction

An increase in the development of computer networks and internet technology has
been noticed in recent years. Remote execution, distributed computing and code mobility
have resulted in new computing abilities; however, they raise security and safety problems.
Hosts and networks must be protected from malwares, and programs must be protected
from malicious hosts. A malware may try to gain, steal or damage some information
in a determined target (host). Software developers try to defend their program against
malicious host attacks that usually aim to steal, modify or tamper with the code in order
to take (economic) advantage of it. Both represent harmful threats to the security of

computer networks.

Software protection and malware detection are two major applications of code ob-
fuscation. A code obfuscation intends to confuse a program in order to make it more
difficult to understand while preserving its functionality. Software developers use ob-
fuscation techniques to hide intrinsic information of the algorithm in order to protect
intellectual property and to increase security of code (by making it difficult for others
to identify vulnerabilities). Malware writers, however, use obfuscation to hide malicious
behavior in order to evade detection by anti-virus scanners (BOCCARDO; MANACERO
JUNIOR.; FALAVINHA JUNIOR., 2007). Therefore, the design of techniques for an-
alyzing obfuscated code is essentially due to the impossibility of determining if certain

obfuscated code is malicious without its inspection.

Recently, research activity has increased in the area of binary analysis. These analyses
have been motivated to port legacy applications to new platforms, link-time optimization
of executables, verify whether an embedded application conforms to standards, identify
security vulnerabilities that can be exploited by a hacker, analyze whether a binary may

be malicious, and control flow reconstruction.

For Commercial Off-The Shelf (COTS) programs or other third-party programs in
which the source code is not available to the analyst, analysis for malicious (hidden) be-

havior can be performed reliably only on binaries. Even when the source code is available,

1.1 Motivation 18

analyzing the binary is the only true way to detect hidden capabilities, as demonstrated
by Thompson in his Turing Award Lecture (THOMPSON, 1984). Hence, a safety analysis
should be run at the binary level since the binary is the most accurate representation of

a program behavior.

1.1 Motivation

Current methods for analyzing binaries are modeled on methods for analysis of source
code, where a program is decomposed into a collection of procedures, and the analyses
are classified into two types: intraprocedural and interprocedural. In intraprocedural
analysis, the entire program is treated as one function, leading to very significant over-
approximation. In interprocedural analysis, procedures are taken into account and com-
plications can arise when ensuring that calls and returns match one another. Incorrect
combination of call and return nodes creates spurious pathways in the information flow,
where information may flow along a call node to a procedure and then be propagated by

a return node to another call node calling the same procedure.

(Classical interprocedural analysis may be performed either by procedure-inlining fol-
lowed by an intraprocedural analysis, or by using the functional approach through proce-
dure summaries, or by providing the calling-context using the call string approach (SHARIR,;
PNUELI, 1981). In the procedure-inlining approach, every call to a procedure is replaced
by the body of that procedure. This technique is only feasible for non-recursive proce-
dures, and the control-flow graph (CFG) may grow exponentially in terms of the nesting
depth. In the functional approach through procedure summaries, an effect, a map from
input values to the output values, for every procedure is calculated. The calculation of
the effect requires the analysis of each procedure only a few times in case of recursive
procedures. These procedure effects are then used to perform the analysis. In the call
string approach, procedures are analyzed separately for different invocation flows to the
beginning of its code (its calling contexts). This improves the analysis’ precision for pieces
of code that are executed more than once in different contexts. The analysis of different
call sequences is made by simulating the call stack of an abstract machine which contains

unclosed calling sequences.

Since a binary, albeit disassembled, is not syntactically rich, the identification of pro-
cedure boundaries, parameters, procedure calls, and returns is done by making assump-
tions. Such assumptions consist of the sequence of instructions used at a procedure entry

(prologue), at a procedure exit (epilogue), the parameter passing convention, and the con-

1.1 Motivation 19

ventions to make a procedure call. These assumptions are often referred by researchers
as a ‘standard compilation model.” The ‘standards’ are compiler specific; they are not
industry standards. Even for a given compiler, the ‘standards’ may vary depending on
the optimization scheme selected. When a binary violates the ‘standards’; the current

methods for context-sensitive interprocedural analysis fail.

Malware detection methods also make assumptions by observing the system calls made
by the program (BERGERON et al., 1999). If the pattern of system calls matches a known
malicious pattern of calls, then the file is deemed malicious. Symantec’s Bloodhound
technology, for example, uses classification algorithms to compare the system calls made
by the program under inspection against a database of calls made by known viruses and
clean programs (SYMANTEC, 1997). When a malware obfuscates its system calls, such

malware detection methods fail.

This dissertation presents a method for performing context-sensitive analyses of bi-
naries without requiring any particular convention for the layout of the procedure code
in memory or the use of any particular conventions for procedure calls. More specifi-
cally, the proposed method does not require the use of explicit call and ret instructions,
but depends upon the knowledge of how the stack pointer and instruction pointer are
represented, which direction the stack grows, and the static identification of operators
manipulating the stack pointer. Although it is not clear how one can obfuscate an in-
struction pointer, one may easily obfuscate a stack pointer by representing it using another
register or a memory location. The proposed method requires that the register or mem-
ory location used to represent a stack pointer must be known. Similarly, even though in
most architectures stack grows towards lower memory addresses, the convention can be
altered if a programmer is representing his own stack. The intended analysis assumes the

knowledge of this convention.

Figure 1(a) contains a sample code that presents the motivation. It is a simplified
program, essentially showing only the call and return structure. Figure 1(b) shows the
control flow graph (CFG) of this program. The graph is created by assuming that the
target of a call instruction represents the entry point of a procedure and a ret instruction
returns from call to the closest preceding entry point. The edges in this graph represent call
and return edges. Context-sensitive interprocedural analysis algorithms require pairing
the edges such that information flowing from one call node is not propagated to another
call node (SHARIR; PNUELI, 1981) via a mismatched return edge. In the graph, the

type of arrow (solid or dashed) determines the correct pairing.

1.1 Motivation 20

Main:
_ - L1: push L2
LI cllL Lia: push L5
T
| : push L3

| : l LZb: ret

| ! L3: push 0

| | L4: call Exit

| I

: LEa: push L7

- : LEb: t
Main: w Lo Lob: xet
Li: call LB :

LT: ush 18

L2: call L& L7a: iuah L9
G g f; ret
L4: call Exit g s L8: et
Lg: call LY La: push L10
L7: call L9 A B L9b: ret
18: ret } L10: push Lii
L9: call LiZ2 I Li0a: push L12
L1d: ecall TL12 i | L10b: ret
[12: 1ot [t g Ci2: ret
L12: ret - L12: ret
(a) Sample code. (b) CFG. (¢) Obfuscated version.

Figure 1: Example motivating context-sensitive analysis of obfuscated code.

Figure 1(c) shows an obfuscated version of the sample program. It is generated by re-
placing every call instruction by a sequence of two push instructions and a ret instruction,
where the first push pushes the address of the instruction after the call instruction (the
return address of the procedure call), the second push pushes the target address of the call,
and the ret instruction causes execution to jump to the target address of the call. There
are other ways to achieve the equivalent behavior (LAKHOTIA; KUMAR; VENABLE,
2005). Since such a program may not have a call instruction, it does not provide any clues
in finding procedure entry points. Current technologies may infer that this program has
only one procedure (consisting of the entire code) (IDAPRO, 2009). More importantly,
most works on analysis of binaries will treat the ret instructions as though they are re-
turning to the caller, thus generating an incorrect CFG. As a result, any analysis based on
this CFG will also be incorrect. Such non-standard methods of making a call are explicitly
used by malicious programs to defeat automated analysis (BOCCARDO; MANACERO
JUNIOR.; FALAVINHA JUNIOR., 2007),(CHRISTODORESCU; JHA, 2003),(LAKHO-
TIA; SINGH, 2003),(SZOR; FERRIE, 2001).

The obfuscation shown in Figure 1(c) is naive and presented to demonstrate the

concept. More obfuscations, although still trivial, may be performed by shuffling the two

1.2 State-of-the-art 21

push instructions among other code. More complex obfuscations may be achieved by not
using push and ret instructions; instead one may use move, increment, and decrement

operations directly on the stack pointer to perform equivalent functions.

Binaries may not adhere to accepted conventions/assumptions because its creator,
whether a compiler or a programmer, wishes to deter others from analyzing it. Such
deliberate violation of assumptions, conventions, or for that matter standards, to make
the binary harder is termed as obfuscation. It is becoming increasingly common to obfus-
cate code to protect intellectual property (LINN; DEBRAY, 2003),(COLLBERG; THOM-
BORSON; LOW, 1997),(WROBLEWSKI, 2002). However, the code may also be obfus-
cated to hide malicious intent (CHRISTODORESCU; JHA, 2003),(LAKHOTIA; SINGH,
2003),(SZOR; FERRIE, 2001). Most malwares today use a variety of obfuscations to deter

its disassembly, analysis, or reverse engineering.

The foundations of the approach presented in this dissertation come from previous
work of our research group in analyzing programs with obfuscated calls (VENABLE et al.,
2005),(LAKHOTIA; KUMAR,; VENABLE, 2005). First, Lakhotia and Kumar (LAKHO-
TIA; KUMAR, 2004) described a way to detect stack related obfuscations using abstract
stack graph. Their work addresses only the evaluation of operations that can be mapped
to stack’s push and pop instructions. Although that approach can be applied to several
classes of programs, it fails in cases where the stack is manipulated through memory con-
tents (registers, stack or heap). Venable et al. (VENABLE et al., 2005) developed an
improved algorithm that could track stack manipulations where the stack pointer may be
saved and restored in memory or registers. Venable et al.’s work assumed that the binary
could not be decomposed into procedure boundaries. As a result, they essentially per-
form intraprocedural analysis on the entire program. The resulting analysis is expensive
and leads to very significant over approximation. These limitations are overcome by the

context-sensitive algorithm presented in this dissertation.

1.2 State-of-the-art

This section examines the state-of-the-art related to binary analysis focusing on in-
terprocedural analysis and analysis of malicious/obfuscated programs, and also exposes

their limitations.

Binary analyses have been motivated by several application fields such as to port

legacy applications to new platforms (LARUS; SCHNARR, 1995), (CIFUENTES; FRABO-

1.2 State-of-the-art 22

ULET, 1997a, 1997b), (CIFUENTES; SIMON; FRABOULET, 1998), (MYCROFT, 1999),
(AMME et al., 2000), link-time optimization (GOODWIN, 1997),(SCHWARZ; DEBRAY;
ANDREWS, 2001),(DEBRAY; MUTH; WEIPPERT, 1998),(SRIVASTAVA; WALL, 1993),
verify whether an embedded application conforms to standards (VENKITARAMAN:;
GUPTA, 2004), identify security vulnerabilities that can be exploited by a hacker (BERG-
ERON et al., 1999, 2001), (BALAKRISHNAN, 2007), (MATTHEW et al., 2005), (REPS;
BALAKRISHNAN; LIM, 2006), (BALAKRISHNAN; REPS, 2007), (REPS; BALAKR-
ISHNAN, 2008), analyze whether a binary may be malicious (CHRISTODORESCU;
JHA, 2003), (LAKHOTIA; KUMAR; VENABLE, 2005), (LAKHOTIA; KUMAR, 2004),
(BACKES, 2004), (VENABLE et al., 2005), and control flow reconstruction (KINDER;
VEITH; ZULEGER, 2009).

Since this dissertation is concerned with context-sensitive analysis, this section will
focus on prior research related to the following categories: interprocedural analysis (in gen-
eral), interprocedural analysis of binary programs, and analysis of malicious/obfuscated

programs.

Context-sensitive interprocedural data-flow analysis of high-level languages has been
an active area of research. Most of these efforts, represented by (REPS; HORWITZ; SA-
GIV, 1995), (SAGIV; REPS; HORWITZ, 1995), (COUSOT; COUSOT, 2002), (MULLER-
OLM; SEIDL, 2004), (BALL; MILLSTEIN; RAJAMANI, 2005), (XIE; AIKEN, 2005),
(GULWANTI; TIWARI, 2007), have focused on special classes of problems for high-level
languages. The general strategy they use falls within the two approaches proposed by
Sharir and Pnueli (SHARIR; PNUELI, 1981), the call-string approach or the procedure

summaries approach.

In the call-string approach data flow values are separated based on their calling con-
text (SHARIR; PNUELI, 1981). The approximate call-string approach offers an efficient
and flexible method for computing interprocedural analysis at the cost of precision. For
non-recursive programs, call-strings are bounded by the length K, where K is the number
of distinct call-sites in the longest call-chain. For recursive programs, and when the lattice
of data flow values V is bounded, this method requires strings of length K x (|L| + 1)%.
Recent work by Karkare and Khedker (KARKARE; KHEDKER, 2007),(KHEDKER,;
KARKARE, 2008) improves this bound to K x (|L|+1). They achieved this improvement
by terminating the call string construction when the data flow values stabilize, instead of

using the length of the call-string.

In the procedure summary approach, a summary that represents the behavior of the

1.2 State-of-the-art 23

procedure parametrized by any information about its input variables is calculated for each
procedure. The construction of the summary is made by analyzing each procedure once or
a few times in case of recursive procedures. Although this method guarantees precision, it
is not efficient due to calculations of procedure summaries being high in time and complex
in space (AHO et al., 2006). Moreover, there is no automatic way to efficiently construct
or even represent these procedure summaries, and abstraction specific techniques are
required. The original formalism proposed by Sharir and Pnueli (SHARIR; PNUELI,

1981) for computing procedure summaries was limited to finite lattices of dataflow facts.

Sagiv, Reps and Horwitz generalized the Sharir-Pnueli framework to build proce-
dure summaries using context-free graph reachability (REPS; HORWITZ; SAGIV, 1995).
Miiller-Olm and Seidl (MULLER-OLM; SEIDL, 2004) subsumes the problem of linear
constant propagation considered by Sagiv et al. (SAGIV; REPS; HORWITZ, 1995), but
does not deal with aliasing. Ball et al. (BALL; MILLSTEIN; RAJAMANI, 2005) intro-
duces auxiliary variables to record the input values of the procedure and uses predicates
defined by both the program variables and the auxiliary variables. The result of the anal-
ysis can then be interpreted as a relation between the auxiliary variables (input values)
and output values. However, the predicates might not be expressive enough to capture the
precise summary. Xie and Aiken (XIE; AIKEN, 2005) specialized the summary generation
for a particular problem in order to discover which contexts are relevant. They created
summaries for checking correct use of locks using boolean satisfiability (SAT) procedures
to enumerate all the relevant calling contexts. Recently, Gulwani and Tiwari (GULWANTI;
TIWARI, 2007) introduced a method for generating precise procedure summaries in the
form of constraints on the input variables of the procedure that must be satisfied for some
appropriate generic assertion involving output variables of the procedure to hold at the
end of the procedure. Their method is based upon computing the weakest preconditions
of a generic assertion. To guarantee termination of the analysis, they performed a second

order unification to strengthen and simplify the weakest preconditions.

The call-string approach has two advantages as compared to the procedure summary
approach. First, it is possible to deal with abstract domains of infinite cardinality. Sec-
ondly, it is easily possible to reduce the complexity of the analysis by selecting small values
for k. The disadvantage is that analyses using the call string approach can be less precise
than those using the procedure summary approach. By encoding the call strings into
the analysis domain the updating of the call strings has to be done during the analysis,

consequently, increasing the cost in time and space.

The classic interprocedural control flow graph (ICFG) based algorithms for com-

1.2 State-of-the-art 24

puting function summary require a prior: identification of procedure entries and exits.
These methods cannot directly be adapted for our needs because call obfuscations pre-
vent determination of procedure boundaries, violating the pre-requisite. Reps et al.’s
weighted pushdown system based interprocedural analysis, which also computes function
summaries (REPS et al., 2005), does not use ICFGs. Indeed our representation of con-
text using the state of stack is analogous to Reps et al.’s use of stack of a pushdown
automata (REPS et al., 2005). Lal and Reps improve the computation of the summary
information (LAL; REPS, 2006) by taking advantage of the specific semantics associated
to procedure call and return. Use of weighted pushdown systems for analysis of obfuscated

binaries may be a productive avenue for future research.

The call-string approach follows the execution of a program. Algorithms based on this
approach have classically been modeled to determine a change of context based on the
semantics of procedure call/return and are described using ICFG. However, as we demon-
strate from our adaptation, the call-string method does not require a priori knowledge of
procedure boundaries, nor does it depend on the semantics of procedure invocation. As is
done for context-sensitive computation of targets of indirect calls using points-to analysis,
the call-graph used for call-string approach may be computed on the fly (EMAMI; GHIYA;
HENDREN, 1994),(WHALEY; LAM, 2004),(ZHU, 2005),(ZHU; CALMAN, 2004),(WIL-
SON; LAM, 1995). Determining transfer of control based on contents of memory or
register is analogous to computing the points-to relation for higher languages. However,
since memory addresses are linearly ordered, the resulting “points-to” sets in our problem
context can be abstracted using a linear function. Thus, our method is analogous in spirit,

though not in letter, to context-sensitive points-to analysis.

Interprocedural analysis of binaries has also received attention for post-compile time
optimization (SRIVASTAVA; WALL, 1993) and for analyzing binaries with the intent to
detect vulnerabilities not visible in the source code, such as those due to memory map-
ping of variables (BALAKRISHNAN;, 2007). Goodwin uses procedure summary approach
to interprocedural analysis to aid link-time optimization (GOODWIN, 1997). Balakrish-
nan (BALAKRISHNAN, 2007) uses the call-string approach. As mentioned earlier, these
methods assume a certain compiler model to identify code segments related to performing
procedure calls, such as that supported by IDA Pro (IDAPRO, 2009). In contrast, we split
the semantics of call and ret instructions. We model their affect on the “context” separate
from their affect on the “transfer of control.” The context is represented by the state of the
stack and is modeled by an instruction’s affect on the stack pointer. The transfer of control
is analyzed using Balakrishnan and Reps’ Value-Set Analysis (VSA) (BALAKRISHNAN;

1.8 Research Objectives 25

REPS, 2004),(BALAKRISHNAN, 2007).

While our work is focused on deobfuscation of programs, there is an active body
of work in the opposite direction. There has been significant work in obfuscation of
programs with the intent to thwart static analysis (LINN; DEBRAY, 2003),(COLLBERG;
THOMBORSON, 2002). Such obfuscations may be used by benign as well as malicious
programs for the same purpose, to make it difficult for an analyst to detect its function or
its underlying algorithm. The obfuscation techniques work by attacking various phases in
the analysis of a binary (LAKHOTIA; SINGH, 2003). For example, a metamorphic virus,
a virus that transforms its own code as it propagates, may use procedure call obfuscations
to enable its transformation operation. The Win32.Evol virus, a metamorphic virus,
uses call-obfuscation just for this purpose. A side-effect of this is that the virus defeats
any interprocedural analysis that depends on a traditional compiler model (LAKHOTIA,;
SINGH, 2003).

The rapid increase in using obfuscation techniques to spread malware has also trig-
gered efforts to analyze obfuscated code. There have been efforts to use semantics based
methods for detecting malware (DALLA PREDA et al., 2007),(CHRISTODORESCU;
JHA, 2003),(BERGERON et al., 2001). Term-rewriting has been proposed to normalize
variants of a metamorphic malware (WALENSTEIN et al., 2006). None of these works
specifically addresses analysis of obfuscated programs that do not conform to the standard

compilation model.

1.3 Research Objectives

The goal of this research is to design a context-sensitive analysis based on program
semantics and abstract interpretation framework resilient from call and ret obfuscations
attacks. The objective is that such analysis may find a purpose in assisting obfuscated

code analyzers by providing more reliable analysis results for obfuscated code.

1.4 Research Contributions

The main contributions of this dissertation may be summarized as follows:

e It introduces the concept of stack context, used in lieu of calling-context, to perform
context-sensitive analysis of a binary program when the binary may be obfuscated

or does not adhere to a standard compilation model.

1.5 Organization 26

e It adapts for use with stack context prior work on performing context-sensitive
analysis using calling-contexts. Using abstract interpretation, a k-context abstrac-
tion is derived that generalizes Sharir and Pnueli’s k-suffix call-strings abstrac-
tions (SHARIR; PNUELI, 1981). Unlike Sharir and Pnueli’s formulation this gener-
alization does not require transfer of control, an intrinsic part of semantics of proce-
dure call and return. Similarly, an ¢-context abstraction is derived that generalizes
for use with stack-context Emami et al.’s strategy of abstracting calling-contexts by
reducing cycles due to recursion (EMAMI; GHIYA; HENDREN, 1994), thus lead-
ing the way to the use of binary decision diagrams (BDDs) for making the analysis
scalable (ZHU, 2005),(WHALEY; LAM, 2004).

e It presents a concrete application of the proposed method by creating a context-
sensitive version of Venable et al.’s algorithm (VENABLE et al., 2005) that detects

obfuscated calls. The resulting analysis is shown to be sound.

e [t presents empirical results comparing the context-sensitive and insensitive versions
of Venable et al.’s algorithm. The empirical results show that the context-sensitive

analysis requires significantly less time and also yields better (more precise) results.

1.5 Organization

Chapter 2 provides the background necessary for designing the context-sensitive anal-
ysis of obfuscated executables. The background consists of domain theory, followed by
a brief introduction to abstract interpretation. An overview of disassembly methods,
code obfuscation, abstract stack graph (ASG) and Venable’s algorithm (VENABLE et
al., 2005) is also presented.

Chapter 3 introduces context-trace semantics, a trace semantics in which context is
made explicit, followed by a generalization of Sharir and Pnueli’s (SHARIR; PNUELI,
1981) k-suffix method for abstracting calling-contexts and a generalization of Emami
et al’s method of abstracting calling-contexts by reducing recursive cycles (EMAMI;
GHIYA; HENDREN, 1994). It also presents our algorithm for analysis of binaries, which
adapts the concept of context-trace to binaries and also summarizes the use of Balakrish-
nan and Reps Value-Set Analysis (BALAKRISHNAN; REPS, 2004),(BALAKRISHNAN,
2007) to help with determining transfer of control in assembly programs. Proving aspects

are also shown by using the abstract interpretation theory.

Chapter 4 presents empirical evaluation of the context sensitive and insensitive ver-

1.5 Organization 27

sions of Venable’s algorithm. The experiments show that the context-sensitive version
of the algorithm generates more precise results and is also computationally more effi-
cient than the context-insensitive version. Experimental results also show that /-context

abstraction is more efficient and precise than k-context abstraction.

Chapter 5 summarizes the major contributions of this dissertation and briefly describes