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1 Introduction 

Autonomous ground vehicles (AGVs) are a promising innovation for saving lives in military 

and civilian applications. In military applications, these vehicles may navigate through areas 

that are unsafe for soldiers and carry food and medicines. In civilian applications, AGVs may 

augment a driver‟s ability and prevent human error. 

The research and development of AGV technology has gained great interest in the last 

decade, leading to new research interest in both the hardware, and software components of 

the system. Hardware research includes developing longer range and more accurate 

environmental analysis sensors, more accurate GPS positioning systems, faster control 

hardware and better vehicle platform. Software research includes developing more efficient 

and innovative approaches for analyzing the sensor data for better decision-making and 

gaining better control over the vehicle‟s navigation system.  

Figure 1 shows the dataflow diagram of an AGV‟s software system for autonomous 

navigation. A driver provides the software interface to a hardware system. It captures and 

decodes the input sensor data or manipulates the control hardware, such as an actuator. An 

obstacle detector module analyzes the sensor data and detects objects or the terrain 

surrounding the AGV. The World_State module merges results from multiple obstacle 

detector modules and creates a map of the AGV‟s environment. The Path Planner module 

analyzes the situation and plans a path to direct the AGV towards its mission. The Steering 

Controller module generates the low-level steering control commands to navigate the vehicle 

along the Path Planner‟s path.  
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The present dissertation work concentrates on the path planner module of an AGV‟s 

software system. 

1.1 Motivation 

One of the challenges in building an AGV is to give it the ability to plan its path and make 

navigation decisions when required. The software module named Path Planner provides 

these capabilities to an AGV. Its purpose is to navigate an AGV safely through an urban 

environment while obeying a set of traffic rules. Figure 2 shows the black box representation 

of the Path Planner module. It takes as input: the route description, the mission, the AGV‟s 

instantaneous position and orientation, and the environment information. Here, a route 

description is a list of navigable regions of an urban environment. A mission is a list of 

checkpoints that the AGV should drive through and the environment information includes the  

status of other vehicles and lane blockages. The Path Planner accesses these inputs from the 

 

Figure 1: Data flow diagram of a typical AGV's software system 
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World_State module which maintains all the information about the environment, such as a 

list of static blockages on a lane and a list of vehicles stopped at an intersection. The Path 

Planner outputs a steering path that is a sequence of equally spaced GPS points that the AGV 

should follow. Each point in the steering path is labeled with a maximum speed to drive 

through that point. The Path Planner takes in the latest input data and publishes a new 

steering path at regular intervals. Each of these iterations is called a path-planning cycle. 

The scenarios that the Path Planner needs to handle for urban driving are open-ended, 

especially due to the uncertainty in the other vehicles‟ behaviors, weather conditions, and 

sensor failures. Developing a Path Planner to handle all possible scenarios is extremely 

difficult. More so, the required capabilities may vary from state to state, based on the local 

state traffic rules, and the Path Planner should support easy addition or deletion of these 

capabilities to support changing requirement.  

The inspiration to build such a system originated from the Hollywood movie „The 

Matrix‟. In this sci-fi movie, humans are plugged into a computer simulated world named the 

„Matrix‟ where they live. In the simulated world, all of their capabilities are provided through 

computer programs. In one of the scenes, the main character who had to fly a helicopter loads 

a flying program into her system. This immediately gives her the capability to fly a helicopter 

 

 
Figure 2: Black box diagram of the Path Planner 
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Figure 3: CajunBot-II 

while not affecting any of the existing capabilities. This has been an inspiration to develop a 

Path Planner architecture that allows easy plugging in of new capabilities without affecting 

the existing capabilities. As an example scenario, a stable version of Path Planner that can 

navigate an AGV through an urban environment should be able to easily plug-in the 

capability to parallel park. The new plug-in should integrate without major modifications and 

have a minimal effect on the existing system.   

The present planner provided the path planning and decision making capabilities to 

CajunBot-II (Figure 3) (CajunBot Lab 2009), an AGV developed at the CajunBot Lab of the 

University of Louisiana at Lafayette, to participate in the DARPA‟s Urban Challenge (UC) 

((DARPA) 2007). In the rest of this document, I will refer to the planner as CB_PP 

(CajunBot Path Planner). 
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1.2 Problem Statement 

This dissertation designs a Path Planner architecture to navigate an AGV through an urban 

environment, while providing easy plug-ability of new capabilities with minimal or no affect 

to the existing capabilities. The planner should be able to navigate the AGV at speeds up to 

40kph and be able to Re-plan and continue the mission if required. 

1.3 Contribution 

I propose a Path Planner architecture that allows easy addition of new capabilities while 

minimally affecting the existing capabilities. In this process I propose a Base-Path protocol, 

that allows multiple planners planning their paths for an AGV to be completely oblivious of 

other such planner‟s implementation and still contribute to one final path that an AGV can 

follow. 

I introduce a novel approach for checking for the safety against dynamic obstacles while 

following a path in the urban environment. This checking is usually time consuming as it 

typically involves iterating in small time steps to estimate the position of the AGV and the 

other dynamic obstacles in future and checking for the safety. I introduce a different 

approach for checking for safety against dynamic obstacles. Utilizing the urban road 

network, and assuming that the dynamic obstacles (vehicles) follow traffic rules, it is realized 

that there are only a few spots through which a dynamic obstacle can enter and interfere with 

the AGV‟s path. This observation is used to introduce a new approach for checking safety 

against dynamic obstacle. 
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I introduce a novel path planning approach for zones.  The planner tries to capture the 

benefits of two different classical path planning approaches, namely, the grid-based approach 

(Barraquand, Langlois and Latombe 1991) and Dubin‟s based approach (Dubins 1957) 

(Agarwal, Prabhakar and Hisao 1995). The grid-based approaches are typically less time 

consuming but the extracted paths are not smooth because of rounding of planning resolution 

to cells. A Dubin‟s based continuous space exploration generates smooth paths but is 

computationally expensive. The new path planning approach introduced for zone merges 

both the approaches and plans a smooth path efficiently.  

1.4 Organization 

Section 1 introduces some background concepts that would help in understanding the rest of 

the dissertation. It introduces the STRIPS & ADL concept that is later used in Section 6.3.1. 

It then Introduces the Dubin‟s car model-based reachability tree exploration concept which is 

used in Section 4.5. This exploration concept is used to search a path for driving in open-area 

zone. Finally, it introduces to the terminology that would be used frequently in the 

dissertation. 

Section 1 gives an overview of the Path Planner architecture and introduces its 

components. The introduced Path Planner is then illustrated to achieve an example mission. 

The Path Planner module has one point stop for all the information it requires about the 

elements in its environment. This is provided by the World_State module which is introduced 

in this section.  
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Section 4 introduces basic capabilities and provides some guidelines on how to draw a 

line between basic capabilities definition. It introduces Basic Planners (BPs), which provide 

these basic capabilities, as well as Base-Path protocol, which allows transparency between 

the BPs. This transparency helps in achieving easy plug-ability of BPs without affecting the 

existing ones. The section then provides an overview on one of the BP, Zone-Navigator BP, 

because of its novel approach of combining the grid-based planning and Dubin‟s based 

continuous space path exploration approach.  

Section 5 introduces behavioral capabilities, which are provided by the Behavioral 

Planner (BhP). The section shows how a collection of BhPs, which form the Re-planner, is 

represented as a state-machine. It provides how the state-machine representation allows easy 

plug-ability of BhPs. The section also provides some possible updates to use BhPs to handle 

dynamic obstacles on the lanes and to handle situations encountered within a zone. 

Section 6 introduces the High-Level Planner (HLP) which determines the sequence (σ) of 

BPs that can achieve a given mission. It proposes how plug-ability of BPs can be achieved in 

HLP using logic-based language representation. It represents a sample problem statement in 

ADL logic language and shows how a forward state-space search algorithm can be used to 

plan a BP sequence (σ) for a mission. It then introduces decision-rule based approach for 

planning a BP sequence that was implemented and tested for the Urban Challenge. 

Section 7 introduces the Supervisor module which uses the BP sequence (σ) planned by 

HLP to plan a steering path. It provides a description of how the Supervisor module 

maintains the BP sequence (σ) updated, triggers the BPs to plan their path; checks for the 
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safety of the planned path against static and dynamic obstacles, and finally how it collects the 

paths planned by all the BPs to publish as a single steering path.  

Section 8 evaluates the present system by providing some notes on its testing and its 

performance at the DARPA‟s Urban Challenge (UC). The section then compares the present 

approach with that of the winner of UC, Boss from Carnegie Mellon University, second prize 

winner, Junior from Stanford University, and Skynet from Cornell University.  

  



2 Background 

This section introduces some background concepts that would be helpful in the rest of the 

dissertation. The section first introduces the STRIP & ADL language for problem 

representation. This is referred to from Section 6.3.1. The section then introduces the Dubin‟s 

car model based reachability tree exploration, used in Section 4.5. And finally, introduces the 

terminology that is used in the rest of the dissertation.  

2.1 STRIPS & ADL 

This section gives a brief introduction to STRIPS followed by extending it to ADL language. 

ADL language represented is used to explain the possible approach for the BP Extractor 

module of High-Level planner in Section 6.3.1. 

 STRIPS is a language for representing logic based planning problems. It stands for 

Stanford Research Institute Problem Solver, developed in 1971 by Nils J. Nilsson and 

Richard E. Fikes. The language representation has three parts, namely: representations of 

states, representation of a goal, and representation of actions. 

 States are represented as a conjunction of positive literals such as Sick ∧ Sleeping or 

using first-order literals such as, At  John, Saint_Hospital ∧ Sleeping (John). STRIPS does 

not allow nesting of first-order literals, such as At (Sleeping  John , Saint_Hospital). 

A Goal is represented as a conjunction of positive literals or first-order literals which 

should be true. An example goal state includes: Discharge (John, Hospital).  
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The action representation has three parts: signature, pre-conditions and effects. Here, the 

signature specifies the name of the action and the arguments it takes, the pre-conditions 

specify the conditions that should be true for the action to take place, and the effects specify 

the changes to the state. Following are two example actions: 

Action (Admit (x, h), 

 PRECOND: ¬At (x, h) ∧ Person (x) ∧ Hospital (h) ∧ Sick (x) 

 EFFECT: At (x, h)  

 

Action (Discharge (x, h), 

 PRECOND: Person (x) ∧ Hospital (h) ∧ At (x, h) ∧ ¬Sick (x) 

 EFFECT: ¬At (x, h) 

 

In the STRIPS language, variables are represented using lowercase letters while, 

constants, literals, first-order literals, and action names start with capital letters. 

The STRIPS formalism gained a lot of popularity and led to the development of many 

new languages. One such new language which gained importance is Action Description 

Language (ADL). ADL has more expressive power compared to STRIPS. To mention a few 

modifications to ADL from STRIPS, an ADL allows negative literals in state representation, 

such as ¬John, ¬Saint_Hospital. ADL allows quantified variables while representing its 

goals, such as ∃x Person (x) ∧ ¬Sick (x) represents a goal of no one is sick. ADL supports 

equality (h1=h2) predicates. A more detailed list of ADL extension can be found in(Russell 

and Norvig, The Planning Problem 2003). 
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2.2 Dubin’s Car Model Based Reachability Tree 

This section describes usage of Dubin‟s car model to explore the reachability tree of a car (La 

Valle 2006). This reachability tree is used in Section 4.5 to explore and search for a path for 

driving in a zone. 

 Here, the state s, of the car is represented by its position and orientation, 𝑠 = (𝑥, 𝑦, 𝜃). 

Assuming a car can perform either a fixed left-turn, straight-drive or a fixed right-turn 

maneuver from any state, a given state s can lead to three new states, namely sL, sS, and sR. 

Here, sL represents the state reached by performing a left-turn by an angle ∆𝜃, and, sR 

represents the state reached by performing a right-turn by an angle ∆𝜃. Figure 4 (a) 

figuratively shows these states. Assuming a constant speed sp, and exploring the steps for 

regular time interval ∆𝑡, the distance covered by the car is given as 𝑑 = 𝑠𝑝 ∗ ∆𝑡. The 

parameters of the new states reached can be calculated using following equations: 

𝑠𝐿 . 𝑥 = 𝑠. 𝑥 + 𝑑 ∗ cos 𝑠. 𝜃 +  ∆𝜃  

𝑠𝐿 . 𝑦 = 𝑠. 𝑦 + 𝑑 ∗ sin 𝑠. 𝜃 + ∆𝜃  

𝑠𝐿 . 𝜃 = 𝑠. 𝜃 + ∆𝜃 

𝑠𝑆 . 𝑥 = 𝑠. 𝑥 + 𝑑 ∗ cos 𝑠. 𝜃  

𝑠𝑆 . 𝑦 = 𝑠. 𝑦 + 𝑑 ∗ sin 𝑠. 𝜃  

𝑠𝑆 . 𝜃 = 𝑠. 𝜃 

𝑠𝑅 . 𝑥 = 𝑠. 𝑥 + 𝑑 ∗ cos 𝑠. 𝜃 − ∆𝜃  

𝑠𝑅 . 𝑦 = 𝑠. 𝑦 + 𝑑 ∗ sin 𝑠. 𝜃 − ∆𝜃  

𝑠𝑅 . 𝜃 = 𝑠. 𝜃 − ∆𝜃 
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 Figure 4 (b) shows the reachability tree exploration for two steps. With three possible 

actions from each state, a state explores out to 3 states, a two step exploration leads to 

reachability tree with 3 * 3 = 9 states. In general an n step exploration leads to 3𝑛  states. The 

parameter ∆𝜃 is set to match the driving capability of the car, and ∆𝑡 is set to specify how 

detailed path exploration is to be performed. A low ∆𝑡 value helps to achieve a more detailed 

path exploration but at a cost of increased processing time. A high ∆𝑡 value achieves a less 

detailed path exploration at reduced processing time. One way to compromise between detail 

path and processing time is to have a varying ∆𝑡. One possible approach could be to have a 

smaller ∆𝑡 for initially exploration steps, and larger ∆𝑡 for later exploration steps. The initial 

shorter ∆𝑡 helps to plan a more detail immediate path, and longer ∆𝑡 plans a less detail path 

for future.  
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 While exploring a reachability tree, a state can be reached more than once, suggesting that 

a state can be reached via more than one path. Such duplicate states can be handled by 

discarding the copy of the state with longer path. But this comparison for duplicate states 

itself might be costly with the increased number of states, and hence duplicate states are 

ignored.  

2.3 Terminology 

This section introduces some of the terms frequently used in rest of the document. Some of 

these terms were introduced as part of the technical specifications of DARPA‟s Urban 

Challenge (DARPA's Urban Challenge 2009).  

      

(a) Exploring states sL, sS and sR from state s.    (b) Two steps of exploration. 

Figure 4: Dubin's based path exploration steps 
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 Here, I represent constant symbols in capital letters, such as L, S, and WP and variable 

symbols which will take a constant value, in small letters, such as l, s, and wp.  

RNDF: Stands for Route Network Definition File. It describes the navigable regions of an 

urban environment. It contains two regions, namely Segments and Zones. A Segment s is a 

collection of lanes l that represents the navigable regions on a road. A zone z is a free-travel 

area such as a parking-lot with possible parking-spots. These regions are defined using 

Waypoints wp, which specify a location in a physical space. The location of a waypoint is 

normally specified in the GPS coordinate system. Figure 5 shows an example urban 

environment with RNDF labeling notation. 

 

Figure 5: An example urban environment with RNDF notation 
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 Waypoints are used to represent the position and shape of the segments and zones. For 

example a lane (l) is defined using a sequence of waypoints, l = [wp1, wp2,…wpn]. Similarly a 

sequence of waypoints known as perimeter waypoints [𝑝𝑟_𝑤𝑝1, 𝑝𝑟_𝑤𝑝2, …  𝑝𝑟_𝑤𝑝𝑛] is used 

to define the boundary of a zone. The position and orientation of an allowed parking area in a 

zone is defined by a pair of waypoints called parking-spot, pk_wp[2]. A zone (z) is defined 

by the sequence of perimeter waypoints and a list of parking-spots it contains, as expressed 

below. 

 z = (  𝑝𝑟, 𝑝𝑟, …  𝑝𝑟𝑤𝑝𝑛  , {𝑝𝑘_𝑤𝑝1[2], 𝑝𝑘_𝑤𝑝2[2]…  𝑝𝑘_𝑤𝑝𝑛[2]} ) 

 A lane (l) is attributed with parameters such as {direction, width, left boundary marking, 

and right boundary marking}. Here a „direction‟ can either be set to primary or secondary. 

This „direction‟ parameter is used to represent the set of lanes that are going in the opposite 

direction. „Width‟ provides a rough lateral distance between its left and right boundaries. 

„Left boundary marking‟ and „right boundary marking‟ can take one of the follow values: 

double_yellow, solid_yellow, solid_white, broken_white, and unknown. These values 

represent if a lane change is allowed between neighboring lanes.  

 A waypoint (wp) is attributed by five non-exclusive flags namely: ex, en, cp, pr, and pk. In 

the rest of the document the wps with these flags set are represented by symbols ex_wp, 

en_wp, cp_wp, pr_wp, and pk_wp respectively. EX_WP, EN_WP, CP_WP, PR_WP, PK_WP 

represent the set of respective waypoints. Below is the mathematical representation of the 

sets. Here WP is the set of all the waypoints in the RNDF description. 

𝐸𝑋_𝑊𝑃 =  𝑤𝑝  𝑤𝑝 ∈ 𝑊𝑃 ∧ 𝑤𝑝. 𝑒𝑥 = 𝑡𝑟𝑢𝑒}  
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𝐸𝑁_𝑊𝑃 =  𝑤𝑝  𝑤𝑝 ∈ 𝑊𝑃 ∧ 𝑤𝑝. 𝑒𝑛 = 𝑡𝑟𝑢𝑒} 

𝐶𝑃_𝑊𝑃 =  𝑤𝑝  𝑤𝑝 ∈ 𝑊𝑃 ∧ 𝑤𝑝. 𝑐𝑝 = 𝑡𝑟𝑢𝑒}  

𝑃𝐾_𝑊𝑃 =  𝑤𝑝  𝑤𝑝 ∈ 𝑊𝑃 ∧ 𝑤𝑝. 𝑝𝑘 = 𝑡𝑟𝑢𝑒}  

𝑃𝑅_𝑊𝑃 =  𝑤𝑝  𝑤𝑝 ∈ 𝑊𝑃 ∧ 𝑤𝑝. 𝑝𝑟 = 𝑡𝑟𝑢𝑒}  

 A set of waypoints included on the lane just to provide the shape of the lane are called 

Trail waypoints. These waypoints can be specified as a checkpoint. Trail waypoints = WP – 

EX_WP – EN_WP – PK_WP – PR_WP. For the example urban environment shown in Figure 

5 contents of these sets is listed below.  

WP = {wp1, wp2, … wp29} 

𝐸𝑋_𝑊𝑃 =  𝑤𝑝2, 𝑤𝑝3, 𝑤𝑝4, 𝑤𝑝8, 𝑤𝑝12 , 𝑤𝑝16 , 𝑤𝑝19, 𝑤𝑝20  

𝐸𝑁_𝑊𝑃 =  𝑤𝑝1, 𝑤𝑝5, 𝑤𝑝6, 𝑤𝑝7, 𝑤𝑝11 , 𝑤𝑝14 , 𝑤𝑝15 , 𝑤𝑝20  

𝐶𝑃_𝑊𝑃 =  𝑤𝑝18 , 𝑤𝑝20 , 𝑤𝑝25  

𝑃𝐾_𝑊𝑃 =   𝑤𝑝22 , 𝑤𝑝23 , (𝑤𝑝24 , 𝑤𝑝25)  

𝑃𝑅_𝑊𝑃 = {𝑤𝑝26 , 𝑤𝑝27 , 𝑤𝑝28 , 𝑤𝑝29} 

Trail waypoints = { 𝑤𝑝9, 𝑤𝑝10 , 𝑤𝑝17 , 𝑤𝑝18} 

 An ex_wp denotes a wp from which a lane or a zone can be exited to enter another zone or 

a lane through its en_wp. A en_wp can also be attributed with stop sign where the vehicles 

are stopped to reach complete stop before proceeding. The function stop_sign (wp) is true if 

the wp has stop sign, else is false. An ex_wp stores a list of these en_wps to which it is 

connected to. Similarly an en_wp contains a list of ex_wps from which it can enter the region 

it belongs to. A cp_wp denotes a wp that can be included in the input mission as one of the 

goal positions to drive to. And finally, as described earlier, a perimeter point (pr_wp) 



17 

 

specifies the boundary of a zone and a parking spot, pk_wp specifies an allowed parking area 

in the zone. A parking-spot is always specified in a pair, pk_wp[2] representing the position 

and orientation of the parking area.  

 An ex_wp is attributed by two parameters, if it has a stop sign and what are the of entry 

waypoints that are navigable from ex_wp. The function stop_sign (ex_wp) returns return true 

if the ex_wp has a stop sign, else returns false. The function entry_pair (ex_wp) returns the 

list of en_wp that are connected to ex_wp. This exit-entry pair represents the allowed 

navigable areas in an urban environment.  

 A given waypoint wp can be denoted by more than one symbol, that is it could be both an 

exit waypoint (ex_wp) and a checkpoint (cp_wp).With the above introduces terminology I 

can formally define a rndf as below. Table 1 describes the example urban environment from 

Figure 5 using this notation.  

RNDF = (S, Z) 

S = {s1, s2 .. sn} 

Table 1: RNDF description of the urban environment from Figure 5 

Segment Lane 

l 

Waypoint(l) Direction Width 

(m) 

LBM RBM 

s1 l1 [wp1, wp4] primary 2 solid_yellow solid_white 

l2 [wp5, wp2] Secondary 2 solid_yellow broken_white 

l3 [wp6, wp3] secondary 2 broken_white solid_white 

s2 l4 [wp11, wp9, wp8] primary 2 solid_yellow solid_white 

l5 [wp7, wp10, wp12] secondary 2 solid_yellow solid_white 

s3 l6 [wp15, wp18, wp19] primary 2 solid_yellow solid_white 

l7 [wp20, wp17, wp16] secondary 2 solid_yellow solid_white 

s4 l5 [wp14, wp13] secondary 2 solid_white solid_white 

Zones 

Zone Perimeter Waypoints Parking spots 

z1 [𝑤𝑝26 , 𝑤𝑝27 , 𝑤𝑝28 , 𝑤𝑝29] [(𝑤𝑝22 , 𝑤𝑝23), (𝑤𝑝24 , 𝑤𝑝25)] 
LBM = Left boundary marking, RBM = Right boundary marking 
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Z = {z1, z2, … zm} 

si = [l1, l2.. lk] 

Waypoints(li)= [wp1, wp2… wpq] 

zi = (  𝑝𝑟_𝑤𝑝1, 𝑝𝑟_𝑤𝑝2, …  𝑝𝑟_𝑤𝑝𝑛 , {𝑝𝑘_𝑤𝑝1[2], 𝑝𝑘_𝑤𝑝2[2]…  𝑝𝑘_𝑤𝑝𝑚 [2]} ) 

MDF: Stands for Mission Data File. It describes the mission that an AGV needs to 

accomplish. The MDF mission is defined by a sequence of checkpoints [𝑐𝑝1, 𝑐𝑝2, … 𝑐𝑝𝑛] that 

an AGV should reach in the listed order. The MDF also describes the speed limits that the 

AGV should follow on each segment s and zone z. An example MDF mission for an urban 

environment described in Figure 5 is the sequence [wp18, wp24] . 

Path (P): Is a sequence of equally spaced GPS points (p) that an AGV tries to follow. A 

point (p) is annotated with the GPS position (x, y) and speed limit max_speed. A path P is 

attributed by direction of the path. The direction d can take values „forward‟ or „reverse‟, 

specifying if the path should be followed in forward gear or reverse gear of the vehicle. In the 

present notation capital „P‟ represents the path and small „p‟ represents a point on the path. 

With this terminology path P can be defined as: 

𝑃 = ( 𝑝1, 𝑝2, … 𝑝𝑛 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑛) 

𝑝 =  𝑥, 𝑦,𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑  

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∈ {𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒} 



3 Path Planner Architecture 

This section gives an overview of the Path Planner architecture and introduces its 

components. These components of the Path Planner are then explained in more detail in the 

following sections. Section 3.2 illustrates how an example mission with two checkpoints can 

be achieved by the present Path Planner.  Section 3.3 introduces the World_State module that 

provides a one point interface to all the information that the Path Planner would need.  

3.1 Overview of the Path Planner Architecture 

Since the scenarios that an AGV needs to handle for urban driving are open-ended, designing 

a Path Planner is extremely difficult. Hence, the present planner (CB_PP) is built to address a 

set of well defined scenarios specific to DARPA‟s Urban Challenge (UC), while also 

maintaining an architecture that allows easy addition of new capabilities without affecting the 

existing capabilities. The UC‟s technical document lists the capabilities required for the 

challenge (Urban Challenge: Technical specifications 2009). Some of these capabilities 

include: planning the quickest path to reach a given sequence of checkpoints by safely 

following a lane, switching lanes when required, negotiating with traffic vehicles at 

intersections, driving in free-travel areas (zones) while avoiding obstacles to reach the 

parking spots, parking, handling lane blockages, and re-planning the mission when required.  

The capabilities required of CB_PP are categorized into two levels: basic-capabilities and 

behavioral-capabilities. A basic-capability includes the ability to perform tasks such as 

following a lane or changing to a neighboring lane. Each basic-capability is achieved by a 

specialized planner called a Basic-Planner (BP). Similarly a behavioral-capability includes 
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the ability to use BPs to handle the unexpected situations encountered while following the 

path. Each behavioral-capability is achieved by a planner called a Behavioral-Planner (BhP). 

The collection of all the BhPs is called the Re-Planner. Along with the Basic-Planners and 

the Re-Planner module, a High-Level Planner (HLP), and a Supervisor module constitute the 

CB_PP. Each of these modules are introduced in the rest of the section. 

A BP provides its capability by planning a path (p) for the AGV to follow. While each BP 

provides one basic-capability, a sequence 𝜎, of these BPs, determined at the beginning of a 

mission, plan the initial path for accomplishing the complete mission. During execution of 

the mission, this path is modified as unanticipated situations are encountered. 

 A behavioral-capability, on the other hand, involves utilizing the BPs to handle the 

situations encountered while following the path. For example, if the AGV finds that the lane 

it is following is blocked ahead, the AGV can use a neighboring lane to get around the 

blockage or use an oncoming traffic lane. Being able to perform one such action is called a 

behavioral-capability. Each behavioral-capability is implemented by a separate planner, 

called a Behavioral-Planner (BhP). Each BhP implements its behavioral-capability by 

modifying the BP sequence (σ) that is planning the path. This may include adding/removing 

BPs from the sequence or changing the goal of a BP or changing the speed limits of the 

already planned path. The BhP can use HLP module to generate this modification to BP 

sequence. 

The initiation and transition between BhPs is represented as a state-machine (Figure 19). 

A state here represents either the CB_PP‟s belief of what situation the AGV is in, or 

represents the behavioral capability being exhibited using a BhP. An example belief state 
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includes safe state and confirm_obstacles state and an example behavioral capability state 

includes „use_neighboring_lane‟ state and „use_traffic_lane‟ state.   

The transition edges represent the conditions for exhibiting a behavioral capability or for 

changing the AGV‟s belief about situation. The BhPs together with the state-machine is 

called the Re-Planner module. 

CB_PP architecture permits easy addition of basic capabilities and behavioral-capabilities 

incrementally. Easy addition of new basic-capabilities without affecting the performance of 

the existing ones is achieved by providing:  

a) Common Interface: All BPs are extensions of a common interface template (base-

class hierarchy).   

b) Confined operation: Within the template interface, the BPs are confined to plan a 

path for its own capability.  

With each BP having a common interface and confined operation, it is necessary to ensure 

that a sequence of BPs plan one combined path that an AGV can follow. This requires that 

each BP in the sequence should know the „state of the vehicle‟ when the AGV is going to 

start following its path. Here a „state of the vehicle‟ includes, position, orientation and 

rotation of the vehicle. This is achieved in CB_PP architecture through the „Base-Path 

protocol‟, which defines the protocol for communication between the BPs.  
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The Base-Path protocol requires that each BP provides its capability by accepting an input 

path and extending it to a new path that an AGV can follow. The extended path from one BP 

is then used as an input path for the next BP in the BP sequence (σ). Thus, even by keeping 

each BP unaware of other BPs, the sequence of BPs can plane a path that is drivable. Having 

the BPs unaware of other BPs forms the key element for achieving an easy addition of new 

basic-capabilities without affecting the existing ones.  

For easy addition of new behavioral-capabilities without affecting the existing ones, each 

BhP providing a behavioral-capability is represented as a separate state in the state-machine. 

In this representation, adding a new behavioral-capability involves adding a new state 

representing this capability to the state-machine. A state is added to the state machine by 

connecting it to the relevant states via edges representing the conditions when the capability 

can be utilized and what state to return to after implementing the capability. Adding a new 

state to the state-machine does not affect the state transitions of the existing states, except for 

the case when the conditions for transitioning to the newly added state satisfy along with the 

 

 

Figure 6: Interaction of Re-Planner, High-Level Planner and Supervisor modules 
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conditions for transitioning to an already existing state. Such situations can be handled by 

prioritizing such state transitions.   

A High-Level Planner, at the beginning of a mission determines an initial sequence of (𝜎) 

of BPs that can accomplish the given mission on given route description. This sequence of 

BPs can be later modified by the Re-Planner to exhibit a behavioral capability. The 

Supervisor module uses this sequence of BPs at every 50 ms (path-planning cycle) to plan a 

steering path for the AGV to follow. The Supervisor module also checks for the safety of the 

planned path against static and dynamic obstacles. Detection of a static obstacle along the 

path is handled by informing the Re-planner module, which handles the situation using one 

of its behavioral capabilities. Detection of dynamic obstacles along the path is handled by 

modifying the speed limits along the path to exhibit behaviors such as „convoy a vehicle‟ or 

„stop behind a stalled vehicle‟.  

3.2 Simple Planning Scenario 

This section illustrates how a sequence (𝜎) of individual Basic Planners (BPs) achieves a 

sample mission of driving through two checkpoints. The mission, as shown in Figure 7, is to 

drive through checkpoint cp1 followed by checkpoint cp2. The whole mission is achieved by 

a sequence of five BPs, namely [fl_bp1, cl_bp2, fl_bp3, it_bp4, fl_bp5], planning paths for their 

localized goal. In the present document a particular instance of a BP is represented in small 

letters, such as fl_bp and the definition class is represented in capital letters, such as FL_BP.  

The five BPs used belong to three types of BPs with different goals. The BP types used 

here are: FL_BP (Follow-Lane Basic Planner) for following a lane, CL_BP (Change-Lane 
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(a) Mission to reach two checkpoints. 

 
(b) 1

st
 BP to reach a point on the lane. 

 
(c) 2

nd
 BP to change lanes.  

(d) 3
rd 

BP to reach end of the lane. 

 
(e) 4

th
 BP to drive through intersection. 

 
(f) 5
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BP to reach 2

nd
 checkpoint. 

   

Figure 7: Illustration of a sequence (σ) of five BPs achieving a simple mission with two 

checkpoints 

 

cp
1

cp
2

Initial 
position

l
1

l
2

l
3

l
4

Basic Planner 

following a lane to a 
point (fl_bp

1
)

l
4

l
1

l
2

l
3

cp
1

cp
2

Basic Planner changing 
lanes (cl_bp2)

l
4

l
1

cp
1

cp
2

L
3

Basic Planner following a 
lane to a point (fl_bp3)

l
4

l
1

l
2

l
3

cp
1

cp
2

Basic Planner driving through an 

intersection (it_bp4)

l
4

l
1

l
2

l
3

cp
1

cp
2

Basic Planner following a 
lane to a point (fl_bp5)

l
4

l
1

l
2

l
3

cp
2

cp
1

Exit Waypoints Entry Waypoints Checkpoints



25 

 

Basic Planner) for changing lanes, and IT_BP (Intersection Basic Planner) for driving 

through an intersection. Later in the document, I will introduce the complete list of eight BP 

types that are required for accomplishing the requirements of DARPA‟s 2007 Urban 

Challenge. 

The mission to drive to cp1 and followed by cp2 is shown in Figure 7 (a). This mission 

requires, continuing on the lane l2 to reach cp1, this is achieved by fl_bp1 as shown in Figure 

7 (b). This is followed by switching to lane l1 which has a valid turn to the future lane of 

interest l3. This switching of lane is achieved by cl_bp2, as shown in Figure 7 (c). Then, 

continuing on lane l1 to reach the intersection using fl_bp3, as shown in Figure 7 (d). Driving 

through the intersection to enter lane l3 using it_bp4 is shown in Figure 7 (e). Finally, 

continuing on lane l3 to reach cp2 using fl_bp5, as shown in Figure 7 (f).  

3.3 World_State 

This section explains the World_State module which provides a query based interface of the 

world elements to the path planner. The World_State provides information such as: shape of 

lanes, locations and velocities of the obstacles on a lane, and list of stopped vehicles at an 

intersection. It also provides the RNDF description and the MDF mission which in the rest of 

the dissertation will be assumed to be already available with the path planner.  

The World_State module gathers information from multiple sources and merges data to 

provide one place with consolidated information about the AGV and the environment 

surrounding the AGV. The World_State gathers this information once at the beginning of the 
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Path Planner‟s path planning cycle. This is performed to avoid giving different results for 

multiple queries from different the path planner modules.  

Table 2 lists some of the interface functions provided by the World_State module. These 

functions are later used in the dissertation to describe the working of Path Planner‟s modules. 

The table lists the function names in the first column and description of the functions in 

second column.  
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Table 2: World_State interface functions 

Interface function Description 

obstacle_detected_for_time 

(obstacle_id, timeout) 

Returns true if the obstacle, obstacle_id is 

detected for timeout amount of time. 

obstacle_inside_intersection 

(obstacle_id) 

Return true if the obstacle, obstacle_id is inside 

an intersection region. 

Obstacle_distance_to_intersection 

(obstacle_id)  

Returns distance from obstacle, obstacle_id to 

next immediate intersection. 

blockage_in_safety_region (l, 

obstacle_id)  

Returns true if the obstacle, obstacle_id is within 

the safety region of the lane, l. That is near an 

intersection region. 

neighbor_lane_exist (l1, l2) 

 

Returns true if there exists a neighboring lane to 

lane l1. If so assign l2 to the neighboring lane. 

lane_change_allowed (l1, l2) 

 

Returns true if a lane change from l1 to l2 is 

allowed. Lane change is not allowed if the lanes 

are separated by yellow marking or if there is a 

physical median between the lanes. 

lane_free_of_obstacles (l, x, y, dis) 

 

Returns true if the lane, l is free of obstacle 

starting from point (xp, yp) on the lane, l till 

distance dis. Here (xp, yp) is the projection of (x, y) 

onto lane l. 

uturn_region_blocked (l1, l2, x, y) 

 

Returns true if there is sufficient region on lane l1, 

and l2 surrounding the point of (x2, y2) for making 

an u-turn. Here (x2, y2) is projection of (x, y) onto 

lane l2. 

reach_next_cp_from (cp, l, x, y) 

 

Returns true if it is possible to reach checkpoint 

cp from point (xp, yp) on lane l. Here (xp, yp) is the 

projection of (x, y) onto lane l. 

get_lane (lane_id) Returns the shape and position of the lane as a 

sequence of equally spaced points along the 

center of the lane. 

[(x1, y1), (x2, y2), (x3, y3)…] 

get_position () Returns the position (x, y, z) of the AGV. 

get_orientation () Returns the orientation (roll, pitch, heading) of 

the AGV. 

get_mission () Returns the mission as a sequence of checkpoints. 

[cp1, cp2, .. cpn] 

get_rndf () Returns the route description (S, Z), refer Section 

2.3 for RNDF representation. 

 



4 Basic Capability 

One of the classical approaches in solving a complex problem is to use techniques such as 

hierarchical decomposition (Russell and Norvig, Hierarchical Task Network Planning 2003). 

In this approach, a complex problem is divided into a hierarchy of sub-problems, with each 

lower layer in the hierarchy addressing the sub-problems at higher detail. The key advantage 

of this approach is that the complexity of the problem is reduced at all layers of hierarchy. At 

the higher layers, the larger problem statements are solved in more abstract steps and at lower 

layers the smaller sub-problems are solved at more detailed steps. 

The concept of basic capability introduced in this chapter is the result of reducing the Path 

Planner‟s complexity using a hierarchical decomposition technique. The basic capabilities 

address the problems at lower-layer by planning a concrete path for an AGV to follow. The 

higher layer problem statements are addressed in steps representing which basic capability to 

utilize.  

In the remaining of this Section: the Subsection 4.1 provides a more detailed overview of 

the basic capabilities, and Subsection 4.2 provides some notes on how to draw a line between 

basic capabilities while defining them. I then introduce Basic Planners (BPs) that provide 

these capabilities for the CB_PP in Subsection 4.3. Subsection 4.4 introduces the Base-Path 

protocol, which provides transparency between BPs to achieve easy plug-ability of new BPs. 

This section concludes with an overview of Zone-Navigator BP in Subsection 4.5. 

In the remaining of this Section, I provide a more detailed overview on the basic 

capabilities in Subsection 4.1. Then provide some notes on how to draw a line between basic 



29 

 

capabilities while defining them, in Subsection 4.2. Then I introduce the BPs that were 

implemented to address the UC requirement, in Subsection 4.3. To provide easy plug-ability 

of BPs, each BP is kept transparent of all the other BP‟s types. I introduce Base-Path 

protocol which provides this transparency, in Subsection 4.4. Then conclude the section with 

an overview of Zone-Navigator BP, which plans a path to navigate in zone in Subsection 4.5. 

4.1  Overview 

Urban driving requires the ability to perform a diverse set of basic-capabilities, such as 

following a lane, changing to a lane, and driving into a parking spot. Each such capability is 

achieved by a specialized planner called a Basic-Planner (BP).  

A BP exhibits its basic capability by planning a path for the AGV to follow. While each 

BP plans a path for providing one basic-capability, a sequence (σ) of such BPs, managed by 

the rest of the Path Planner, plans one combined path that may be used to accomplish the 

complete mission.  

A BP has a smaller and more specific problem statement. This enables BP to use an 

approach most suitable for solving that problem. For instance, a zone BP that is responsible 

for driving in a zone while avoiding obstacles may be implemented using a grid-based path 

exploration approach. On the other hand a Follow-Lane BP, responsible for following a lane, 

may compute the center of the lane from the lane boundaries. Each BP has the freedom to use 

an environment representation that is best suited for the algorithm it implements.  
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Table 3 lists eight BPs that address the scenarios expected at the UC. The BPs in the table 

are categorized based on where they operate. This classification is purely for ease of 

understanding. 

4.2  Line between Basic Capabilities 

There is some decision making required to decide where to draw a line in defining basic-

capabilities. For example, is it better to have a separate Follow-Lane BP and a Change-Lane 

BP or is a single Follow-Road BP better? Here, a road is a collection of neighboring lanes 

and a Follow-Road BP could be responsible for both following a lane and changing between 

lanes. I use following two criteria to decide whether to have a BP for a capability A, or to 

divide the capability A into two sub-capabilities, B and C, and achieve each of them by two 

separate BPs: 

Criterion 1: Usage of the capability. For executing any behavioral-capability, will the Re-

Planner need to use BPs for B and C individually? If so it is preferred to define capabilities B 

and C separately and achieve each of them by separate BPs.  

For example, suppose capability A is the ability to follow-road, B is to follow-lane, C is to 

change-lane. In the scenario where the lane being followed is blocked ahead, the Re-Planner 

may want to exhibit a behavioral-capability of switching to a neighboring lane, following the 

lane for „d‟ distance and returning back to the original lane.  In order to perform this 

behavioral-capability, the Re-Planner needs basic-capabilities B and C individually. In this 

situation, the Re-Planner would be assigning the following BP sequence: BP for C (change to 



31 

 

neighboring lane), BP for B (follow for „d‟ distance) and BP for C (change to original lane). 

Hence, having separate BPs for B and C is preferred over having a single BP for A. 

Criterion 2: Implementation of the capability. Do capabilities B and C define different 

problem statements? If so, each statement can be achieved more easily when separated, as 

compared to having a single algorithm for capability A.  

For example, suppose that capability A is to drive in a zone, such as a parking-lot, and 

being able to park in a parking spot, capability B is to be able to drive in a zone from one 

point to another and capability C is to be able to park the vehicle. While zone driving 

(capability B) can be achieved by searching for a less precise path around obstacles at a safe 

distance in a large area, parking (capability C) requires searching for a highly precise path in 

a small area. Due to the difference in the size of the search space and the precision of the path 

being planned, each capability may be achieved more easily using a different approach. 

Hence, having them provided by two separate BPs is preferred.  

4.3 Basic Planners 

A Basic Planner (BP) is specialized to plan steering paths to provide a specific basic 

capability. A BP can be simple and straight-forward, like the Follow-Lane Basic Planner 

(FL_BP), which plans a path to navigate along the center of a lane. Alternatively, a BP can 

be complex, like the Zone-Navigator Basic Planner (ZN_BP), which plans an obstacle-free 

steering path through a zone. The ZN_BP requires a much more complex planner compared 

to FL_BP, to handle a large terrain and obstacles.  
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The BPs can be divided into three categories depending on where they operate, namely, 

on-road Basic Planners, within zone Basic Planners, and transition Basic Planners. Table 3 

lists the BPs in each of these categories. They are further described below: 

a) On-road Basic Planners: These BPs operate on a single road. There are four Planners in 

this category, namely: Follow-Lane Basic Planner (FL_BP), Change-Lane Basic Planner 

(CL_BP), Traffic-Lane Basic Planner (TL_BP), and U-turn Basic Planner (UT_BP). 

A Follow-Lane Basic Planner plans a path to drive from one point to another on the same 

lane. A Change-Lane Basic Planner plans a path switch to an immediate neighboring lane 

that is in the same direction as the original lane. The CL_BP can only switch by one lane, so 

Table 3: List of Basic Planners (BPs) 

Basic 

Planner 

Acronym Task 

Within-road Basic Planners 

Follow-

Lane 

FL_BP (wp) 

FL_BP (d) 

Plan a path to follow the center of a lane to reach the 

Waypoint wp or to travel for certain distance d.  

Change-

Lane 

CL_BP (l) Plan a path to change neighboring lane, l. 

Traffic-

Lane 

TL_BP (d) Plan a path to cover certain distance, d on present lane 

using oncoming traffic lane. 

U-turn UT_BP (lnext)) Plan a 3 point U-turn to enter lnext by staying within the 

road with. 

Within-zone Basic Planners 

Parking PK__BP (pk_wp[2]) Plan a path to park in the parking-spot specified by 

pk_wp[2]. 

Un-Park UP_BP (wp) Plan a path to pull out of a parking spot to face towards 

next waypoint wp. 

Zone-

Navigator 

ZN_BP (wp) Plan a path to drive through a zone avoiding static 

obstacles to a given waypoint wp. 

Transition Basic Planners 

Intersection IT_BP (en_wp) Plan a path through an intersection to reach en_wp, while 

considering the elements such as stop sign, traffic, and 

right of way.   
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to switch multiple lanes requires multiple instances of CL_BP. A Traffic-Lane Basic Planner 

plans a path to use an on-coming traffic lane to cover a certain distance and come back to 

present lane. The TL_BP is used when the present lane is blocked for a small distance ahead 

(a stalled vehicle, for instance). Finally a U-turn Basic Planner plans a path to perform a 3-

point U-turn, while staying within the road boundaries. The UT_BP is required either when 

the road ends (a stub or dead end) or when the road is blocked and the only way out is to 

make a U-turn and plan an alternative route back. 

 b) Within zone Basic Planners: These BPs operate within a single zone, such as a parking 

lot. Three types of BPs operate within a zone, namely: Parking Basic Planner (PK_BP), Un-

Park Basic Planner (UP_BP), and Zone-Navigator Basic Planner (ZN_BP). A Parking Basic 

Planner plans a path to park in a parking spot, starting from some position and orientation 

near the parking spot. A Un-Park Basic Planner plans a path to pull out of a parking spot and 

face towards a given orientation. A Zone-Navigator Basic Planner plans a path to drive to a 

given goal position at a given orientation and avoid any obstacles detected in the region.  

c) Transition Basic Planners: These BPs plan a path to drive from one road or zone to 

another road or zone. This category has only one BP, namely, the intersection Basic Planner 

(IT_BP). It plans a curved path starting from an exit waypoint with a given orientation to an 

entry waypoint with a different orientation. The ending orientation depends on whether the 

vehicle is entering a road or a zone. If entering a road, the ending orientation is defined to be 

the orientation of the new road. If entering a zone, the ending orientation is defined to be the 

normal to the zone‟s perimeter and facing into the zone.  
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4.4  Plug-ability of Basic Capabilities 

There will be a need to add more basic-capabilities in the future while trying to handle new 

scenarios such as parallel parking and traffic-jams. It is necessary to make sure of two things: 

a) The CB_PP should be able to use the new BPs without any major changes and, b) adding 

new BPs should have minimal or no effect on the existing capabilities. CB_PP architecture 

tries to achieve this by: having a common interface template for all BPs and by having each 

BP confined to plan a path for its own goal.  Each of these is explained below. 

1) Common Interface 

All BPs implement a common interface template making it easier for the rest of the system to 

interact with any BP without knowing them specifically. Figure 8 shows the hierarchy 

diagram of the common interface class implemented by BPs. With this interface, the CB_PP 

accesses BP instances using a pointer of type BP_interface. Table 4 lists the member 

interface functions of BP_interface. Column one of the table lists the signature of the 

function, followed by column two giving a brief description of the function. 
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Figure 8: Class hierarchy of BP‟s class 

Class FL_BP:  

     public BP_interface 

{ 

   generate_path () {} 

   get_path () {} 

   get_path_direction () {} 

   … 

} 

Class CL_BP :  

    public BP_interface 

{ 

   generate_path () {}   

   get_path () {} 

   get_path_direction () {} 

   … 

} 

Class BP_interface 

{  

   virtual generate_path (); 

   virtual get_path (); 

   virtual get_path_direction (); 

  … 

} 

        Derived 

Table 4: Listing the member functions of the common interface class (BP_interface) 

Function Description 

generate_path (Pbase_input) Trigger the BP to generate its path 

get_path () Return the already generated path PBP 

get_path_direction () Returns the direction of the path (forward/reverse) 

is_ completed () Returns BP‟s capability is completed 

get_TE_PT () Returns a list of traffic entry, TP_PT points on its path 

get_TE_PT_path_index (k) Returns BP‟s path index which represents TE_PT [k] 

stop_path_generation () Returns if next BP in the sequence should be triggered to 

generate their path.  

can_handle_obstacles () Returns true if it handles static obstacles on its path 

set_path_speed (ipath, speed) To set speed limit of BP‟s path 

can_stop_along_the_path () Returns true if the AGV can stop in middle of its path  

get_lane_ids () Returns a list of lane ids that BP‟s path overlays 
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2) Confined Planning (Base-Path Protocol) 

Each BP is unaware of the other BPs that it works with to plan a final path for the AGV to 

follow. This allows easy addition of new BPs without affecting the existing BPs. With each 

BP planning its own capability, it is challenging to ensure that the combined final path 

planned by the BP sequence (σ) is both “navigable” and “consistent over the path-planning 

cycles.” A path is navigable if the vehicle can closely follow the path and is consistent over 

the path-planning cycle if the path does not have major changes between the path-planning 

cycles unless there is a valid cause. Each of these is achieved by the Base-Path protocol that 

is defined as follows:  

a) Each BP takes an input path called the base-path (Pbase_input), concatenates it with a 

path segment PBP to achieve its own capability and then outputs the combined path 

PBP_output = Pbase_input + PBP. This output path (PBP_output) from one BP then acts as an 

input base-path (Pbase_input) for the next BP in the BP sequence. 

 Figure 9 illustrates this process for an example BP sequence. Here the fl_bp1, shown 

in Figure 9 (a) takes the input base path Pbase_path (solid line) and extends it with PBP 

(dotted line) to reach wpa. This combined path is then used as input base path Pbase_input 

to cl_bp2, as shown with solid line in Figure 9 (b). The cl_bp2 extends the input base 

path with PBP to switch to lane l2. Continuing the similar process the combined path 

from cl_bp2 is used as input base for fl_bp3 to reach wpb, as shown in Figure 9 (c) 
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The input base-path (Pbase_input) provides the BP with an expected “state of the vehicle” 

when the vehicle will start following the path it plans. The “state of the vehicle” 

includes the position, orientation, and rotation of the vehicle. The rotation of the 

vehicle implies the course of action in terms of angular turn, or the steering wheel 

position. Each BP is responsible for extending its Pbase_input, such that the output 

 
(a)  Pbase_input and PBP of first BP: fl_bp1 

 
(b)  Pbase_input and PBP of second BP: cl_bp2 

 
(c)  Pbase_input and PBP of third BP: fl_bp3 

 
(d)  Final output path 

Figure 9: Illustration of the Base-Path protocol applied to an example BP sequence 
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PBP_output is navigable. Thus the final output path from the last BP is ensured to be 

navigable by the vehicle.  

b) All but the first BP in the BP sequence have a preceding BP that provides the 

Pbase_input. But how does the first BP get its Pbase_input? Pbase_input is meant to provide the 

BP with an expected “state of the vehicle” when following its path, hence the first BP 

gets its Pbase_input as the part of the path that is already being followed. That is, the 

Pbase_input is formed as a part of the final path planned in the previous path-planning 

cycle that lies behind the present position of the vehicle. By using the part of the path 

previously planned to form the starting Pbase_input, the CB_PP plans a steering path that 

is ”consistent over path-planning cycles”. 

c) What about the very first path-planning cycle where there is no previously planned 

path? How does the first BP get its Pbase_input? For the first path-planning cycle, a 

dummy Pbase_input with two points is created for the first BP. The first point is placed at 

a distance „db‟ behind the vehicle and the second pointis placed at the present location 

of the vehicle. Here, the distance „db‟ is the suggested distance between the points in 

the path. This dummy Pbase_input provides position and orientation of the vehicle and 

assumes that the system is starting with its steering wheel in the center position. 

4.5 Zone-Navigator Basic Planner 

The Zone-Navigator Basic Planner plans a path to drive an AGV through a zone to reach a 

given goal position and orientation. It plans an obstacle-free path that continues its input base 

path (Pbase_input) to reach a given goal state (position & orientation). The goal for a ZN_BP 

could be either a parking spot or an exit waypoint to leave a zone. The position and 
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orientation of the ZN_BP‟s goal are determined differently depending on the goal type. If the 

goal is a parking spot, then the ZN_BP‟s goal position and orientation is equal to the position 

and orientation of the parking spot, as shown with Goal1 in Figure 10. If the goal is an exit 

waypoint, then the ZN_BP‟s goal position is equal to the position of the exit waypoint and 

orientation is equal to the slope of the normal to the zone‟s perimeter at the exit waypoint, as 

shown by Goal2 in Figure 10.  The ZN_BP‟s path planning has two parts, namely (a) Grid 

representation, and (b) Path Extraction.  

The remainder of this section describes these two parts. I then describe a special case 

handled by ZN_BP when planning a path to a parking spot and then finally list two possible 

 

 

Figure 10: Position and orientation of ZN_BP‟s goals 
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updates of the ZN_BP. Finally, I explain the present planner‟s step using an example 

planning scenario and evaluate its performance. 

4.5.1 Grid Representation  

ZN_BP uses the Gradient-Distance-Field (GDF) (Barraquand, Langlois and Latombe 1991) 

(Maida, et al. 2006) to provide guidance in planning a smooth path through the zone. The 

GDF is computed by having a grid representation covering the zone‟s arena. The grid has its 

rows and columns aligned along the GPS x-y axis to preclude the need to apply any rotations 

for mapping points between the GPS coordinate system and the grid coordinate system. The 

tile-based grid representation assigns grid space on-demand similar to a quad-tree (Finkel and 

Bentley 1974)(Cline and Egbert 2001) and Octree (Samet 1984). For the CB_PP 

implementation for UC, the grid cell was set to 32cm x 32cm.  

Each grid cell maintains three binary flags to represent if the area that the cell represents is 

a: i) goal region, ii) zone boundary region or the region outside zone, and iii) obstacle region 

(Stentz and Hebert, A Complete Navigation System For Goal Acquisition in Unknown 

Environment 1995)(Xiaoxi and Leiting 2008). These characteristics are not exclusive, that is 

a grid cell can have all three flags set. Along with these three flags, each grid cell maintains 

three numeric attributes, namely:  

i) Obstacle Penalty: Penalty given to cells near obstacle,  

ii) Boundary Penalty: Penalty given to cells near the boundary, and  

iii) Activation-Cost: The smallest cost of reaching a goal cell. 

The goal and boundary flags for the cells are set during the initial grid setup, as this 

information is known at startup. Obstacle flags for the cells are set if and when static 
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obstacles are detected. Upon setting the boundary or obstacle flags of a cell, its neighboring 

cells within certain distance are updated with the corresponding boundary or obstacle 

penalties. Finallly, the third attribute, activation cost for the cell is updated only on demand.  

The boundary and obstacle flags are used to terminate the path extraction process 

(explained in the next step) and the goal flag is used to determine when a path extraction step 

has reached a goal cell. The obstacle and boundary penalty variables are used to compute the 

activation-cost value for the cells by providing information on how close is the cell from the 

nearest boundary and the obstacle. Lastly, activation-cost is used to provide heuristics for an 

A* based path extraction step. 

4.5.2 Path Extraction 

In this step, a Dubin‟s based path exploration is performed (Dubins 1957)(Agarwal, 

Prabhakar and Hisao 1995)(Scheuer and Fraichard 1996). It uses the activation-cost value 

computed in the previous grid representation step as a heuristic for performing an A* (Patrick 

1992) based exploration of the Dubin‟s path exploration steps. Each node in the path 

exploration contains: a) position that the node represents, b) expected orientation of the 

vehicle if the path sequence is followed, and c) the activation-cost value of the grid cell 

covering the node‟s position. The first two values, position and orientation, help to determine 

if the goal is reached or to continue with the path extraction step, while the third value, 

activation-cost, provides the heuristics used to determine which node to explore next.  

The search begins with a start node placed at the position of the last point of the input base 

path (P
base_input

) to the ZN_BP, the orientation value for the node is set to the angle between 



42 

 

points Pbase_input [n-1] and Pbase_input [n], where „n‟ is the size of Pbase_input, and the activation-

cost value for the node is determined by mapping this start position onto the grid. The start 

node is then explored to determine its three children nodes, each representing the estimated 

position and orientation of the vehicle if it performed a maneuver of turning left, turning 

right, or continuing straight. The position and orientation of the children nodes are computed 

based on the maneuver angle and distance covered at that angle. These two values are set 

based on the desired granularity in the path exploration. For UC, these values are set to 10 

deg maneuver angle and 1 meter distance between nodes, respectively. The activation-cost 

values for the nodes are determined by mapping the positions of the nodes onto the grid 

representation and using GDF value of the cell it maps onto.  

The three children nodes are then checked if they are at a goal or if they are being blocked 

by a boundary or obstacle, using flags of the grid cell they map onto. If the node reached a 

goal cell, with an orientation close to the desired orientation, the path extraction step 

terminates and begins backtracking and extracting the points along the search path. If the 

node reaches a boundary or an obstacle cell, the node is discarded and not considered for 

further exploration. 

Of the open new nodes not already explored, the node with least activation-cost is picked 

and explored next. This process is repeated until a goal is reached or all nodes are explored. 

If not using the grid‟s representation‟s GDF value as heuristic, the number of open nodes to 

explore would increase exponentially with the depth of the exploration tree. Thus, using the 

grid approach to support Dubin‟s path exploration helped to extract a smooth path without 

the exponential tree exploration cost. 
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Static obstacles are registered and used in computing the activation-cost values of the 

cells, but this is not sufficient to ensure that it is safe to follow the path being extracted, since 

the vehicle is not a point object and has some length (Len) and width (Wid) along its body. 

Therefore, during path extraction the safety of the path being extracted is assured by running 

a safety box along the path and checking if any cells containing static obstacles fall within 

the safety box region, as shown in Figure 11. The safety box is oriented along the estimated 

orientation of the vehicle at that point.  The length (ln) and width (wd) of the safety window 

are chosen to be (Len + εl) and (Wid + εw) respectively, where εl and εw are the required 

safety distances along and on the sides of the vehicle. Running this safety window in small 

intervals greatly covers nearby obstacles at turns. 

 

 

Figure 11: Illustration of safety box walking through a ZN_BP‟s path for safety 

check 
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4.5.3 Example Scenario 

This section explains the step followed by the Zone-Navigator using an example planning 

scenario. Figure 12 shows the planning scenario with estimated start position of the vehicle 

and a goal parking spot. The outer grey strip region represents a pair of lanes surrounding the 

central grey zone area. The zone has five parking-spots, out of which the closest parking-

spot, at a distance of 54 meters, as shown in the figure is specified as the checkpoint to reach. 

The planner needs to plan a path to park the AGV in this parking-spot. 

At the end of this section I compare the performance of the Dubin‟s path extraction 

process performance when using grid-representation‟s GDF value as heuristic, when using 

Euclidean distance as heuristics and when not using any heuristics.  

 

Figure 12: Example zone planning scenario to reach a parking spot 

 

Checkpoint 

Initial position 



45 

 

Figure 13 shows the first step of ZN_BP, where a grid is overlaid to cover the region of 

interest. The outer solid-red region represents the cells marked as boundary region. The 

solid-red region near parking-spots represents cells marked as obstacle regions. These 

phantom obstacle regions are marked to guide the planner for proper entry into the parking-

spot. Figure 14 shows the grid representation with the GDF values computed. The cells are 

cyclic-color coded based on their GDF value. 

Figure 15 shows the results of the Dubin‟s based path exploration process using the GDF 

values as the heuristic. The exploration processes expanded 192 nodes, before finding the 

navigable path at a tree depth of 63. Figure 16 shows the path explored without the grid 

display. 

Figure 17 shows the same Dubin‟s based path exploration process using the Euclidean 

distance to goal as the heuristic for tree exploration. For the present scenario, the exploration 

process expanded 163,788 nodes before finding the navigable path to the parking-spot.  

Dubin‟s based path exploration step showed better performance when using GDF value 

Table 5: Performance comparison between different heuristics for Dubin's based 

path exploration for Figure 12 scenario 

 GDF as 

heuristic 

Euclidean 

distance to goal 

as heuristic 

No heuristics  

Performance: 

Number of nodes 

explored 

192 163,788 𝑂 (3𝑑 ), where d= 54 

Performance: 

Computation time on 

Intel (R) core 2.00 

GHz machine 

200 ms 7.2 sec ~ 
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when compared to using Euclidean distance. This is because GDF values take into account 

the distance to the goal and the also the obstacles in the region. While, Euclidean distance 

heuristics takes into account only the distance to the goal position. Table 5 lists the above 

result including estimated performance when no heuristics are used. With no heuristics, the 

average performance for breadth-first or depth-first search is in the order of 𝑂 (3𝑑 ), where d 

is the depth of the exploration tree. In the present scenario with goal being at a distance of 

54m from start position and path exploration being performed in steps of 1m, d=54. The 

second column in the table list the computation time when executed on an Intel (R) core 2.00 

GHz machine. 
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Figure 13: Grid representation with boundary and simulated obstacles regions 

 

Figure 14: Grid representation with GDF values to reach the goal position 
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Figure 15: GDF grid values along with Dubin's based path extraction 

 

Figure 16: Dubin's based path extraction using GDF as heuristics 
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4.5.4 Special Case in ZN_BP  

As mentioned earlier the ZN_BP can have a parking spot or a zone exit waypoint as its goal. 

If the goal is a parking spot, then the path extracted by the path extractor is truncated at 

certain distance „dparking„ from the end. This is performed so that the ZN_BP provides a path 

to drive the AGV close to the parking spot at an orientation from which the Parking Basic 

Planner (PK_BP) can take over and park the vehicle using a more accurate path. 

In the initial iterations of development of ZN_BP, the path generated by the ZN_BP was 

used to pull all the way into the parking spot. The vehicle could park in the spot, but the final 

position and orientation of the vehicle were not within the desired tolerance. This is because 

of the lower resolution of the path exploration by ZN_BP. This issue could be addressed by 

reducing the maneuver angle or reducing the distance covered by the children nodes during 

the path exploration. But this again would lead to high search space and time. Sticking to the 

 

Figure 17: Dubin's based path extraction using Euclidian distance as heuristics 
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basic principle of the CB_PP‟s architecture (refer Section 4.2), it is easier to divide the 

responsibilities among different specialized planners to keep the planning system simple. 

Hence, I let the Parking Basic Planner take responsibility for parking the vehicle. 

4.5.5 Possible Updates to ZN_BP 

There are two drawbacks for the present ZN_BP, namely, insufficient path extraction 

heuristics, and inaccurate path exploration steps. Each of these is explained as follows. 

(a) Insufficient path extraction heuristic: While there are two parameters that define if a 

goal is reached, namely goal position and goal orientation, only one parameter, the 

distance from the goal, is used as the heuristic guide. This sometimes will misguide 

the path exploration process to reach the goal position in a wrong orientation. The 

present system does suffer from this drawback, leading to increased search space and 

back tracking especially near the goal region. Using improved heuristics that takes 

into account both the position and orientation requirement will improve the 

computational efficiency of the path extraction process. 

(b) Inaccurate path exploration steps: The present path exploration step assumes constant 

speed for the vehicle while determining the position and orientation of the next search 

nodes. A vehicle may not travel at a constant speed and/or turning angle. Simulating 

more accurate vehicle speed and maneuvering can lead to more accurate simulation of 

the vehicle‟s trajectory.



5 Behavioral Capability (Re-planner) 

Due to the dynamic nature of the environment and lack of complete-knowledge of the track, 

it is rarely possible to plan a mission that can be used without any modifications over the 

course of the run. The change of plan that is required to handle a new situation encountered 

during the course of mission, defines the behaviors of the Path Planner. The ability to change 

the existing plan to handle such situations is called the Behavioral Capability. The present 

section introduces these behavioral capabilities in more detail. 

 The following subsection provides an overview of the behavioral capabilities of the 

CB_PP. Subsection 5.2 explains how plug-ability of behavioral capability is achieved. 

Finally, section 5.3 lists some possible updates to handle dynamic obstacles by changing a 

plan and to handle situations encountered within a zone. 

5.1  Overview 

As an AGV executes a plan, there are many situations that can be encountered that may 

require changing the plan. For example, there could be a blocked lane or a blocked 

intersection, each of which making it impossible to continue with the existing plan. In case 

the lane is blocked, to get around the blockage, the AGV may switch to a neighboring lane or 

may use an on-coming traffic lane. The capability to perform one such action is called a 

behavioral-capability. Behavioral-capabilities are performed by modifying the existing Basic 

Planner (BP) sequence to add or remove BPs, or communicating with existing BPs to change 

their goal or changing the speed limits of the already planned path. Each behavioral-

capability is implemented by a separate planner, called a Behavioral-Planner (BhP). 
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 Figure 18 describes an example scenario of a lane blockage and illustrates how a situation 

can be handled by modifying the BP sequence. As an initial situation a fl_bp1 was being used 

to follow a lane to reach cp1, as shown in Figure 18 (a). Upon encountering a static obstacle 

along the path, the Supervisor module modifies the speed limits on the existing path so as to 

maintain a minimum safety distance from the obstacle, shown in Figure 18 (b). Then the 

 
(a) Initial BP sequence to reach checkpoint cp1. 

 

 
(b) Detecting a static obstacle and modifying the path speed to maintain safety distance 

dsafety. 

 

 
(c) Avoiding the static obstacle by switching to neighboring lane. 

Figure 18: Example scenario showing Re-planner module handling a lane blockage 
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static obstacle situation is handled by first changing the goal of fl_bp1 to navigate till „stop 

point‟, then updating the BP sequence to switch to a neighboring lane l1 using cl_bp2, follow 

the new lane for certain distance using fl_bp3, switch back to the original lane l2 using cl_bp4, 

and finally continue on lane l2 to reach cp1 using fl_bp5. Figure 18 (c) shows the new 

modified BP sequence.  

The decision rules on when and which BhP should be utilized is represented as a 

deterministic state-machine, as shown in Figure 19. Here, the states represent either the 

CB_PP‟s belief of what situation the AGV is in („safe‟ state, „confirm_obstacle‟ state), or 

represents the behavioral capability being exhibited using a BhP („use_neighboring_lane‟ 

state, „use_traffic_lane‟ state).  

The states in the state-machine are connected via the edges that represent the conditions 

for exhibiting a behavioral capability or for changing the system‟s belief about the AGV‟s 

situation. The BhPs together with the state-machine is called the Re-Planner module.  

Table 6 lists the states in the state machine designed to handle possible situations at UC. 

The first column lists the names of the states, second column briefly describes the states and 

the third column describes the actions performed by each state. 

Table 7 describes the state transitions of the state-machine. The first column lists the 

starting state, second column lists the condition to be satisfied to transition to the state 

mentioned in third column. The functions used in the condition column are provided by the 

World_State as listed in Table 2, except for functions obstacle_on_path (obstacle_id), 

no_obstacle_on_path () and bp_in_sequence (bp, 𝜎). 
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Here obstacle_on_path (obstacle_id) returns true if in the present path-planning cycle, the 

Supervisor module informed of obstacle with id obstacle_id, to be the closest obstacle on the 

path. Function no_obstacle_on_path () returns true if no obstacles are detected on the path. 

And function bp_in_sequence (bp, 𝜎) returns true if the Basic Planner bp, has not completed 

its capability and is still in the bp sequence 𝜎. 

The state machine starts at a default „safe‟ state. Upon detecting an obstacle with an id 

obstacle_id on the path, the Supervisor module informs the Re-planner. Upon being informed 

of the obstacle on the path, the state machine transits to „Confirm_obstacle‟ state. Here, the 

Re-planner confirms the obstacle for certain timeout and is from a comfortable distance of 

 

 

Figure 19: Re-planner‟s state-machine representation 
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reaction_distance. At which time it confirms the obstacle, notes its id as 

confirmed_obstacle_id and transits to „Lane_blocked‟ state, if the obstacle is not within any 

intersection region. If the obstacle is within an intersection region, the state-machine transits 

to „Intersection_blocked‟ state. 

The lane on which the obstacle is detected is noted as l1. From „Lane_blocked‟ state, the 

state-machine makes a decision to wait and perform intersection queuing behavior if the 

obstacle is within the queuing_distance from an intersection.  Else, if the blockage is not 

within the safety region of lane l1, there exist a neighboring lane l2, in the same direction as 

lane l1, with lane change allowed from l1 to l2 and lane l2 is free of obstacle for 

safety_distancechange_lane) then state-machine transits to „Use_neighboring_lane‟ state. Here, a 

safety region is a region near an intersection within which a lane-change operation is not 

allowed. A lane change between a pair of lanes may not be allowed if the lanes are separated 

by yellow marking or if there exists a physical median between the lanes. And 

safety_distancechange_lane is the minimum distance on lane l2 that is required for using the lane 

for covering the detected obstacle. 

From „Lane_blocked‟ state, if the blockage from obstacle is not within the safety region, 

there exist an oncoming traffic lane which is free of obstacle for safety_distancetraffic_lane, then 

state-machine transits to „Use_traffic_lane‟ state. 

From „Lane_blocked‟ state, if the on-coming lane, l2 too is blocked within 

safety_distancetraffic_lane distance, and there is enough free-space for performing u-turn and the 

next checkpoint in the mission is reachable from l2, then state-machine transits to 

„Drive_around‟ state. 
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From „Lane_blocked‟ state, if the obstacle with id, confirmed_obstacle_id is not detected 

to be the closest obstacle on the path by the Supervisor module, then the state-machine 

transits back to „Confirm_obstacle‟ state. The state-machine transits from 

„Use_neighboring_lane‟, „Use_traffic_lane‟ or „Drive_around‟ state to „Safe‟ state if all the 

bps added to the BP sequence, have completed their capabilities and are removed from BP 

sequence.  

Table 6: List of states in the Re-planner‟s state machine representation 

State Semantics  Actions 

Safe Normal execution (default 

state) 

No action. 

Confirm_obstacle Obstacle detected but not 

confirmed 

Continuously evaluation obstacle. 

Lane_blocked Confirmed the detected 

obstacle 

Check state transition table to jump to a 

state and take action. 

Intersection_queuing Obstacle is just before an 

intersection and so 

perform intersection 

queuing behavior  

No action, just wait queuing. Can 

extend this state to have a timer and 

perform a different action if queuing 

for really long time. 

Intersection_blocked Obstacle is within 

intersection region 

No action, just wait for intersection to 

get clear. 

Use_neighboring_lane Use neighboring lane 

within the same road to 

pass around obstacle 

Modify BP sequence to switch to 

neighboring lane of the same road to 

cover the blockage and return back to 

original lane.  

That is add [cl_bp2, fl_bp3, cl_bp4, 

fl_bp5,] to 𝜎, refer Figure 18. 

Use_traffic_lane Use on-coming traffic lane 

to pass obstacles 

Modify BP sequence to use oncoming 

traffic lane to cover the blockage and 

return back to original lane. 

That is add [tl_bp] to 𝜎. 

Drive_around Complete road is blocked, 

need to take an U-turn and 

find path to the goal. 

Register road blockage, use UT_BP to 

switch to oncoming traffic lane and 

determine a sequence of BPs to 

complete the remaining mission. 

That is add [ut_bp] to 𝜎. 
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Table 7: State transition table of the Re-Planner module 

(Here, obstacle_id is the closest obstacle on the path detected in the present path planning cycle.) 

Present state Condition New state  

Safe obstacle_on_path (obstacle_id) Confirm_obstacle 

Confirm_obstacle no_obstacle_on_path () Safe 

Confirm_obstacle obstacle_detected_for_time (obstacle_id, timeout) 

&& 

distance_to_obstacle (obstacle_id) < 

reaction_distance  

Lane_blocked 

 

confirmed_obstacle_id 

= obstacle_id 

Confirm_obstacle obstacle_detected_for_time (obstacle_id, timeout)  

&&  

distance_to_obstacle (obstacle_id) < 

reaction_distance && 

obstacle_inside_intersection (obstacle_id) 

Intersection_blocked 

Lane_blocked obstacle_distance_to_intersection (obstacle_id)  < 

queuing_distance 

Intersection_queuing 

Lane_blocked //l1: lane with blockage  

!blockage_in_safety_region (l1, obstacle_id) && 

neighbor_lane_exist (l1, l2) &&  

l1.direction = l2.direction && 

lane_change_allowed (l1, l2) && 

lane_free_of_obstacles (l2, obstacle.x, obstacle.y, 

safety_distancechange_lane) 

Use_neighboring_lane 

 

add [cl_bp2, fl_bp3, 

cl_bp4, fl_bp5,] to 𝜎 

Lane_blocked //l1: lane with blockage  

!blockage_in_safety_region (l1, obstacle_id) && 

neighbor_lane_exist (l1, l2) &&  

l1.direction != l2.direction && 

lane_free_of_obstacles (l2, obstacle.x, obstacle.y, 

safety_distancetraffic_lane) 

Use_traffic_lane 

add [tl_bp] to 𝜎 

Lane_blocked //l1: lane with blockage  

!blockage_in_safety_region (l1, obstacle_id) && 

neighbor_lane_exist (l1, l2) &&  

l1.direction != l2.direction && 

!lane_free_of_obstacles (l2, obstacle.x, obstacle.y, 

safety_distancetraffic_lane) && 

!uturn_region_blocked (l1, l2, obstacle.x,  

obstacle.y) && 

reach_ cp_from (cp, l2, obstacle.x, obstacle.y)  

Drive_around 

add [ut_bp] to 𝜎, call 

HLP‟s to re-plan 

remaining mission. 

Lane_blocked confirmed_obstacle_id != obstacle_id Confirm_obstacle 

Intersection_blocked confirmed _obstacle_id != obstacle_id Confirm_obstacle 

Intersection_queuing confirmed _obstacle_id != obstacle_id Confirm_obstacle 

Use_neighboring_lane !bp_in_sequence (cl_bp4, 𝜎) Safe 

Use_traffic_lane !bp_in_sequence (tl_bp, 𝜎) Safe 

Drive_around !bp_in_sequence (ut_bp, 𝜎)  Safe 
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5.2  Plug-ability of Behavioral Capability  

For easy addition of new behavioral-capabilities without affecting the existing ones, each 

behavioral-capability is represented as a separate state in the deterministic state-machine. In 

this representation, adding a new behavioral-capability requires adding a new state 

representing the capability to the state-machine. A state is added to the state machine by 

connecting it to the relevant states via edges representing the conditions when the capability 

can be utilized. Adding a state to the state-machine does not affect the state-transition of the 

existing states, except for the case when the conditions for transiting to the new state satisfy 

along with the conditions for transiting to another state. This leads to introducing non-

determinism to the state-machine. Such transition conflicts may be resolved by prioritizing 

the state transitions from a state. 

5.3 Possible Updates 

The present Re-planner system is designed to address the situations expected during the 

Urban Challenge, but may be updated to handle more situations. Two such possible updates 

the the Re-planner module are listed below.  

5.3.1 Handling Dynamic Obstacles by Changing the Plan 

The present system will not change the Basic Planner (BP) sequence or the goal of any BP 

inorder to handle a dynamic obstacle encoutered along its path. This is usually not required 

as in most cases the disturbance created by a dynamic obstacle is temporary. However, there 

may be situations where it is preferred to change the BP sequence or change the goal of a BP 

in the sequence upon detecting a dynamic obstacle. For example, instead of following a slow 
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moving vehicle for a long time it may be preferred to change the lane and pass the leading 

vehicle.  

The present CB_PP architecture can be updated to exhibit such behavior by modifying the 

Supervisor module to check for both static and dynamic obstacles along the path and inform 

Re-Planner before it makes any decisions. The Re-Planner module‟s state machine needs to 

be updated to handle dynamic obstacles along the path. For example, in the current scenario, 

the Re-Planner module can add a CL_BP to the BP sequence if a dynamic obstacle shows the 

characteristics of slow moving traffic.  

5.3.2 Re-planner to Handle Situations within a Zone 

In the present version of CB_PP, the Re-Planner module does not handle any situations 

encountered within a zone. The Zone-Navigator Basic Planner (ZN_BP) is expected to 

handle all its situations encountered locally. This may not always be a good separation as 

there can be situations that a ZN_BP cannot handle within its domain and requires re-

planning. As an example, consider the situation where the area around an exit waypoint of a 

zone is blocked. The ZN_BP, trying to reach this waypoint in order to exit the zone, cannot 

locally handle the situation. It requires a different exit from the zone and such decisions 

should be performed by the Re-Planner module.  

 An un-passable lane situation is informed to and handled by the Re-planner, un-passable 

zone exits can be informed to the Re-planner. The Re-planner should search for an 

alternative exit waypoint that allows continuing with the mission. The present system does 

not check for un-passable zone regions, leading to an indefinite waiting of AGV within the 

zone.



 

Figure 20: A black box diagram of the HLP module 
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This section introduces the High-Level Planner (HLP) which determines the sequence of 

Basic Planners (BPs) that can achieve a given mission (MDF). Figure 20 shows the black box 

diagram of the HLP module. It takes as input the route description (RNDF), the mission to 

accomplish and outputs the BP sequence.  

   HLP plans the BP sequence in three steps as shown in 

Figure 21. In the first step, the Graph Creator represents 

the urban environment description as a directed graph, 

known as the rndf_graph. In the next step the rndf_graph 

is searched to find a sequence of logically connected sub-

goal waypoints (SWP) that will guide the AGV to reach 

all the MDF checkpoints. This sequence of SWPs is called 

the Mission Plan. This step is performed by the Mission 

Planner. Finally, the BP Extractor module plans a 

sequence of BPs that can drive through all the sub-goal 

waypoints. Each of these three modules is discussed in-

detail in the following subsections. 

 Figure 22 illustrates the terminology used in the 
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remainder of the section. The input RNDF describes the urban environment using the 

waypoints (WPs). A filtered subset of these WPs, called critical waypoints (CWPs), form the 

rndf_graph. And a subset of these critical waypoints (from rndf_graph) forms the sub-goal 

waypoints (SWPs). A sequence of these sub-goal waypoints is called a Mission Plan.  

𝑆𝑊𝑃 ⊆ 𝐶𝑊𝑃 ⊆ 𝑊𝑃 

The rest of section describes each of the three steps of HLP in detail. The final step which 

extracts the BP sequence also presents how a logic-based planning approach can be used to 

provide easy plug-ability of new BPs. It then describes the decision-rules based alternative 

approach for extracting BP sequence that was implemented and tested during the UC. 

6.1 Graph Creator 

The Graph Creator converts the description of the urban environment provided in an RNDF 

to a directed rndf_graph representation. The RNDF description includes a list of segments, 

where a segment is a collection of lanes, the description of lanes as a connected sequence of 

waypoints, and a description of a list of zones as free-travel areas with possible parking spots 

 

Figure 22: Waypoint terminology used in HLP 
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inside them. RNDF also provides connectivity between all these different units (lanes and 

zones) and provides information about stop sign locations.  

 The rndf_graph is represented as a directed graph (V, E), where V the set of vertices are 

the critical waypoints (CWP) from RNDF.  And the set E of edges represents the connection 

between the vertices V. Mathematically representing: 

Rndf_graph = (V, E) 

𝑉 = 𝐶𝑊𝑃 

𝐸 ⊆ 𝑉 × 𝑉 

𝐶𝑊𝑃 = 𝐶𝑃  𝐸𝑛𝑊𝑃  𝐸𝑥𝑊𝑃    

Critical waypoints (CWP): CWP are the waypoints from RNDF that are either specified as 

CheckPoints CP in the MDF mission or are listed in the Exit Waypoint (EX_WP) list or the 

Entry Waypoint (EN_WP) list. In this document CWP is used as the abbreviation of Critical 

waypoints, while CWP is used to represent a set of critical waypoints. 

 The waypoints that are not counted as critical waypoints are considered to be non-critical 

waypoints (NCWP).The NCWPs are provided in the RNDF to represent the shape of the lane 

and are later used by the Path Planner to plan the actual path to be followed. 

𝑁𝐶𝑊𝑃 = 𝑊𝑃 − 𝐶𝑊𝑃 

Edges: Directed edges E between the vertices V represent the connections between these 

CWP. The edges are annotated with the estimated travel time between the CWPs. The travel 

time is computed using the distance between the CWPs and the speed limit for the area (road, 

zone or intersection). This annotated time includes any extra penalty for slowing down, such 
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as at intersections. The rndf_graph with time-annotated edges is used to search for a path to 

all of the MDF checkpoints in the shortest time. 

The rndf_graph is created from RNDF in following five steps: 

a) Filter out set of critical waypoints CWP from RNDF waypoints using the following 

pseudo code: 

for all wpi in WP 

begin 
 if (wpi.cp || wpi.en_wp || wpi.ex_wp) 

 then 
  CWP.insert (wpi) 

 endif 

end 

 

b) Represent each waypoint wpi in CWP as a vertex in the rndf_graph. 

c) Create edges for vertices within each road. 

d) Create edges for vertices within each zone. 

e) Create edges between all connecting roads or zones (intersection) from RNDF. 

The process of creating edges for vertices within a road, within a zone or in between roads 

and zones is each different. The following three subsections give a brief background of each 

these three areas and explain how edges are created for each area.  

6.1.1 Edges within Road  

A road, r is a collection of neighboring lanes flowing in the same direction with no physical 

median dividing them. Set of roads, 𝑅 = {𝑟1, 𝑟2, . . 𝑟𝑘}, where each road 

𝑟 =  𝑙1, 𝑙2. . 𝑙𝑛   ∀𝑙𝑖 , 0 < 𝑖 < 𝑛, (𝑙𝑖 . 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛()  =

𝑙𝑖+1. 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛()) ∧ (𝑛𝑎𝑣𝑖𝑔𝑎𝑏𝑙𝑒 𝑙𝑖 , 𝑙𝑖+1 = 𝑇𝑟𝑢𝑒)}. The lanes li are number in the order of 
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their occurrence on the segment (left to right or right to left). Here, the function navigable (li, 

li+1) = True, implies that there is no physical median dividing the neighboring lanes li and li+1 

and hence a lane change is permissible between the lanes. A road captures the idea of a 

collection of lanes which one can use to drive from one point to another without going into 

specifics of which lane to drive on.  

 Creating edges for vertices on a single-lane road is straight-forward, while creating edges 

for a multilane road requires some extra work. Note that the definition of a road in the 

rndf_graph representation differs from the commonly used definition of a road. In common 

use, a road includes the set of lanes flowing in opposite directions as in a 2-way road, while 

in the rndf_graph notation these set of lanes are represented as two separate roads. 

  Here I describe how a road with one lane is represented in an rndf_graph, followed by 

how a road with multiple lanes is represented. 

Single lane road: For a single lane road, all the vertices on that road are order based on their 

occurrence on the road. The consecutive vertices in this list are connected through an edge. 

The resulting set of edges El created for a single lane road l can be defined as follows. Here 

an edge (wpi, wpj) is included in El if both wpi and wpi belong to lane l and they occur as 

consecutive waypoints on the lane, as tested by the function consecutive_lane_wps (wpi, 

wpj). 
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  𝑤𝑝𝑖 , 𝑤𝑝𝑗  ∈ 𝐸𝑙    𝑖𝑓𝑓    𝑤𝑝𝑖 ∈ 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 𝑙 ∧ 𝑤𝑝𝑗 ∈ 𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠  𝑙 ∧ 

                                              𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒_𝑙𝑎𝑛𝑒_𝑤𝑝𝑠 (𝑤𝑝𝑖 , 𝑤𝑝𝑗 ) 

 The graph edges are annotated with estimated time of travel between the vertices. The 

distance between the two vertices is computed along the intermediate Non-Critical 

WayPoints (NCWPs). The distance between the vertices, the speed limits on the lane and any 

extra penalty, if applied are used to annotate the edges with estimated time for travel. Figure 

23 shows the graph representation for a single lane road. 

Multi-lane road: Creating the edges for a multi-lane road requires merging the lanes into 

one unit. Lanes are merged by selecting all the CWPs from all the lanes and sorting them 

based on their occurrence along the road. The consecutive navigable vertices are connected 

via edges that are annotated with the estimated time of travel. Figure 24 shows the 

rndf_graph representation for a simple multi-lane situation with no non-navigable vertices 

pair.  

 

 

(a) Single lane road with an entry point, exit point, checkpoint, and two non-

critical points. 

 

(b) Graph representing the single lane road. Non-critical waypoints (NCWP) 

are removed when creating the rndf_graph. 

 

Figure 23: Rndf_graph representation of a single-lane road 
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 A pair of vertices (wpi,wpi+1) is not navigable if the waypoints wpi and wpi+1 fall on 

different lanes (li, lj) and the waypoints wpi and wpj are too close for the vehicle to switch 

lanes between them. An example pair of non-navigable pair of vertices is (wpb, wpc) as 

shown in Figure 25 b. That is, if the distance (dis) between wpi and wpj is smaller than 

required for the lane change distance (lc_dis), it is considered as not navigable. Here lc_dis 

is the suggested distance for changing lanes. The distance lc_dis is approximated as ε / sin 

(α), where „ε‟ is the distance between the two lanes li, and lj, and α is a safe angle for lane 

change. Here,  

𝜀 =
𝑙1. 𝑤𝑖𝑑𝑡𝑕

2
 +

𝑙2. 𝑤𝑑𝑖𝑡𝑕

2
 

𝑙𝑐_𝑑𝑖𝑠 =
𝜀

sin(α)
 

𝑑𝑖𝑠 =  (𝑤𝑝𝑖+1. 𝑦 − 𝑤𝑝𝑖 . 𝑦)2 + (𝑤𝑝𝑖+1. 𝑥 − 𝑤𝑝𝑖 . 𝑥)2 

 

(a) Two lane road with entry-exit points, checkpoint and a non-critical point. 

 

(b) Graph representing the above two-lane road.  

 

 

Figure 24: Rndf_graph representation of a multi-lane road 
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  Non-navigable vertices are handled by adding a branch around these vertices, as shown 

with a simple example in Figure 25. In this example all the wps are assumed to be CWPs and 

are included in the rndf_graph representation. Here the waypoints wpb and wpc are too close 

to be navigable. Hence, no edge is added from vertex wpb to wpc in the rndf_graph 

representation. Instead two new edges eac and ebd between wpa to wpc and wpb to wpd 

respectively are added. The edge eab followed by ebd represents the path for driving on lane l2 

from wpa to wpb and then changing to lane l3 to reach wpd, or changing from lane l2 at wpa to 

lane l3 at wpc and then continue on l3 to reach wpd. These extra edges represent the alternative 

navigable paths (wp sequence) that can be included in the MDF mission. 

 
(a) Two lane road. 

 
(b) Graph representing non-feasible lane change. 

 
(c) Branch in the graph representing feasible lane change. 

Figure 25: Multi-lane road merging using branching 
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 Merging multiple lanes can get complex with an increase in the number of lanes and the 

combination of close waypoint. Following is the set representation of the all edges that 

should be added in this process of merging lanes. Here, nav (wpi, wpj) is true if path from wpi 

to wpj is navigable. Figure 26 gives the pseudo code for an optimized method for forming 

these edges.  

𝐸𝑟𝑜𝑎𝑑 = 𝐸𝑑𝑖𝑟  ∪ 𝐸𝐼𝑑𝑖𝑟  

 𝑤𝑝𝑖 , 𝑤𝑝𝑗  ∈ 𝐸𝑑𝑖𝑟       𝑖𝑓𝑓   1 ≤ 𝑖 <  𝐶𝑊𝑃 , 𝑖 < 𝑗 ≤  𝐶𝑊𝑃 , 𝑛𝑎𝑣  𝑤𝑝𝑖 , 𝑤𝑝𝑗   ∧ 

                                                 ∀𝑘, 𝑖 < 𝑘 < 𝑗, ¬𝑛𝑎𝑣 𝑤𝑝𝑖 , 𝑤𝑝𝑗   

 

// Input: WP = {wp1, wp2… wpn} 

// Output: set of rndf_edges E 

// Here, N = |CWP| , 

// The function nav (wpi, wpj) returns true if the path from wpi to wpj is navigable.  

for i=0 to n-1 

begin 

    for j=i+1 to n 

        begin 

               if (nav (wpi, wpj)) 

                      Add edge from wpi to wpj to E 

                      break 

   endif 

       end;  

       for k=j+1 to n 

       begin 

         if (nav (wpj, wpk)) 

    break 

    endif 

            if (nav (wpi, wpk)) 

                Add edge from wpi to wpk to E 

      endif 

      end 

end 

Figure 26: Pseudo code for creating rndf_graph edges for a multi-lane road 
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 𝑤𝑝𝑖 , 𝑤𝑝𝑚 ∈ 𝐸𝐼𝑑𝑖𝑟    𝑖𝑓𝑓   1 ≤ 𝑖 <  𝐶𝑊𝑃 , 𝑖 < 𝑚 ≤  𝐶𝑊𝑃 ,  𝑤𝑝𝑖 , 𝑤𝑝𝑗  ∈ 𝐸𝐼𝑑𝑖𝑟  ∧ 

                                                 𝑛𝑎𝑣 𝑤𝑝𝑖 , 𝑤𝑝𝑚  ∧  ∃𝑤𝑝𝑗 , 𝑖 < 𝑗 < 𝑚,  𝑤𝑝𝑖 , 𝑤𝑝𝑗  ∈ 𝐸𝑑𝑖𝑟 ∧ 

                                                 ∀𝑘, 𝑗 < 𝑘 ≤ 𝑚, ¬𝑛𝑎𝑣 𝑤𝑝𝑗 , 𝑤𝑝𝑘  

6.1.2 Edges within Zone 

A zone is a free-travel area with optional parking spots. Zones have three types of waypoints 

that are of interest. They are: entry points, EN_WPs to enter the zone, exit points, EX_WPs to 

leave the zone, and parking waypoints, PK_WPs at the parking spots. These three types of 

waypoint vertices require four types of edges, as listed below (refer Figure 27).  

a) EN_WP -> EX_WP: Edges from each entry point of the zone to each exit point of the 

zone. These edges represent the possible action of just passing through the zone or to 

reach an EX_WP or EN_WP that is marked as a checkpoint.  

b) EN_WP -> PK_WP: Edges from each entry point to each parking spot. These edges 

represent the action of entering the zone to reach a parking checkpoint. 

c) PK_WP -> PK_WP: Edges from each parking spot to each other parking spot. These 

edges represent the action of reaching from one parking point to another parking 

point. 

d) PK_WP -> EX_WP: Edges from each parking spot to each exit point. These edges 

represent the action of leaving the zone through any of the exit points from a parking 

spot. 



70 

 

 

6.1.3 Edges for Intersection 

An intersection is a region where multiple lanes or zones are connected. Creating rndf_graph 

edges Eint for intersection area is straightforward. For every vertex in the rndf_graph that 

represents an exit waypoint of a lane or a zone, add edges to all of the vertices representing 

its allowed entry waypoint pairs as specified in the RNDF.  

 The resulting set of edges created for intersection region Eint can be defined as follows. 

Here an edge (wpi, wpj) is included in Eint if wpi is an exit waypoint, wpj is an entry waypoint 

and wpj is one of the entry pair of wpi. Here, entry_pair (wp) returns the set of entry 

waypoints which can be reached from wp. 

  𝑤𝑝𝑖 , 𝑤𝑝𝑗  ∈ 𝐸𝑖𝑛𝑡    𝑖𝑓𝑓   𝑤𝑝𝑖 ∈ 𝐸𝑥_𝑊𝑃 ∧ 𝑤𝑝𝑗 ∈ 𝐸𝑛_𝑊𝑃 ∧ 𝑤𝑝𝑗 ∈ 𝑒𝑛𝑡𝑟𝑦_𝑝𝑎𝑖𝑟 𝑤𝑝𝑖   

 

(a) Zone with two checkpoints.        (b) Graph representation of the zone. 

Figure 27: Rndf_graph representation of a zone 
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 Figure 28 (a) shows an example intersection area where two segments and a zone are 

connected. Figure 28 (b) shows the rndf_graph representation of this intersection. Here the 

ex_wp from l6 is connected to en_wp on lane l5 and zone z1. Similarly ex_wp from lane l4 is 

connected to en_wp on z1.  

6.2 Mission Planner 

The Mission Planner module searches the rndf_graph created in the previous step to find a 

sequence of connected vertices that represents the path to reach all the checkpoints. This 

 
(a) Intersection i1 joining two lanes and a zone. 

 
(b) Rndf_graph representing the intersection. For visual clarity only the edges 

originating from lane l6 are displayed. 

Figure 28: Rndf_graph representation of an intersection 
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sequence of waypoints is known as Mission Plan and provides a plan indicating where to 

enter which road (or zone) and where to exit a road, or a zone, in order to reach all the 

checkpoints CP.  

 The process of finding the Mission Plan starts by first mapping present position of the 

AGV onto the rndf_graph to find Wstart, a waypoint preceding AGV in the rndf_graph. This 

waypoint is added as the preceding element cp0 to the input MDF mission = [cp1, cp2, .. cpn] 

to get new sequence CP=[cp0, cp1, cp2… cpn]. 

 The rndf_graph is searched for a path between consecutive cpi-1, cpi using  GraphSearch 

(cpi, cpj). The resulting sequence of waypoints is filtered to leave only the EN_WP, EX_WP 

and the goal waypoint cpj. This filtered sequence of waypoints is called sub-goal waypoints 

(swpi) which does not include the start node cpi. This process is repeated to determine swp1, 

swp2, .. swpn corresponding to each checkpoint from MDF mission. These sub-goal 

waypoints are appended to wstart to form a single sequence of waypoints known as Mission 

Plan. Following is the formal representation of these steps: 

𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑙𝑎𝑛 = 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑎𝑡𝑕 𝑤𝑠𝑡𝑎𝑟𝑡 , 𝐶𝑃  

𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑎𝑡𝑕  𝑐𝑝0,  𝑐𝑝1, 𝑐𝑝2 …𝑐𝑝𝑛  =  𝑐𝑝0 + 𝑠𝑤𝑝1 + 𝑠𝑤𝑝2 + ⋯𝑠𝑤𝑝𝑛  

Where, 𝑠𝑤𝑝𝑖 = 𝐸𝑥𝐸𝑛𝑃𝑎𝑡𝑕 𝑐𝑝𝑖−1, 𝑐𝑝𝑖  and „+‟ is concatenation of sequences 

𝑠𝑤𝑝𝑖 = 𝐹𝑖𝑙𝑡𝑒𝑟 𝐺𝑟𝑎𝑝𝑕𝑆𝑒𝑎𝑟𝑐𝑕 𝑐𝑝𝑖−1, 𝑐𝑝𝑖   

Where, 𝐺𝑟𝑎𝑝𝑕𝑆𝑒𝑎𝑟𝑐𝑕  𝑐𝑝𝑖 , 𝑐𝑝𝑗  =  𝑤𝑝1, 𝑤𝑝2, . . 𝑤𝑝𝑚 , 𝑐𝑝𝑗  , A quickest path from cpi to cpj 

determined by searching the time-annotated rndf_graph. This sequence of waypoints does not 

include the start waypoint cpi, but includes the goal waypoint cpj.  
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And the function 𝑓𝑖𝑙𝑡𝑒𝑟 𝑆 is defined as follows: 

𝐹𝑖𝑙𝑡𝑒𝑟 [] = [], 

𝐹𝑖𝑙𝑡𝑒𝑟  𝑥  = [𝑥], 

𝐹𝑖𝑙𝑡𝑒𝑟( 𝑥 . 𝑆) =  

 𝑥 + 𝐹𝑖𝑙𝑡𝑒𝑟 𝑆          𝑖𝑓 𝑥 ∈ 𝐸𝑋_𝑊𝑃
 𝑥 + 𝐹𝑖𝑙𝑡𝑒𝑟 𝑆         𝑖𝑓 𝑥 ∈ 𝐸𝑁_𝑊𝑃 

𝐹𝑖𝑙𝑡𝑒𝑟 𝑆                    𝑒𝑙𝑠𝑒                     

  

 The filtering is required in the above process as the rndf_graph include the vertices 

representing all the checkpoints included in the MDF mission.  While searching the graph for 

checkpoint cpi, all the other checkpoints that are included in the graph vertices are of no 

importance. Hence all these checkpoints are filtered out. Here the checkpoint cpi being 

searched for is called immediate-checkpoint. 

 Figure 29 shows an example scenario to illustrate the above filtering process. Here, 

consider a MDF mission to reach wpa, wpc, and wpd in that order. Since they are part of the 

MDF mission, all three wps are included in the rndf_graph representation of the road. 

However, when searching for a sub-mission to reach wpc from wpa, wpd as a checkpoint has 

no role. Instead, wpd leads to an unnecessary lane changing from l2 to l3 and back to l2. 

Hence, non-immediate checkpoints like wpd are filtered out.  
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6.3 BP Extractor 

The Mission Plan planned in the previous step is used to find a sequence, 𝜎 of BPs that can 

accomplish the MDF mission. Consecutive waypoints (wpi, wpi+1) in the Mission Plan are 

logically connected and represent a specific task. These tasks can be achieved by a sequence 

𝜎wpi, wpi+1 of BPs. As an example, let waypoints pair (wp1, wp2) be a consecutive waypoints in 

 
(a) Two lanes road as represented in RNDF definition, with wpa, wpc, wpd as 

checkpoints from the MDF. 

 
(b) rndf_graph representation of the road network, with non-critical waypoint 

wpb, removed. 

 
(c) Mission plan to reach wpc, from wpa: Checkpoint wpd filtered from the plan 

as it is not the immediate checkpoint 

 

Figure 29: Filtering graph search waypoint list to get the Mission Plan 
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a Mission Plan belonging to two adjacent lanes (l1, l2) of a segment. To drive between these 

two wps, system needs to: a) drive on lane l1, for a certain distance, b) change to lane l2, and 

c) continue to drive on lane l2 to reach wp2. This is achieved through a sequence of three 

Basic Planners (BPs): 𝜎wp1,wp2 = [fl_bp1, cl_bp1, fl_bp2], where fl_bp1 drives on lane l1 for 

certain distance, cl_bp1 changes to lane l2 and fl_bp2 drives on l2 to reach wp2.  

The sequence 𝜎wpi, wpi+1 of BPs that can drive between a consecutive pair of waypoints in 

the mission plan is determined independently and then concatenated to get a single sequence 

𝜎 of BPs that will accomplish the whole mission. Determining the sequence of BPs that will 

drive between a pair of waypoints can be achieved through a logic-based planning approach 

or decision-rules based planning approach.  

In the Logic-based approach as explained in Section 6.3.1, the present planning problem 

can be represented in a logic-based language such as an ADL and use a standard logic-based 

planner to search for a sequence 𝜎 of BPs that can accomplish the mission. This approach 

helps to achieve easy plug-ability of new BPs, as explained in section 6.3.2.  

The decision-rule based planner encodes the predetermined decisions of what sequence of 

BPs can be used for each possible combination of waypoint pairs. This approach was 

implemented and tested while preparing for Urban Challenge and is explained in Section 

6.3.3.  

6.3.1 Logic-based Planning for BP Extractor  

Here I show how the Basic Planner (BP) Extraction problem statement can be represented 

using one of the logic-based representation language, namely Action Description Language 
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(ADL). In this language, problem constraints and mission are represented as propositional 

literal states or first-order states, and BPs are represented as action. This language 

representation is used with a standard planning approach to determine a sequence of actions 

(BPs) that can achieve the goal state (mission). The planning algorithms that can be used for 

such a representation includes forward state-space search, backward state-space search 

(Russelll and Norvig 2003), partial-order planning (Nilsson 1998), and GraphPlan (Russell 

and Norvig, Planning Graph 2003).  

 The ADL notation for symbols is different from the set theory notation used in the rest of 

the document. In ADL notation, a capitol letter symbol such as „L‟ represents a constant, 

while in the set theory it represents a set of values. Similarly a small letter symbol such as „l‟ 

represents variable in ADL representation, while in the set theory it represents a specific 

value. I use ADL notation for this subsection and hence different from the rest of the 

document.  

 In the rest of this section I represent a simple case of BP Extraction problem in ADL 

representation. I then use forward-state space search algorithm to plan a BP sequence, 𝜎 for a 

sample waypoint pair. 

ADL representation 

Table 8 outlines the ADL language which includes a list of propositional literals, list of first-

order literals states, and a list of actions. This terminology will be used to represent a sample 

problem (Prob-1) shown in Figure 30. Here the goal is to reach waypoint wp2 from waypoint 

wp1. 
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 The ADL representation of this problem (Prob-1) is shown in Figure 31. The 

representation has three sections, namely, Init, Goal, and Actions. Here, the Init section 

describes the initial state of the problem. Goal section represents the required goal state the 

Table 8: ADL language representation 

Symbol Represents 

Propositional literals 

Left Represents the left side of a lane 

Right Represents the right side of a lane 

First-order literals 

𝑅𝑖𝑔𝑕𝑡_𝐿𝑎𝑛𝑒 (𝑙1 , 𝑙2) Represents that l2 is the immediate right neighbor of l1 

𝐿𝑒𝑓𝑡_𝐿𝑎𝑛𝑒 (𝑙1 , 𝑙2) Represents that l2 is the immediate left neighbor of l1 

WPLane (wp) Represent the lane to which wp belongs 

First-order literals (states) 

On_lane (l) Represent the state of being is on lane l 

On_segment (s) Represent the state of being is on segment s 

Pass_WP (wp) Represent the state of passing waypoint wp 

Actions 

CL_BP (Left) Action to switch to a left lane 

CL_BP (Right) Action to switch to a right lane 

FL_BP (wp) Action of following the lane till waypoint wp 

 

         

Figure 30: Graphical representation of start and goal state of Prob-1 
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system should reach. And Actions section lists the actions that are allowed in the problem.  

Each action description has three parts, namely, syntax, precondition and effects. The syntax 

part describes the name and input arguments of the action. Precondition part lists the 

conditions required to perform the action and the effects part list the changes that are brought 

about by the action. 

Forward-state space search algorithm 

The present problem (Prob-1) can be solved using logic-based planning algorithms such as 

partial-order planning, forward state-space search and backward state-space search 

algorithm. As an example in this section I use forward state-space search algorithm on Prob-

1, as shown in Figure 32. The search starts with a start node representing the initial 

conditions, as mentioned in the problem description in Figure 31, and explores the new states 

that can be reached by taking each valid action. An action is considered valid from a state, if 

all the preconditions of the action are satisfied by the state. This exploration of new states is 

performed in a bread-first order.  

 

𝐼𝑛𝑖𝑡 (𝑂𝑛_𝐿𝑎𝑛𝑒 𝐿2  ⋀ 𝑂𝑛_𝑆𝑒𝑔𝑚𝑛𝑒𝑡() ⋀ 𝑃𝑎𝑠𝑠_𝑊𝑃(𝑊𝑃1)) 

𝐺𝑜𝑎𝑙  𝑃𝑎𝑠𝑠_𝑊𝑃 𝑊𝑃2   

𝐴𝑐𝑡𝑖𝑜𝑛 𝐶𝐿_𝐵𝑃(𝐿𝐸𝐹𝑇) , 
       𝑃𝑅𝐸𝐶𝑂𝑁𝐷: 𝑂𝑛_𝐿𝑎𝑛𝑒 𝑙1  ⋀ 𝐿𝑒𝑓𝑡_𝐿𝑎𝑛𝑒 (𝑙1 , 𝑙2) 
       𝐸𝐹𝐹𝐸𝐶𝑇: 𝑂𝑛_𝐿𝑎𝑛𝑒 𝑙2  ⋀  ¬ 𝑂𝑛_𝑙𝑎𝑛𝑒(𝑙1)) 

𝐴𝑐𝑡𝑖𝑜𝑛(𝐶𝐿_𝐵𝑃 𝑅𝐼𝐺𝐻𝑇 , 
       𝑃𝑅𝐸𝐶𝑂𝑁𝐷: 𝑂𝑛_𝐿𝑎𝑛𝑒 𝑙1  ⋀ 𝑅𝑖𝑔𝑕𝑡_𝐿𝑎𝑛𝑒 (𝑙1 , 𝑙2) 
       𝐸𝐹𝐹𝐸𝐶𝑇: 𝑂𝑛_𝐿𝑎𝑛𝑒 𝑙2  ⋀ ¬ 𝑂𝑛_𝐿𝑎𝑛𝑒(𝑙1) 

𝐴𝑐𝑡𝑖𝑜𝑛(𝐹𝐿_𝐵𝑃 𝑤𝑝 , 
      𝑃𝑅𝐸𝐶𝑂𝑁𝐷:𝑂𝑛_𝐿𝑎𝑛𝑒 𝑙  ⋀ (𝑊𝑃𝐿𝑎𝑛𝑒 𝑤𝑝 = 𝑙) ⋀ ¬ 𝑃𝑎𝑠𝑠_𝑊𝑃(𝑤𝑝) 
     𝐸𝐹𝐹𝐸𝐶𝑇: 𝑃𝑎𝑠𝑠_𝑊𝑃(𝑤𝑝)) 

 

 

 

 

 

Figure 31: ADL description of a sample BP Extraction problem: Prob-1 
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 From the start state S0 described as 𝑂𝑛𝐿𝑎𝑛𝑒  𝐿2 ∧ 𝑂𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝑆1 ∧ 𝑃𝑎𝑠𝑠𝑊𝑃(𝑊𝑃1), 

there are two valid CL_BP actions {CL_BP (LEFT), CL_BP (RIGHT)} and one invalid 

FL_B action {FL_BP (wp)}. The FL_BP (wp) is invalid as it could not satisfy the 

preconditions to take any of WP1 and WP2 as an action argument. To be more specific, the 

precondition of ¬ 𝑃𝑎𝑠𝑠_𝑊𝑃(𝑊𝑃1) is not satisfied for taking WP1 as an argument, and the 

precondition of   𝐿1 =  𝐿2   is not satisfied for taking WP2 as an argument.  

 Actions CL_BP (RIGHT) and CL_BP (LEFT) lead to two new states S1 and S2 

respectively. The preconditions for action FL_BP with an argument WP2 are now satisfied 

from states S1.  This action leads to a new state (S3) which satisfies all the goal conditions, 

thus successfully completing the search.  

6.3.2 Plug-ability in BP Extractor 

In a logic-based planning approach for BP Extractor, each Basic Planner (BP) type is 

represented as an action with a list of preconditions and a list of effects the BP is expected to 

 

Figure 32: 'Forward state-space' search algorithm on Prob-1 
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make. This language is used by the planning algorithm to determine the sequence 𝜎 of BPs 

required for navigating between a pair of waypoints. Adding a new BP to the CB_PP requires 

adding a new action and, if required, a few state symbols to the language. The planning 

algorithm which determines the sequence of actions (BPs) is not tied to any of these actions. 

Hence adding a new action to the language should not affect the planning algorithm, and thus 

allowing easy addition of new BPs (actions) to the BP Extractor. 

6.3.3 Decision-rules Based BP Extractor 

This approach encodes the predetermined decisions of what sequence of Basic Planners 

(BPs) to use for each possible combination of waypoint pairs. These decisions are 

represented as decision-rules as described in this section. For simplicity, the rules can be 

classified into three categories depending on where the waypoints wp1, wp2 are located on the 

RNDF. The categories include wps that are:  

(i) within the same zone 

(ii) on different segment or zones 

(iii) on same segment.  

6.3.3.1 Within the same zone 

Waypoints within a zone can either be a perimeter point, to enter or leave the zone, or can be 

a parking point, specifying a parking spot. These two waypoint types will results in four 

possible combinations for waypoint pairs {wp1, wp2}. In this section, wp1 is represented as 

wpprev and wp2 is represented as wpnext. The sequence 𝜎 of BPs that can drive between these 

different waypoint pairs is listed in Table 9.  
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Zone-Navigator Basic Planner, ZN_BP as explained earlier plans a path to drive to a 

specific position at a given orientation. ZN_BP takes this destination position and orientation 

as its goal. ZN_BP‟s destination position is equal to the wpnext position, while the destination 

orientation depends on the wpnext type. If the wpnext is a perimeter point, then the ZN_BP‟s 

destination orientation is equal to the orientation of the normal to the zone‟s perimeter at 

wpnext. If the wpnext is a parking point, then the ZN_BP‟s destination orientation is equal to 

the orientation of the parking spot. 

Similarly, PK_BP and UP_BP take the destination position and direction as their local 

goals. These values are obvious for PK_BP, as it is equal to the parking spot‟s position and 

orientation. For UP_BP, the destination position and orientation is computed depending on 

the relative position of the wpnext from the wpprev. Here, wpnext can be another parking spot or 

a zone perimeter point. 

Table 9:  BP Extraction rules for within zone WPs 

WPprev WPnext Sequence of Basic Planners (𝜎𝑤𝑝𝑝𝑒𝑟𝑣  𝑤𝑝𝑛𝑒𝑥𝑡 ) 

Zone_perimeter Zone_perimeter [zn_bp (wpnext)] 

Zone_perimeter Parking_spot [zn_bp (wpnext), pk_bp (wpnext)] 

Parking_spot Zone_perimeter [up_bp (wpnext), zn_bp (wpnext)] 

Parking_spot Parking_spot [up_bp (wpnext), zn_bp (wpnext), pk_bp 

(wpnext)] 
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6.3.3.2 On different segments or zones  

If wpprev and wpnext are on different segments or zones, then wpprev and wpnext should have 

been connected by an exit-entry connection. For such a waypoint pair, an Intersection Basic 

Planner it_bp (wpnext) can drive between the wps. 𝜎𝑤𝑝𝑝𝑟𝑒 𝑣 𝑤𝑝𝑛𝑒𝑥𝑡  = [it_bp(wpnext)] 

6.3.3.3 On same segment 

This section list the decision rules required for determining the sequence 𝜎𝑤𝑝𝑝𝑟𝑒𝑣  𝑤𝑝𝑛𝑒𝑥𝑡  of 

BPs that can navigate between the waypoint pair (wpprev, wpnext) belonging to the same 

segment. These decision rules can be further be classified into two categories based on if the 

waypoints belong to the same lane or two different lanes within the segment.  

a) Waypoints belong to same lane (of the same segment): 

Following is the decision rule when wpprev and wpnext belong to the same lane. As the rule 

describes though the wps belong to the same lane, there could be a stop sign at wpprev 

requiring using an IT_BP. Another interesting case is that the lane that the wps belong to 

might have a loop and waypoint pair (wpprev, wpnext) might be jumping ahead on the lane. An 

example situation is shown in Figure 33. Here the waypoint pair (wp1, wp4) belong to the 

same group but require an IT_BP to navigate from the wp1 to wp4. 

In the following decision rule consecutive_lane_wps (wpi, wpj) returns true if wpj occur 

immediately after wpi on the lane. 
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𝜎wp prev   wp next
 

=   

 𝑖𝑡_𝑏𝑝  𝑤𝑝𝑛𝑒𝑥𝑡     𝑖𝑓   𝑤𝑝𝑝𝑟𝑒𝑣 ∈ 𝐸𝑥_𝑊𝑃 ∧ 𝑠𝑡𝑜𝑝_𝑠𝑖𝑔𝑛 𝑤𝑝𝑝𝑟𝑒𝑣                                              

 𝑖𝑡_𝑏𝑝 𝑤𝑝𝑛𝑒𝑥𝑡      𝑖𝑓   𝑤𝑝𝑝𝑟𝑒𝑣 ∈ 𝐸𝑥_𝑊𝑃 ∧ ¬𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒_𝑙𝑎𝑛𝑒_𝑤𝑝𝑠 𝑤𝑝𝑝𝑟𝑒𝑣 , 𝑤𝑝𝑛𝑒𝑥𝑡  

 𝑓𝑙_𝑏𝑝 𝑤𝑝𝑛𝑒𝑥𝑡     𝑒𝑙𝑠𝑒                                                                                                                     

  

b) Both the waypoints belong to two different lanes (of the same segment):  

Following is the decision rule when wpprev and wpnext belong to two different lanes of the 

same segment.  If these lanes are oriented in the same direction then a CL_BP should switch 

lane followed by a FL_BP to reach wpnext. If the lanes are in the opposite direction, connected 

as an exit-entry pair with no other lanes or zones connected to this exit waypoint wpprev, then 

the segment is a dead end and requires a U-turn. In the following rule, entry_pair (wp) 

returns a set of entry pairs for wpprev. If this set equals {wpnext}, then there exist no other lanes 

or zones connected to this exit waypoint wpprev. 

 

Figure 33: Single lane looping and interacting with itself 
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𝜎𝑤𝑝𝑝𝑟𝑒𝑣    wp next

=  

 
 
 

 
 [𝑐𝑙_𝑏𝑝 𝑙𝑎𝑛𝑒 𝑤𝑝

𝑛𝑒𝑥𝑡
 , 𝑓𝑙_𝑏𝑝 𝑤𝑝

𝑛𝑒𝑥𝑡
     𝑖𝑓     𝑙𝑎𝑛𝑒  𝑤𝑝

𝑝𝑟𝑒𝑣
 . 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑎𝑛𝑒 𝑤𝑝

𝑛𝑒𝑥𝑡
 . 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 𝑢𝑡_𝑏𝑝  𝑙𝑎𝑛𝑒 𝑤𝑝
𝑛𝑒𝑥𝑡

                              𝑖𝑓      𝑤𝑝
𝑝𝑟𝑒𝑣

∈ 𝐸𝑥_𝑊𝑃 ∧ 𝑤𝑝
𝑛𝑒𝑥𝑡

∈ 𝐸𝑛_𝑊𝑃 ∧                              

                                          𝑒𝑛𝑡𝑟𝑦_𝑝𝑎𝑖𝑟𝑠  𝑤𝑝
𝑝𝑟𝑒𝑣

 =  𝑤𝑝
𝑛𝑒𝑥𝑡

 

 𝑖𝑡_𝑏𝑝 𝑤𝑝
𝑛𝑒𝑥𝑡

                                             𝑒𝑙𝑠𝑒                                                                                                             

  



 

Figure 34: Control flow of Supervisor 

module 
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7 Supervisor 

The Supervisor module uses the sequence 

(𝜎) of Basic Planners (BPs) determined by 

the HLP to plan a steering path for the AGV 

to follow. The steering path is used by the 

Steering Controller module (refer Figure 1), 

which is not part of Path Planner, to generate 

the low level steering, gas, and brake 

commands(Herpin, et al. 2007). The 

Supervisor module performs this path 

planning cycle every 50 milliseconds 

publishing a steering path at 20Hz. In each 

path planning cycle, the Supervisor module 

performs the following five tasks (refer Figure 34).  

a) Update the BP sequence by removing the BPs that have completed their tasks.  

b) Create a dummy base path for the first BP in the BP sequence. 

c) Trigger the BPs in the BP sequence to plan their path.  

d) Verify that each of BP‟s path segments is safe to follow with respect to static 

obstacles. If not safe, inform the Re-Planner.  If the Re-Planner modified the BP 

sequence, then the Supervisor module restarts from the first step. Else, the Supervisor 

module continues to check if the path segments are safe to follow with respect to 

dynamic obstacles.  
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e) Collect the paths generated by the each BP and publish the combined steering path.  

 Figure 35 gives the pseudo code of the supervisor_main_loop (), which implements the 

above mentioned steps. Here, update_sequence (𝜎) function removes the top of the sequence 

BPs that have completed performing their capability. This step is further explained in Section 

7.1. If all the BPs from the 𝜎 sequence are done, the Supervisor initiates termination of 

CB_PP. Else, the Supervisor continues to generate the base path, Pbase_input by calling 

 

//Function Name: supervisor_main_loop (𝜎) 

//Input: 𝜎 

//Output: Poutput, path for an AGV to follow 

Label: start 

 𝜎 = update_sequence (𝜎)      // Update 𝜎 by removing completed bps  

 if (empty(𝜎))          // If done with all bps in 𝜎 initiate  

 then             //  termination of CB_PP 

  initiate termination of CB_PP 

  return 

 endif 

 Pbase_input = create_base_path (Pprev, 𝜎[0] ) // Generate base input path for 1
st
 bp 

 plan_steering_path (𝜎, Pbase_input)   // Trigger bps to generate their path 

 // Check for safety against static obstacles, here obstacle_speed should be zero 

 (bp, ipath, obstacle_speed) = on_path_obstacles (𝜎, STATIC)  

 if (bp != NULL)         // If found bp with an obstacle on its path at

 then             //   ipath index of its path. 

        set_safety_speed_limits (𝜎, bp, ipath,0)  

 endif 

  

 𝜎𝑛𝑒𝑤  = re_planner (𝜎, bp, ipath)    // Check with Re-planner for any updates  

 if (𝜎𝑛𝑒𝑤  != 𝜎)          // If modified 𝜎𝑛𝑒𝑤  then start the beginning 

 then 

  𝜎 = 𝜎𝑛𝑒𝑤  
      goto start 

 endif 

 handle_dynamic_obstacles (𝜎)    // Detect and handle dynamic obstacles 

 Poutput = collect_path (𝜎, Pbase_input)   // Collect the path for publishing 

 Pprev = Poutput          // Update Pprev path 

 publish (Poutput)         // Publish the path for AGV to follow 

 

Figure 35: Pseudo code illustrating the steps followed by Supervisor module: 

supervisor_loop() 
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create_base_path (Pprev, 𝜎[0]) function. This function is further explained in Section 7.2. The 

generated base path is used to call plan_steering_path (𝜎, Pbase_input) function explained in 

Section 7.3 to walk through BPs in the sequence and trigger the BPs to generate their path. 

This generated path is tested for safety against static obstacles using function 

on_path_path_obstacles (𝜎, STATIC). Upon detecting a static obstacle on the path, the speed 

limits on the path are set to maintain minimum safe distance from the detected static obstacle. 

This is performed by set_safety_speed_limit (𝜎, bp, ipath) function. These two steps are 

explained in more detail in Section 7.4. The re-planner is then called to let it perform any 

updates to BP sequence to give a new sequence 𝜎𝑛𝑒𝑤 . If 𝜎𝑛𝑒𝑤  is different from 𝜎, the 𝜎  is 

updated to 𝜎𝑛𝑒𝑤 and the Supervisor modules starts from the first step by jumping to label 

start. Else the Supervisor module continues to handle any dynamic obstacles that can pose a 

danger. This is performed by the handle_dynamic_obstacles () function. Finally, collect_path 

() function explained in Section 7.6, walks through the BP sequence to collect a single final 

path for the AGV to follow.  The final step of publish_path communicates the results to the 

Steering Controller module. For CB_PP implementation, publish_path () function 

communicates its path to the Steering Controller module by pushing the final path onto a 

queue implemented in a shared memory (Venkitakrishnan 2006).  

7.1 Update the Basic Planner Sequence 

In this step, the Basic Planners (BPs) which has completed performing their capabilities are 

removed from the top BP sequence. The decision of whether a capability is complete is left 

for the BPs to decide. Though the present set of all BPs decide on completing their 
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capabilities when their planned path PBP is covered by the AGV, there is no hard definition 

on this decision. 

 Figure 36 shows the pseudo code of this step. The Supervisor module at this step, as 

shown in Figure 36, queries the first BP in the sequence to check if it has completed its 

capability. If so, the BP is removed and the next BP in the sequence is queried for 

completion. This process is repeated until the first BP in the sequence that has not completed 

its capability or until there are no BPs in the sequence. If there are no more BPs left in the 

sequence, the Supervisor module initiates termination of the Path Planner.  

 By letting the BPs make the decision about completing the capability, the Supervisor 

module is able to operate without knowing the specifics of the BPs. This allows the 

Supervisor module to handle any new BP added to the Path Planner and thus achieve easy 

plug-ability of BPs. The Supervisor module uses the BP‟s common interface is_completed () 

function specified in Figure 8 to make this query.  

7.2 Create Base Path 

The updated Basic Planner (BP) sequence contains a sequence of BPs that are yet to 

accomplish their capabilities by generating the paths for the AGV to follow. To follow the 

//Function Name: update_sequence (𝜎) 

//Input: 𝜎 

//Output: updated 𝜎  

 

while (not_empty (𝜎) && !𝜎 0 .is_completed ()) 

begin 

 remove_first_element (𝜎) 

end 

Figure 36: Pseudo code for updating the BP sequence, σ: update_sequence () 
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Basic-Path protocol BPs in the sequence needs an input base path Pbase_path. The present step 

generates this input base path for the first BP in the sequence. 

 Figure 37 provides the pseudo code for generating the base path. For the very first path 

planning cycle of the CB_PP, a dummy base path is created using the dummy_base_path () 

function. Else, the part of the previously generated path, Pprev is used as base path. If the Pprev 

path is FORWARD, the part of the path behind the AGV is used, else if the Pprev path is 

REVERSE, the part of the Pprev path, ahead of the AGV is used as base path. This generated 

base path is used to check if the first BP in the BP sequence, bp, is going to generate a path in 

the same direction. If bp path‟s direction is going to be different, a dummy base path is 

generated in the bp‟s path direction using dummy_base_path () function. 

//Function Name: create_base_path (Pprev, bp) 

//Input: Pprev, bp 

//Output: Pbase_path 

 

if ( first path planning cycle) 

then 
 return dummy_base_path (FORWARD) 

endif 
 

generate Pbase_path as part of Pprev: 

 behind the AGV‟s present position if Pprev.direction = FORWARD 

 ahead of the AGV‟s present position if Pprev.direction = REVERSE 

 

if (direction (Pbase_path) != bp.get_path_direction (Pbase_path)) 

then 
 return dummy_base_path (bp.get_path_direction (Pbase_path) 

endif 
return Pbase_path 

 

Figure 37: Pseudo code for generating base path for the first BP in the sequence 
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 Figure 38 shows the dummy path generated by dummy_base_path () function for both 

FORWARD and REVERSE direction. The generated base path contains two points, [p0, p1]. 

For FORWARD base path direction, as shown in Figure 38 (b), p0 is set to be at a distance 

dpath behind the AGV and p1 is set to present position of the AGV. For REVERSE direction 

base path, as shown in Figure 38 (c), p0 is set to be at a distance dpath ahead of the AGV and 

p1 is set to the present position of the AGV.  

7.3 Plan Steering Path 

After updating the Basic Planner (BP) sequence, the Supervisor module iterates through the 

BPs in the new sequence and triggers each of them to plan their path to achieve their local 

goal. The input base path, Pbase_input to plan_steering_path () function is provided as an input 

to the first BP in the BP sequence which plans a path segment, PBP extending the Pbase_input to 

accomplish its task. The BP stores its path segment (PBP) and outputs the combined path 

segment PBP_output = Pbase_input + PBP, as show in the pseudo code of Figure 39. The output path 

(PBP_output) from one BP forms the input base path (Pbase_input) for the next BP in the sequence. 

This process of iterating through the BP sequence is continued until one of the four 

conditions is detected.  

 

 

 

 

(a) Initial situation with no base path. 

 
(b) FORWARD direction dummy base path  

 
(c) REVERSE direction dummy base path 

Figure 38: Placement of dummy base path's points 
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a) The present BP is the last BP in the sequence. 

b) The cumulative length of the path planned so far is greater than the length of path that 

is sufficient to plan ahead of the AGV, as set to MAX_PATH_LENGTH in Pseudo 

code of Figure 39. For performance reasons, the path planning is limited to a certain 

distance ahead of the AGV‟s position. Also, due to the limitation of the physical 

sensor‟s viewing distance, planning beyond this distance is not of great use. During 

UC this distance was set to 200 meters.   

c) The BP communicates to the Supervisor module to not continue the path planning 

process. This is performed via stop_path_generation () function provided by the BP‟s 

common interface class. The BP will make such a request when it cannot plan its path 

all the way to the goal. Or when the BP‟s path is not in the same direction 

(forward/reverse) as that of its input base path. Some BPs plan paths that should be 

covered in the reverse drive. As an example, the path by UP_BP to pull out of a 

//Function Name: plan_steering_path (𝜎, Pbase_path) 

//Input: 𝜎, Pbase_path 

//Output: Poutput 

// Here MAX_PATH_LENGTH 

path_left = MAX_PATH_LENGHT 

for i = 1 to | 𝜎 | 
begin 

 bp = 𝜎[i] 

 (Pout, path_left) = bp.generate_path (Pbase_path, path_left) 

 if (path_left <= 0 || bp.stop_path_generation ()) 

 then 
  break; 

 endif 
 Pbase_path = Pout 

done 
return Pout; 

Figure 39: Pseudo code for triggering BPs in σ to generate their paths: 

plan_steering_path () 
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parking spot or the path of UT_BP to back-up during a U-turn should be followed in 

reverse direction.  

 This decision to not plan a path ahead of such a point is maintained until the present 

path is completely covered by the AGV. At which point, the first BP in the BP 

sequence wants to change the direction of the path. At this instance, a new dummy 

input base path (Pbase_input) is fabricated in the new direction and provided as an input 

to the BP by the base_path () function, as shown in Section 4.4. 

7.4 Checking for Static Obstacles 

In this step the Supervisor module iterates through the BPs in the sequence, to check for 

static obstacles along each BP‟s path that are generated in the previous step.  The supervisor 

skips the BPs that can handle obstacles along their paths. Zone related BPs are the example 

BPs that can handle obstacles on their path. The Supervisor module uses the common 

interface function can_handle_obstacles (), to check if a BP can handle obstacles on its path. 

 The process of iterating through the BP sequence to check for static obstacles along the 

path is continued until:  

a) A static obstacle is found on the path or 

b) The BP is the last in the sequence that planned a path segment. Refer to Section 7.3 

for reasons on why path planning could stop in the middle of the BP sequence. 

For each BP, the Supervisor module gets the planned path (PBP) and the information of 

where on the RNDF the PBP lays, lane IDs. In the present version of the architecture, the zone 

related BPs are expected to handle obstacles within the zone. And intersection region is 

considered as an extension of the lanes approaching the intersection. Hence, the area on the 
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RNDF that a BP can mention includes a list of lanes. Table 10 lists the lanes that would be 

returned for each of the road BPs and intersection BP. The Supervisor module uses this 

information of where the path overlays to get all the static obstacles in those regions from the 

World_State and checks to see if any of these obstacles fall on the path.  

Figure 40 provides the pseudo code of the on_path_obstacles () function to detect the 

closest obstacle on the path. The function can check for either static or dynamic obstacles on 

the path, as specified by the second argument motion = {STATIC, DYNAMIC}. The 

function iterates through the BPs in the BP sequence and for each BP, checks if it can handle 

obstacles on its path. If the BP can handle the obstacle, the Supervisor skips to next BP in the 

sequence. Else, the Supervisor queries the BP for the list of lanes on which its path overlays. 

This list of lanes is used to get all the obstacles on these lanes from the World_State. These 

 

// Function Name: on_path_obstacles (𝜎, motion) 

//Input: 𝜎 , motion = STATIC or DYNAMIC 

//Output: (index_to_bp, index_to_bp_path, obstacle_speed)  

//   return (NULL, NULL, NULL) if no obstacle is detected on the path 

 

for i = 1 to | 𝜎 | 
begin 

 bp = 𝜎 𝑖  
 if (bp.can_handle_obstacles ()) 

 then 

  continue 

 endif 
 Lids = bp.get_lane_ids () 

 obstacles = world_state.get_obstacles_on_lanes (Lids, motion) 

 Pbp = bp.get_path () 

  

 if ((path_index, obstacle_speed) = closest_obstacle_on_path (Pbp, obstacles)) 

 then 
  return (i, path_index, obstacle_speed) 

 endif 

done 
return (NULL, NULL, NULL) 

Figure 40: Pseudo code for checking the obstacles on the BP's path: on_path_obstacles () 
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obstacles are mapped onto the path to detect the obstacles closest along the path. Upon 

detecting the obstacle on the path, it returns the index to the BP, index to BP‟s path with the 

obstacle and the speed of the obstacle. If no obstacles are detected on any BP‟s path, the 

function returns NULL for each output parameter. 

 Upon detecting an obstacle on the path (at Blk_point), the Supervisor module uses the 

set_safety_speed_limits () function to walk back along the path by a safety distance (dsafety), 

as shown in Figure 41, and informs the corresponding BP to set the speed limit of the path at 

that point to zero. This point is called stop_point. This is the closest point an AGV can drive 

towards the obstacle. It then informs the Re-Planner module about the blockage. The 

 

Figure 41: Description of stop_point and block_point along the path 

 

d
safety

L

stop_point blk_point

Static Obstacle 

on the path 

Path with non-

zero speed limit 

Path with zero 

speed limit 

Table 10:  List of BPs and the lanes that cover their path 

Basic planner Lane its path overlap 

FL_BP {Lane being followed} 

CL_BP {Present lane, New lane} 

TL_BP {Present lane, Traffic lane} 

UT_BP {Present lane, New lane after U-turn} 

IT_BP {Lane entering the intersection} 
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Supervisor module set the speed limits of BP‟s planned path using the set_path_speed () 

function provided by the BP‟s common interface class. 

 It is undesirable for an AGV to drive and stop in the middle of an intersection region in 

order to maintain a minimum safety distance dsafety from an obstacle. To prevent such unsafe 

situation, after walking back by safety distance (dsafety) along the path, the Supervisor module 

checks with the BP on whose path stop_point falls, to see if it is safe for the AGV can stop in 

between its path. This is performed using the common interface function 

can_stop_along_the_path (). If the BP does not want the AGV to stop in the middle of its 

path, the Supervisor module inform the BP to set the beginning of its path (PBP) to zero 

speed. This for IT_BP causes the AGV to stop before entering the intersection region.   

7.5 Check for Dynamic Obstacles 

Traffic vehicles that are moving or that might move in the near future, such as a car at a stop 

sign, are classified as dynamic obstacles. The dynamic obstacles that fall within a zone are 

handled by zone-related path planners. The dynamic obstacles that fall within a segment or 

intersection are handled here. The dynamic obstacles that do not fall within any lane or zone 

are ignored. The system can be updated to handle the dynamic obstacles which are not 

presently within the lane or zone, but are projected to enter one. This possible extension is 

discussed in the section 7.5.3.1. 

Dynamic obstacles are handled by modifying the speed limits of the already planned path 

to avoid interaction with obstacles. Because these obstacles are not permanent on the path, it 

is assumed that there is no need to modify the Basic Planner (BP) sequence or modify the 
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goal of any of the BPs in the sequence.. This assumption may not always be true and a 

possible update to handle such situations is explained in the section 7.5.3.2. By modifying the 

speed limits along the planned path, the system can exhibit behaviors such as convoying and 

stopping to avoid a collision.  

Handling dynamic obstacles require first detecting the dynamic obstacles that might pose 

a danger and then avoiding them. The rest of this section and Section 7.5.1 will discuss how 

to detect the dynamic obstacles of interest, followed by Section 0 which describes how to 

handle them. 

Detection of all the dynamic obstacles of concern is done in two steps. a) Detect dynamic 

obstacles that are already on the path. b) Detect dynamic obstacle that would enter the path in 

future.  

The former step is performed similar to checking for static obstacles on the path, except 

for calling the on_path_obstacles (𝜎, DYNAMIC) function to check for dynamic obstacles. 

Upon detecting a dynamic obstacle already on the path, the speed limits on the path are 

updated to maintain a speed equal to the speed of the dynamic obstacle at a safety_distance 

behind the obstacle. The following section explains the second step in detail. 

7.5.1 Detect Dynamic Obstacles Entering the Path 

Dynamic obstacles can always change their speeds or direction of travel over time. This 

makes it impossible to accurately project their path and detect obstacles of concern. In order 

to simplify the detection process, following assumptions about the dynamic obstacles are 

made:  
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a) The obstacles will follow traffic rules. For example, if a dynamic obstacle is 

observed on a lane with a stop sign, it is assumed that it will come and stop at the 

stop sign and follow intersection precedence.  

b) The obstacles will continue to travel at their present speed, unless they are expected 

to stop as in the above mentioned scenario of approaching a stop sign. 

From the first assumption, the traffic can enter onto the present continuous path only 

through a finite set of points along the path, called the Traffic Entry Points (TE_PT). These 

traffic entry points depend on where the path lies on the RNDF, which again depends on the 

Basic Planner (BP) type. Hence, Supervisor module iterates through each BP in the BP 

sequence, queries for the traffic entry points (TE_PTs) on their paths and checks if there are 

any dynamic obstacles expected to cross through any of these TP_PTs over the time window 

of interest.  The BPs provide this list of TE_PTs through the common interface function 

get_TE_PT () provided by the BP interface class. 

The rest of the section introduces these TE_PTs for each of the five on-segment and 

transition BPs followed by introducing how these TE_PTs are used to detect dynamic 

obstacles of concern.  

a) Determine Traffic Entry Points (TE_PTs): TE_PTs of the three BPs: CL_BP, 

TL_BP, and UT_BP are described in Figure 43. TE_PTs for these BPs do not change 

from one instance of the BP to another unlike TE_PTs for IT_BP‟s path varies from 

one instance of IT_BP to another.  

  Figure 42 provides the algorithm to determine this list of TE_PTs for an IT_BP. 

Here, PLit is the list of exit waypoints on the lanes passing (no stop sign) through the 
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intersection on which IT_BP is planning a path. ex_wpBP -> en_wpBP represents the 

exit-entry pair that the IT_BP is planning a path for. PLit does not include ex_wpBP of 

IT_BP. For each ex_wp from PLit, if a path to any of its en_wp pairs crosses the 

ex_wpBP-> en_wpBP path of the IT_BP, then the ex_wp is considered as a traffic entry 

point to look for and is added to TE_PT.  

  Figure 44 shows the TE_PTs for an example IT_BP. Here it is assumed that none 

of the exit waypoints have a stop sign and hence PLit = {ex_wp1, ex_wp2}. For the 

exit waypoint ex_wp1, the path to its entry pair en_wpBP crosses the path of ex_wpBP -

>en_wpBP, as shown in Figure 44 (b), hence ex_wp1 is added to TE_PT. On the other 

hand, for the exit waypoint ex_wp2, paths to none of its entry pairs shown in Figure 

44 (c) crosses the path of ex_wpBP->en_wpBP, hence is not added to TE_PT. 

FL_BPs do not check for dynamic obstacles driving on to their path. This is 

Variables: 

//Input: PLit - List of exit waypoints of the lanes passing (no stop sign) through the 

intersection, excluding the IT_BP‟s exit waypoint. 

//Output: TE_PT, list of traffic entry points 

//Here,  ex_wpBP->en_bpBP - Exit-entry waypoint pair for the intersection Basic 

Planner (IT_BP) 

for each ex_wp in PLit 

begin 

     for each en_wp pair of ex_wp  

  begin 

    if (en_wp ->ex_wp and ex_wpBP->en_wpBP cross) 

                    then  

     add ex_wp to TE_PT (traffic entry point) list 

         break 

                    endif 

  end 

end 

end 

Figure 42: Pseudo code for extracting TE_PTs on an IT_BP‟s path 
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because a FL_BP‟s path covers a single lane with no traffic lane crossing and having 

right of way. The only TE_PT for such a path would be at the beginning of the path 

on the lane. In the BP sequence, if the FL_BP is the first TP, then the AGV is already 

on the lane and does not need to try to avoid dynamic obstacles approaching from 

behind. And if the FL_BP is not the first TP, it is always preceded by one of the 

above four TPs, namely CL_BP, TL_BP, UT_BP, or IT_BP, which already looks for 

the traffic approaching the lane. 
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(a) TE_PTs for CL_BP at different phases: (i) before entering neighboring lane, (ii) 

when reached on the neighboring lane. 

 
(b) TE_PTs for TL_BP at different phases: (i) before entering traffic lane, (ii) in 

traffic lane.  

 
(c) TE_PTs for UT_BP at three phases of U-turn.  

 

 

Figure 43: Listing the TE_PTs for CL_BP, TL_BP and UT_BP at different phases of 

their execution 

 

l
1

l
2

(i) (ii)

l
1

l
2

(i) (ii)

l
1

l
2

l
1

l
2

(ii)(i)

(iii)

l
1

l
2

l
1

l
2

l
1

l
2

TE_PTNotation:



101 

 

  

 
(a) IT_BP scenario ex_wpBP -> en_wpTP, with 

PLit = {ex_wp1, ex_wp2}, two other entry 

points to the intersection. 

 
(b) Possible intersection paths from ex_wp1. 

One of the intersection paths intersects with 

the it_bp‟s path. 

 
(c) Possible intersection paths from ex_wp2. 

None of its intersection paths intersect it_bp‟s 

path. 

 
(d) TE_PT for the Basic Planner includes 

{ex_wp2}, shown with different wp markings. 

Waypoint point notation:  

 
Figure 44: Listing the TE_PTs for an example it_bp 
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b) Traffic through TE_PT: The World_State module maintains a list of dynamic 

obstacles detected on each lane and can predict their positions at any given time (t) in 

the future. It extends this feature to provide the list of dynamic obstacles that are 

expected to pass through any given points within a time window. 

 The Supervisor module uses the knowledge of AGV‟s present position and the 

speed limits along the path to estimate the position  𝑝𝑘  of the AGV at regular time 

//Function Name: handle_dynamic_obstacles () 

//Input: 𝜎, sequence of BPs 

 

// Handling dynamic obstacles already on the path 

for (i=1 to | 𝜎 |) 

begin 

 bp = 𝜎[𝑖] 
 // Check for safety against dynamic obstacles already on the path 

 (bp, ipath, obstacle_speed) = on_path_obstacles (𝜎, DYNAMIC)  

 if (bp != NULL)         // If found bp with an obstacle on its path at

 then             //   ipath index of its path. 

        set_safety_speed_limits (𝜎, bp, ipath, obstacle_speed)  

 endif 

 

// Handling dynamic obstacles that might enter path in future 

tstart = get_time() 

for (i=1 to | 𝜎 |) 

begin 

 bp = 𝜎[𝑖] 
 TE_PT = bp.get_TE_PT (); 

 for (k = 1 to | TE_PT|) 

 begin 
  tk = estimate_AGV_time_at_TE_PT (tstart, Pbp, TE_PT[k]) 

  obstacle = world_state.get_earliest_obstacles (tk- 𝛿𝑡/2, tk+ 𝛿𝑡/2, TE_PT[k]) 

  ipath = bp.get_TE_PT_path_index (k) // returns the path index which represents  

              // TE_PT [k] 

  set_safety_speed_limit (𝜎, bp, ipath, 0) 

 end 

end 

Figure 45: Pseudo code for handling dynamic obstacles on BP's path: 

handle_dynamic_obstacles () 
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intervals  [𝑡𝑘 = 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 +  𝑘 ∗ Δ𝑡] in the future. It uses this estimated position   𝑝𝑘  

of AGV at regular time intervals  𝑡𝑘  and the time window of  {𝑡𝑘 − 𝛿𝑡/2, 𝑡𝑘 +

 𝛿𝑡/2} to get the list of dynamic obstacles that are of concern at time 𝑡𝑘 .  Here Δ𝑡 is 

the time interval at which checking for dynamic obstacles is performed and  𝛿𝑡 is the 

suggested safety time window. 

7.5.2 Handling the Dynamic Obstacles on the Path 

Dynamic obstacles that are already on the path are handled differently from the dynamic 

obstacles which are expected to pose danger by entering through one of the TE_PT. The 

dynamic obstacles already on the path are handled similar to handling static obstacles on the 

path. At a safety distance behind the obstacle along the path, the speed limit is set to be 

minimum of already existing speed limit of the path and the speed of the dynamic obstacle 

being handled. This would limit the AGV from approaching the dynamic obstacle any closer 

than ddynamic_safety and at speeds less than that of the front obstacle. 

The first part of the pseudo code from Figure 46 performs the above handling. Here 

on_path_obstacles (𝜎, DYNAMIC) returns the BP on which a closest dynamic obstacle is 

lying, the index to BP‟s path, ipath, where the obstacle intersects and the speed of the obstacle. 

This information is used to set safety speed limit from the dynamic obstacle using the 

set_safety_speed_limits (𝜎, bp, ipath, obstacle_speed) function. 

Dynamic obstacles that are expected to pose danger by entering through one of the TE_PT 

is handled by setting speed limit of the path at certain distance before the closest TE_PT to 

zero speed. This will have the AGV to stop before the TE_PT point.  
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7.5.3 Possible Updates 

The present system is built to address the situations expected during the Urban Challenge, 

and the system can be updated to handle more situations. The updates related to dynamic 

obstacles are listed below.  

//Function Name: handle_dynamic_obstacles () 

//Input: 𝜎, sequence of BPs 

 

// Handling dynamic obstacles already on the path 

for (i=1 to | 𝜎 |) 

begin 

 bp = 𝜎[𝑖] 
 // Check for safety against dynamic obstacles already on the path 

 (bp, ipath, obstacle_speed) = on_path_obstacles (𝜎, DYNAMIC)  

 if (bp != NULL) 

 then 

        set_safety_speed_limits (𝜎, bp, ipath, obstacle_speed)  

 endif 

 

// Handling dynamic obstacles that might enter path in future 

tstart = get_time() 

for (i=1 to | 𝜎 |) 

begin 

 bp = 𝜎[𝑖] 
 TE_PT = bp.get_TE_PT (); 

 for (k = 1 to | TE_PT|) 

 begin 
  tk = estimate_AGV_time_at_TE_PT (tstart, Pbp, TE_PT[k]) 

  obstacle = world_state.get_earliest_obstacles (tk- 𝛿𝑡/2, tk+ 𝛿𝑡/2, TE_PT[k]) 

  ipath = bp.get_TE_PT_path_index (k) // returns the path index which represents  

              // TE_PT [k] 

  set_safety_speed_limit (𝜎, bp, ipath, 0) 

 end 

end 

Figure 46: Pseudo code for handling dynamic obstacles on BP's path: 

handle_dynamic_obstacles () 
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7.5.3.1 Preparing for safety from off-segment dynamic obstacles 

The present system does not handle dynamic obstacles, which are not on the RNDF, but may 

be approaching the path. In the controlled environment of the Urban Challenge, such a 

scenario may not happen, but it may be required to handle such situations in the real world 

driving. This could be due to the bad drivers or due to the RNDF not covering all the lanes 

from the real-world.  

 For each dynamic obstacle not on the RNDF, its trajectory path can be computed, which 

is the path it is expected to follow. In the simplest method, this can be computed as the 

straight line joining the present position of the obstacle and its expected position at time  𝑡𝑘  

in the future, assuming it continues to drive at the present known velocity vector. This path 

trajectory can be stored in a database and indexed by the IDs of the lanes it intersects. Note 

that a single trajectory path can cross multiple lanes at multiple locations. Each of these lanes 

is considered by having multiple entries of trajectory path in all such lanes.  

The World_State can be updated to maintain this database of projected dynamic obstacles 

on each lane, along with the existing stationary and dynamic obstacles. With this update to 

the World_State, the present Supervisor should be able handle dynamic obstacle that are off-

segment.  

7.5.3.2 Handle dynamic obstacles by changing plan 

As mentioned earlier, the present system will not change the Basic Planner (BP) sequence or 

goal of any BP for a dynamic obstacle because the environment is changing. However, there 

could be some situations where it is better to change the plan for the dynamic obstacles that 
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are detected. For example, if convoying a very slow moving vehicle for long time, it is 

preferred to change lanes and pass the leading vehicle instead of traveling at low speeds.  

The present system‟s architecture can be updated to exhibit such a behavior. This is 

achieved by modifying the Supervisor module‟s main loop to check for dynamic obstacles 

along with static obstacles and to inform the Re-Planner module of any detected concern. 

The Re-Planner module needs to be updated with new Behavioral States to handle the 

concerns from dynamic obstacles. 

7.6 Collect Path 

In this step, the Supervisor module iterates through the Basic Planner (BP) sequence to 

collect their planned paths (PBP). This section explains the collect_path () function used in 

Figure 35. These path segments are appended to form one single steering path. This process 

of iterating through the BP sequence can be terminated for the same four reasons as applied 

while iterating to trigger the BPs to plan their paths as described in Section 7.3. Generating 

the final path involves taking care of the proper stitching of the path segments (PBP), and 

setting consistent speed limits for the final path. The following sub-sections explain each of 

these two tasks.  

7.6.1 Stitching the Path Segments 

For proper stitching of steering path segments from consecutive Basic Planner (BP) in the 

sequence it is required to have an overlapping common point between their path segments. 

Figure 47 shows an example scenario of path stitching. Here, the points {{st_p1
2
}, {st_p2

1
}} 

are overlapping and so are the points {{st_p2
2
}, st_p3

1
}}. The consecutive BPs have 
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overlapping points so that, depending on the situation, either or both of the BPs may want to 

control the speed limit at this common point. 

 The former of the two BPs may have to stop the AGV at the end of its path segment (PBP), 

at which case it wants to set a zero speed limit for the last point on PBP. Similarly, the latter 

of the two BPs may need to make the AGV stop before entering its path segment (PBP). For 

example, an IT_BP may want an AGV to stop before entering the intersection region.  

Stitching of the path segments is performed by merging the overlapping points. As both 

points share the same GPS position, merging of the points involves creating a new path with 

GPS position set to the common GPS position and setting its speed limit to be a minimum of 

two points. If 𝑆𝑃𝑆1and 𝑆𝑃𝑆2 represent two consecutive steering path segments, and 𝑆𝑃𝑆𝑓𝑖𝑛𝑎𝑙  

represents the final merged steering path, then the speed limit of the common point is set as:  

 

Figure 47: Illustration of path segments stitching 
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𝑆𝑃𝑆𝑓𝑖𝑛𝑎𝑙  𝑖 . max_𝑠𝑝𝑒𝑒𝑑 =  𝑚𝑖𝑛 (𝑆𝑃𝑆1 𝑙𝑎𝑠𝑡_𝑝𝑜𝑖𝑛𝑡 . max_𝑠𝑝𝑒𝑒𝑑, 𝑆𝑃𝑆2 0 . max_𝑠𝑝𝑒𝑒𝑑) 

7.6.2 Setting Consistent Speed Limits 

After appending the path segments, the Supervisor walks through the final steering path to 

make sure that the speed limits are consistent along the path. Consistent speed limits imply 

that if any point along the path has zero speed limit, then the remaining portion of the path 

should also have a zero speed limit. Figure 48 illustrates the setting of consistent speed limits 

for a sample path. It might be expected that the Steering Controller module will stop the 

AGV before or at the first point with zero speed, so the speed limits of the points that follow 

should not matter.  

 The following reasons listed explain how it is safe to rely on this assumption.  

a) Upon reaching the point with zero speed limits, the Steering Controller module may 

look forward at the next point along the path and if this point has a non-zero speed 

limit, the Steering Controller may accelerate the AGV to drive to this next point. 

b) Even if two consecutive points in the path are set to zero speed limits while solving 

the above situation, the Steering Controller may not be accurate in stopping the 

vehicle within this short distance.  

c) Even if everything works out as expected and the AGV stops at the point with zero 

speed limit, upon stopping for a small amount of time, there could be slow GPS drift 

(sensor limitation). The GPS points may shift and the system can think it has crossed 

the point with zero speed limits, at which point the Steering Controller may start 

following the rest of the points along the path with non-zero speed limits. 
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(a) Example path with intermediate zero speed limit points. 

  

(b) Same path after passing through consistent speed limit pass. 

Figure 48: Illustration of setting consistent speed limits for a path 

 

Points along the path

S
p
e
e
d
 l

im
it

s 
a
t 

a
 p

o
in

t

0

10

BEFORE

Intermediate points 
with zero speed limit

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Points along the path

S
p
e
e
d
 l

im
it

s 
a
t 

a
 p

o
in

t

0

10

AFTER

All the following 
points with points 
with zero speed limit

p2 p3p1 p4 p5 p6 p
7

p
8

p
9

p
10



8 Evaluation 

This section evaluates the present CB_PP system by providing some notes on the testing the 

system experienced, both in the CajunBot‟s simulator world and on the CajunBot-II platform. 

The section also describes the performance of the system at the DARPA Urban Challenge. 

The section then gives a comparison of CB_PP‟s approach to that of the winner of UC, Boss 

from Carnegie Mellon University, second prize winner, Junior from Stanford University and 

Skynet from Cornell University. 

8.1 Testing and UC Performance 

Utilizing the ability to easily add new capabilities, the CB_PP was developed in a spiral 

development model (Boehm 1988), wherein new capabilities were added over time. With the 

addition of each new capability, the CB_PP was rigorously tested both in the simulated world 

and on the CajunBot-II. The tests emphasized both the new capability added and the overall 

system performance. The testing showed that none of the new capabilities added affected the 

existing capabilities, proving the CB_PP‟s claim of easy addition of new capabilities without 

affecting the existing capabilities. The system covered thousands of miles in the simulator 

world and hundreds of miles in controlled testing areas in the real world. 

The CB_PP was tested at UC‟s site visit to interact with traffic at intersections by 

following stop-sign precedence, merging into moving traffic, and handling lane blockages. 

Site visit was one of the qualification rounds for the UC conducted on 27
th

 June 2007 for 

Team CajunBot. Here DARPA‟s representatives visited team and analyzed the CajunBot‟s 

capabilities on a rectangular shaped track as shown in Figure 49 (a). On this track, human 

driven traffic vehicles are used to simulate traffic to simulate above mentioned urban driving 



111 

 

scenarios, as shown in Figure 49 (b). The CBP_PP system completed all the test scenarios 

without a glitch in less than half the allocated time, the only team out of 53 participants who 

can claim such a suave test runs.  

The CB_PP was tested at UC‟s National Qualification Event (NQE), where the test 

scenarios were divided into three areas labeled as A, B, and C. Figure 50 shows the areal 

image of these test areas along the test tracks. These tests were conducted at George AFB in 

Victorville, California. Area A tested the capability to merge and cross heavy traffic.  Here, 

the traffic vehicles drove on the outer circle of a figure-eight track and the AGVs were 

supposed to cross and merge into traffic by driving on one of the smaller circles of this track. 

CB_PP successfully navigated CajunBot-II through thirteen laps before stopping due to a 

sensor failure. Area B tested path searching, intersection precedence, road blockages, and re-

planning capabilities and CB_PP performed all of these capabilities within the allocated time. 

Finally, Area C tested mission planning on a larger scale via a zone driving by avoiding 

obstacles, parking at a designated parking-spot, and navigating through partially-blocked 

lanes.  The CB_PP successfully demonstrated all of these capabilities, except handling 

partial-lane blockages.   

 

(a) Site visit RNDF track 

 

(b) CajunBot with traffic vehicles. 

Figure 49: Site visit 
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In the partial-lane blockage situation, a traffic vehicle is parked on the side of a lane, 

blocking part of the lane.  The AGVs are expected to swerve around the parked vehicle while 

staying within the lane.  This feature was added to the CB_PP just a couple of days before 

the NQE, and was not tuned and tested for all speeds. This feature, while tuned for only low-

speed navigation of 5 mph was run at speeds close to 20 mph in the NQE.  For such high-

speeds, the CB_PP was not preemptive enough to initiate early swerving and CajunBot-II 

ultimately touched the edge of a partially-blocking test vehicle.  This marked the end of 

challenge for the team. Though it was disappointing to end the journey, the successful 

performances at all the other NQE rounds proved that it is not the limitation of the 

architecture that disqualified the CajunBot-II. 

8.2 Comparison with Other Teams 

In this section, I compare the present CB_PP‟s approach with that of the winner of the UC, 

Boss from Carnegie Mellon University (Ferguson, Howard and Likhachev, Motion Planning 

 

 

Figure 50: Urban Challenge tracks [Source: (Urmson, et al. 2008)] 
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in Urban Environments: Part II 2008)(Urmson, et al. 2008); the second prize winner, Junior 

from Stanford University (Montemerlo, et al. 2008); and Skynet from Cornell University 

(Miller, et al. 2008). I will first give a brief overview of these three system‟s approach, 

followed by a comparison with CB_PP in Section 8.2.4.  

To avoid confusion between the different planners, I will refer to each of the planners by 

their vehicle‟s name. 

8.2.1 Boss (CMU) 

Boss performs its planning in three layers, namely, Mission Planning, Behavior Generation 

and Motion Planning. The Mission Planning represents the input RNDF in a graph 

representation with directed edges annotated with a cost based on factors such as time of 

travel, complexity of maneuver, etc. This graph is searched to get minimal cost path to next 

checkpoint. The graph is updated upon receiving new information about blocked lanes. 

The Behavior Generation layer has more focused planning at reduced set of environment 

constraints. It has three contexts at this layer, namely, Drive Down Road, Handle 

Intersection, and Achieve Zone Pose. As the name suggests, the first context is used to 

navigate on a road, second context is used to handle intersection situations such as stop signs 

and intersection precedence, and the last context is used to perform planning in unstructured 

environments such as parking-lot, and traffic jam intersection.  

Each of these contexts defines rules on how to navigate in the area and how to handle 

possible situations that may be encountered. The Drive Down Road context explains when to 

pass vehicles, or when to change lanes and how to handle blocked lanes. The Handle 
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Intersection context decides when to navigate through an intersection and provides an 

imaginary lane through the intersection region. The Achieve Zone Pose context defines a 

goal position and orientation that should be achieved by the vehicle. This context is used to 

come out of a trouble situation, to a nearest point from which Drive Down Road context can 

take over. 

Motion Planning layer is responsible to drive either on a structured road or in a free-area 

such as in a zone. While driving on a road, it tries to generate possible vehicle trajectories 

within the lane and pick the trajectory that drives the vehicle through the center of the lane. It 

uses trajectory generation algorithm by Howards and Kelly (Howard, Knepper and Kelly 

2006) which uses vehicle modeling and forward simulation to predict possible vehicle 

trajectories. 

For free-area driving, as there is no path guidance such as the center of the lane to follow, 

the free-area uses Anytime D* algorithm (Likhachev, et al. 2005). The Anytime D* 

 

 

Figure 51: The Boss [Source: www.tartanracing.org] 
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algorithm plans an initial suboptimal plan which is improved overtime upon learning new 

information about the terrain. This path is used as guidance to explore the possible vehicle 

trajectories and pick the trajectory closest to this path. This approach is similar to using the 

center of the lane as guidance when navigating on a road.  

8.2.2 Junior (Stanford University) 

Junior performs its planning in three layers, namely, Global Path Planning, Behavior 

Hierarchy and RNDF road and Free-Form Navigation. Global Path Planning layer plans a 

shortest path from each node in the RNDF to the next checkpoint in the mission, using 

Dynamic programming (Ronald 1960).  The cost of each node is computed as minimum of 

cost to travel to a neighboring node and probability factored cost to reach the goal from 

neighboring node. Here, the cost to travel to neighboring lane includes penalty for maneuvers 

that are less preferred, such as a left-turn through traffic. 

At the second layer, the Behavior Hierarchy layer represented as a Finite-State Machine 

(FSM) is used to define the behavior of the system. It uses 13 states (Montemerlo, et al. 

 

Figure 52: The Junior [Source: cs.stanford.edu/group/roadrunner] 
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2008) representing possible vehicle states such as „LOCATE_VEHICLE‟, 

„FORWARD_DRIVE‟, „STOP_SIGN_WAIT‟, etc. The FSM defines when to perform an u-

turn, or when to cross a yellow-line to avoid a blockage, etc. The decisions made by FSM are 

implemented by invoking one of the two planners in the last layer. 

At the last layer, the planner contains two modules, namely, RNDF Road Navigation, and 

Free-Form Navigation. As the name suggest, RNDF Road Navigation drives the vehicle on 

structured areas such as roads. It overlays possible trajectories along the lane including the 

ones parallel to the center of the lane and selects a trajectory to follow. The trajectories 

parallel to the center of the lane are considered to handle situations such as a partial-lane 

blockage. 

The Free-Form Navigation drives in areas such as parking lots and traffic jam. This 

planner uses the goal location and a map to come up with a list of possible trajectories. It 

uses a hybrid A* approach by representing the vehicle in four-dimension (4-D) discrete grid. 

The four dimensions include (x, y, ø, dir). Where x, y represent the position, ø represent the 

heading direction and dir represents forward or reverse driving direction. Here, the hybrid A* 

addresses the discretization issue of the A* approach where the continuous world is divided 

into discrete cells. Hybrid A* allows cells to store continuous coordinates for the vehicle and 

thus plan a smooth path.  

8.2.3 Skynet (Cornell University) 

Skynet performs its planning in three layers, namely, Behavioral Layer, Tactical Layer and 

Operational Layer. The Behavioral Layer uses the RNDF description and environment 

information such as lane blockage to plan a path to reach the next checkpoint in the mission. 
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Similar to CajunBot and Boss‟s approach, this planner represents the RNDF in a graph 

representation with initial traversal time cost and dynamic traversal cost. Initial traversal cost 

is based on elements such as, the length of the trajectory, speed limits, and stop signs. 

Dynamic traversal cost which decays over time is based on information such as road 

blockages. At each path planning cycle, Behavioral Layer determines which behavioral state 

to be used by the tactical layer for planning a path. For Urban Challenge, the system had four 

states, namely, road, intersection, zone and blockage. 

The tactical layer has four components to match the four states of the Behavioral Layer. It 

switches to corresponding component when the behavioral layer switches between its states. 

Each component of this tactical layer divides the region around the vehicle into mutually 

exclusive regions. The first tactical component is the road tactical, which drives the vehicle 

on a road. It monitors other agents on the road and makes decisions such as, when to perform 

a passing maneuver.  These decisions are made using a decision tree that is built through 

simulation.  

 

Figure 53: Skynet Vehicle [Source: www.cornellracing.com] 
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The second tactical component, intersection tactical is responsible for navigating the 

vehicle through intersection region. It exhibits tasks such as intersection precedence, and 

intersection queuing.  

The third tactical component, zone tactical is responsible for navigating in unstructured 

regions such as a parking-lot. This component also achieves parking and un-parking 

maneuvers. This component operates by trying to navigate on human-annotated graphs in the 

region. These artificial lanes are annotated during preprocessing time. The tactical 

component uses these artificial lanes to treat zones just like another set of lanes. The lanes to 

navigate are selected in behavioral layer using an A* algorithm. 

The fourth tactical component, blockage tactical is responsible for detecting and 

navigating the vehicle when forward progress is impossible due to obstacle situation. The 

operational layer informs the blockage component of possible forward and reverse 

navigations. This component then confirms if the blockage is not temporary by waiting for 

multiple planning cycles. If confirmed as a permanent blockage, the component assigns a 

large time penalty to encourage and search for an alternative route to next checkpoint. This 

penalty decays over time to allow exploring the route if all other routes are detected to be 

blocked over the time. If no alternative route is available, the system resets all blockages in 

order to handle any false blockages detected. 

The tactical layer provides their plan as bounding boxes with reference speeds. The 

Operational Layer navigates the vehicle in this region avoiding obstacles by generating 

steering, throttle and brake commands. To avoid obstacles, this layer registers the convex 

hull representing the obstacles in its vehicle-fixed occupancy grid (Ferguson, Stentz and 
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Thrun, PAO* for Planning with Hidden State 2004). A* search algorithm is used to generate 

a shortest path around the obstacles. This path is used to guide a non-linear trajectory 

optimization algorithm. This algorithm tries to smooth the path into a drivable path under the 

vehicle constraints and obstacles to avoid. 

8.2.4 Comparison with CB_PP 

All three planners described above used a similar approach of dividing the path planning 

into three layers. The planners had different naming conventions for these layers, along with 

minor variations in the division of responsibilities between the layers. To avoid confusion 

between the naming conventions used by each team, I will refer to these layers as the top, 

middle, and lower layers of each planner, as shown in Table 11. The top layer of the planner 

creates the graph representation of the route network and searches for the quickest route, as 

performed by CB_PP‟s High-Level Planner module. The middle layer selects the immediate 

goals to achieve, such as what point along the lane to follow. This layer also makes decisions 

for situations such as lane blockages. This layer is analogous to CB_PP‟s Supervisor and Re-

Planner modules. Finally, the lower layer of the planner determines the actual path, similar to 

the Basic Planners (BPs). Unlike CB_PP‟s concept of pluggable BPs, Boss and Junior use a 

fixed number (two) of modules at the lower layer to plan paths for all capabilities. One of 

Table 11: Comparison of Path Planners 

Layer Boss, Junior, and Skynet’s 

Implementation 

CajunBot Planner’s 

Equivalent module 

Top-Layer Quickest route for the mission HLP (High-level planner 

 

Middle-Layer Plan for immediate goal handle 

lane-blockage, etc. 

Supervisor, Re-planner 

 

Lower-Layer Generate path to follow Basic Planners 
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these modules plans a path for unstructured regions (zones) and the other plans a path for 

structured regions such as lanes. Both of these modules use trajectory-based planning that 

explores a list of relevant trajectories and picks the best trajectory as the path to follow. 

Having a single module at the lower layer to encompass all capabilities in a broadly 

divided region provides the planner with the possible advantage of being able to handle 

situations not explicitly designed for or expected during normal driving. For example, the 

vehicle could be in a wrong lane and facing off the lane. In such situations, the planner is 

expected to drive the vehicle to the correct lane and orient itself along the lane, so that the 

rest of the mission can continue. The CB_PP presently will not be able to handle such 

unplanned situations, but this is not the limitation of the planner‟s architecture. CB_PP can 

be upgraded to handle such situations by having a BP that can plan a path in such situations 

to safely drive the vehicle from any position to the nearest point on the correct lane, from 

where the remaining BPs can continue the mission.  

On the other hand, having a single module at the lower layer of the planner to provide all 

the capabilities in a broadly divided region adds more situations that a module must handle, 

making it difficult to use the individual situation‟s specifications and have a simpler planning 

approach. CB_PP makes use of the diversity in the situation‟s specifications by having a 

specialized BP for each capability. 

Skynet, a finalist of the UC is one of the systems that explicitly had an objective to 

facilitate expandability of new features, similar to that of CB_PP. Skynet made use of the 

diversity in the urban driving scenarios by dividing their middle layer into four states: roads, 

intersections, zones, and blockages.  
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There are two major differences between this approach and CB_PP‟s approach to divide 

planning into multiple BPs. Skynet‟s planner had division at the middle layer, which is based 

on the broader definition of the context of driving. On the other hand, CB_PP‟s division is at 

the lower layer (BP), based on the capabilities required, in tasks like following a lane and 

changing lanes. Secondly, Skynet‟s division at the middle layer allowed the planner to 

segregate the decision-making rules between contexts, thus simplifying the decision rules. 

CB_PP has a common set of decision rules that lays above all the BPs in the Re-Planner 

module. 



9 Conclusions and Future Work 

With open-ended scenarios that an AGV need to handle for urban driving, the capabilities 

that the AGV‟s Path Planner should provide are open-ended. This demanded for an 

architecture that allows easy plug-ability of new capabilities without affecting the existing 

capabilities. In the present dissertation, I proposed a Path Planner architecture that allows this 

easy plug-ability of new capabilities. 

In this architecture, each basic capability is provided by an individual Basic Planner (BP), 

and a sequence of such BPs together achieves the complete mission. A BP interacts with 

either other BPs or with the three other modules of the Path Planner, namely HLP, 

Supervisor and Re-Planner. Each of these communications is designed to be transparent of 

the BP‟s type. A BP‟s interaction with other BP is performed using a Base-Path protocol 

which provides transparency of the BP‟s type. The HLP‟s module‟s only step, namely the BP 

Extraction that interacts with the BPs, is designed using a logic-based planning or a decision-

tree approach, each of which has minimal modification for addition of new BP. For 

Supervisor module, all its communications with BP is performed via the common interface 

methods provided by BP_interface class. Finally, the Re-planner module‟s state-machine 

representation has each state representing a Behavioral Planner (BhP), allows easy addition 

of new BhP by adding a new state to the state-machine. A BhP uses a sequence of BPs to 

exhibit their capability. Adding a new BP to the Path Planner can introduce a set new BhPs 

that can intern be easily added to the state-machine representation.  

A novel approach for detecting dynamic obstacles of concern is introduced. This approach 

utilizes the urban road network and the assumption that the dynamic obstacles follow traffic 
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rules to simplify the detect ion of dynamic obstacles of concern. The system check for the 

dynamic obstacles already on the path or are expected to enter the path through a small 

number of traffic-entry points on the path, within a small time-window. 

A novel approach for zone path planning is introduced. This approach merges two 

traditional approaches, namely the grid-based path planning and Dubin‟s based path 

planning. The proposed planner plans a smooth path, as achieved by Dubin‟s approach at an 

efficiency that is similar to a grid-based path planning.  

I believe the present architecture has lot of scope for improving. Some of which include, 

being able to handle dynamic obstacles or the situations within a zone, by changing the plan 

being followed. This work will be continued as future work. 

The zone navigation problem is solved in multiple steps, with each step emphasizing on 

one element of the problem and the results of this step being used as heuristics for the 

following steps. As the first step, the Zone-Navigator emphasized on obstacles and on 

efficient path guidance, without considering navigability of the vehicle. This is performed 

using a grid representation and computing a Gradient-Distance-Field (GDF). This resulting 

GDF is then used as heuristics for the next step, which emphasizes on the navigability of the 

path by exploring Dubin‟s reachability tree. 

I believe, this approach can be generalized to solve complex problems by studying all the 

elements of the problem. The elements of the problem can be segregated and solved in steps, 

with each step emphasizing on one or more elements. The results of one step can then be 

used as heuristics for following steps. This approach will need some study on the efficient 
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segregation of the problem elements, and the order in which to solve the problem with the 

different combination of these segregated elements.  
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ABSTRACT 

This dissertation describes an architecture for a Path Planner system that guides an 

autonomous ground vehicle through an urban environment while obeying a basic set of 

traffic rules. As urban driving requires the handling an open-ended set of scenarios, the 

planner is designed to address the scenarios specified by DARPA‟s Urban Challenge (UC); 

however, the planner permits easy addition of new capabilities to address more scenarios in 

the future. 

Each capability required for urban driving is achieved separately by individual planners 

called Basic-Planners (BPs). A sequence of these BPs are used by the rest of the Path Planner 

to achieve the complete mission.  The specific type of the BP is kept oblivious from rest of 

the system to provide easy plug-ability of these BPs. The dissertation introduces the BPs 

required to match the requirements of UC, and the architecture is designed to provide this 

plug-ability.  

It also introduces a novel approach for path planning in open-areas such as a parking-lot. 

This planner is created by merging two classical approaches, namely, grid-based planning 

and Dubin‟s based continuous space planning.  
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The system is then evaluated by specifying its performance at the UC, where system is 

used to guide CajunBot-II. It then provides a comparison of the present architecture with that 

of the three of the finalist of UC, namely, Boss, Junior and Skynet. 
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