
Restructuring Functions with Low Cohesion

Arun Lakhotia
The Center for Advanced Computer Studies
The University of Southwestern Louisiana

Lafayette, LA 70506, USA
arun@cacs.usl.edu

Jean-Christophe Deprez
The Center for Advanced Computer Studies
The University of Southwestern Louisiana

Lafayette, LA 70506, USA
jxd7803@cacs.usl.edu

Abstract

We present a technique for restructuring functions with
low cohesion into functions with high cohesion. Such re-
structuring is desirable when re-architecting a legacy sys-
tem into an object-oriented architecture. The restructured
system has functions with higher cohesion and hence lower
coupling. This enables finer-grained grouping of functions
into objects.

Automatically decomposing a function is difficult when
its computations are interleaved. The challenge lies in pro-
grammatically identifying and separating the various activ-
ities performed by a complex code segment. The technique
presented partitions the set of output variables of a function
on the basis of their pairwise cohesion. Program slicing is
then used to identify the statements that perform computa-
tions for each variable group in the partition. New func-
tions corresponding to the slices are created to replace the
original function.

Experiences with restructuring real-world code using a
tool that implements the technique are presented.

1. Introduction

Legacy software is a software that is hard to change
and is still alive (operational), an indication that its users
are still in business. The premise of this paper, and that
of most work on software restructuring and reengineering,
is that (a) to continue to stay in business the users (and,
more so, the developers) realize that the structure of the
legacy system needs to be overhauled such that it is easier
to adapt to changes and (b) it is not pragmatic to redevelop
or replace the system. This premise is supported by several
opinion leaders of the software industry [8, 27, 42].

In this paper the terms software restructuring and
reengineering are used as defined by Chikofsky and Cross
[10]. “Software restructuring is the transformation [of
software] from one representation form to another at the
same relative abstraction level, while preserving the sub-
ject system’s external behavior (functionality and seman-
tics). Reengineering is the examination and alteration of
a subject system to reconstitute it in a new form and the
subsequent implementation of the new form.”

A software system may be restructured to make it less
costly to maintain by making it easier to understand and
change [2]. Restructuring may also be theenablingstep
for reengineering a system [35, 40], and for reverse engi-
neering a system to extract its abstraction [7, 16, 39].

Restructuring in the early days of structured program-
ming implied removing the ‘goto’ statements [3, 4, 20].
This notion of restructuring is quite mature and has re-
sulted into several automated tools, surveyed previously
by Arnold [2]. Even though automatic removal of goto
statements does not always produce programs that are de-
sirable [9], such restructuring is a necessary step for creat-
ing higher, logic-based abstractions from code [7, 16, 39,
40].

Restructuring by removing goto statements is not the
subject of this paper. This paper makes a contribution to-
wards restucturing program fragments by breaking them
into small, cohesive pieces. Decomposing functions with
low cohesion into several functions with high cohesion is
an important step of Stankovic’s method of improving the
architecture of a software system without compromising its
performance [36]. Stankovic had proposed manual trans-
formations for this step. The restructuring technique pre-
sented, developed without prior knowledge of Stankovic’s
method, provides a way to automate that step.

The need for decomposing large (usually non-cohesive)
code fragments is not new. It has been experienced by al-
most every programmer since the early days of computers.
The difficulty in decomposing large code fragments lies
not so much in creating small functions, but in creating
small functions that are meaningful. This is exemplified
by the following story:

In the late 1960s most data processing managers began to
recognize the worth of modularity. Unfortunately many
existing programs were monolithic, e.g., 20,000 lines of
undocumented FORTRAN with one 2500 line subroutine.
To bring his environment to the state of the art, a manager
asked his staff to modularize such a program that under-
went maintenance continuously. This was to be done “in
your spare time.”
Under the gun, one staff member asked (innocently) the
proper length for a module. “Seventy-five lines of code,”
came the reply. She then obtained a red pen and a ruler,
measured the linear distance taken by 75 lines of source



1  Procedure Sale_Pay_Profit (days: integer; 
                        cost: float; var sale: int_array; 
                        var pay:  float; var profit: float; 
                        process: boolean); 
2   var i: integer;total_sale, total_pay: float; 
3   begin 
4      i:=0; 
5      while i < days do begin 
6           i := i + 1; 
7           readln(sale[i]) 
8      end; 
9      if process = True then begin 
10      total_sale:=0; 
11      total_pay:=0; 
12      for i := 1 to days do begin 
13          total_sale := total_sale + sale[i];  
14          total_pay := total_pay + 0.1 * sale[i]; 
15          if sale[i] > 1000 then 
16              total_pay := total_pay + 50; 
17       end; 
18       pay := total_pay / days + 100; 
19       profit := 0.9 * total_sale - cost; 
20    end; 

21  end; 

Figure 1 Sample non-cohesive code. This function uses
the same input to compute different outputs. Its
computation also depend on a flag passed as a
parameter. This function is an example of code
with interleavedcomputations [32].

code, and drew a red line on the source listing, then
another and another. Each red line indicated a module
boundary. [31, page 334]

While this approach appears humorous, it does highlight
the central problem in decomposing code fragments:

How does one [programmatically] decide which set of
statements may be extracted as independent units (such
as functions, procedures)?

The approach used in the above anecdote is not satisfactory
because it does not take into account whether there is any
relationship between the computations performed by each
75 consecutive lines of code extracted as a FORTRAN
subroutine.

The problem of restructuring functions into “separate
[functions] which can be compiled and tested separately
and which can be connected to other [functions] through
a parameter interface” was first studied by Sneed and
Jandrasics [35]. This problem has more recently been
studied by Kim et al. [21] and Kang and Bieman [19]

We present a restructuring technique that, we argue, at-
tempts to restructure a program using rules a good human
programmer would use. These rules, referred to as the
rules of cohesion, were arrived at by machine encoding
[22, 29] the “associative principles” of cohesion discov-

ered two decades ago by Steves et al. [38, 43]*. These
associative principles summarize decisions made by human
designers in choosing between alternative design decom-
positions, and form a fundamental component of the Struc-
tured Design method of software development. The use of
these principles in decomposing functions thus promises
to create small, cohesive functions that perform anatural
unit of activity.

The rest of the paper is organized as follows. Section
2 precisely formulates the restructuring problem studied in
this paper. Section 3 summarizes Lakhotia and Nandigam
measure for cohesion. Section 4 presents our restructuring
technique. Section 5 gives an overview of its implemen-
tation in WolfPack. Section 6 presents the results of us-
ing this technique on benchmark programs and real-world
code. Section 7 presents a comparison with other related
works. Section 8 presents our conclusions.

2. Problem formulation

We now precisely describe the problem to be solved in
this paper, and also differentiate the intended goals from
our previous results.

The problem addressed in this paper may be stated as
follows:

Given a function that performs several activities, how can
one “automatically” decompose that function into several
functions, each performing only a single activity or a
single set of related activities?

The word “activity” may take different meanings at dif-
ferent level of abstractions of a program. In this paper we
consider the modification of an output variable as an activ-
ity. An output variable is any variable, reference parameter
or global variable, modified by a function. Files, or more
generally I/O streams, are also considered output variables
by associating implicit global variables to them. Multiple
modifications to the same output variable is considered a
single activity.

Consider for example the program in Figure 1. The
function reads the amount ofsale per day, for a given
number ofdays and computes (a) thetotal_sale for
the period, (b) the commission to be paid,pay , as 10%
of the sale, with an added bonus of $50 if the sale for
a particular day is over $1,000, and (c) theprofit for
the whole period, given thecost at the beginning, as a
percentage of sale. While the function is small, that it
performs several activities makes it non-cohesive.

Figure 2 contains a program equivalent to that of Figure
1. Though it is larger in size, as measured in number of

* The reader is encouraged to review the references [28, 38, 43] to
assess our use of the word “discovered.” The notion of cohesion and the
associative principles were actually identified by Stevens and Constantine
by interviewing expert software designers.



Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: 

float; 
                         process: boolean); 
begin 
     Read_Input(days, sale); 
     if process = True then begin 
         pay := Compute_Avg_Pay(days, sale); 
        profit := Compute_Profit(cost, sale); 
     end; 
end; 
 
Procedure Read_Input(days:integer; 
     var sale: int_array); 
var i: integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]); 
     end; 

end;  

Function  Compute_Pay(days: integer; 
          sale: int_array): float; 
var  total_pay: float; 
         j: integer; 
begin 
     total_pay := 0; 
     for j := 1 to days do 
     begin 
          total_pay := total_pay + 0.1 * sale[j]; 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50; 
     end; 
     return (total_pay); 
end; 
 
Function Compute_Sale(days: integer; 
         sale: int_array): float; 
var  total_sale: float; 
        j: integer; 
begin 
     total_sale := 0; 
     for j := 1 to days do 
     begin 
          total_sale := total_sale + sale[j]; 
     end; 
     return (total_sale); 

end; 

Function Compute_Avg_Pay 
     (days: integer; sale: int_array): float; 
var total_pay: integer; 
       pay: float; 
begin 
    total_pay := Compute_Pay(days, sale); 
     pay := total_pay / days + 100; 
     return (pay); 
end; 
 
Function Compute_Profit 
     (cost: float; sale: int_array): float; 
var  total_sale, profit: float; 
begin 
     total_sale := Compute_Sale(days, sale); 
     profit := 0.9 * total_sale - cost; 
     return (profit); 
end;

Figure 2 Results expected from “automatically” restructuring program in Figure 1

lines, this program is cohesive. Instead of one monolithic
function that performs several activities, it has several
small functions, each performing a single activity.

This paper addresses the problem of “automatically”
restructuring program of Figure 1 to the program of Figure
2.

In an earlier paper we introduced formal definitions and
algorithms for a transformation calledtuck that aids in the
type of restructuring being discussed [24]. Besides the
program being restructured, the tuck transformation takes
two inputs: (a) a set of seed statements S and (b) a single-
entry, single-entry (SESE) region called therestructuring
context. The tuck transformation (1) identifies the code
affecting the computation at seed statements S within the
restructuring context, (2) moves this code into a new
function, and (3) replaces the moved code with a call to
the new function. A tuck transformation, if needed, may
duplicate code to ensure that the behavior after tucking
remains unchanged. The tuck transformation is performed
as a sequence of three (smaller) transformations:wedge,
split, and fold.
Transformation: Wedge. A wedge is a program slice [41]
bounded within a given restructuring context. The wedge
is computed for a set of seed statements S, similar to a
slicing criterion.
Transformation: Split. The split transformation splits a
restructuring context into two SESE regions, one contain-
ing all the computations relevant to a set of statements S
and the other containing all the remaining computations.
The transformation introduces new variables or renames

variables and composes the two new regions such that the
overall computation remains unchanged. When it is not
feasible to split a region in such a way, the transformation
leaves the region unchanged.
Transformation: Fold. The fold transformation creates
a function for a given set of statements and replaces the
statements by a call to this function.

The tuck transformations, and its sub-transformations,
provide the theoretical foundation for splitting functions
into smaller functions [24]. The application of the tuck
transformation requires identifying its two parameters: the
seed statements and the SESE region forming the restruc-
turing context. These parameters may either be identified
by a programmer or may be identified automatically, or a
combination of the two. Automatic identification of these
parameters, the subject of this current paper, can lead to
batchtools for restructuring programs. On the other hand,
having a programmer identify the parameters leads toin-
teractive tools.

Our proposal for the DIME environment is oriented to-
wards an interactive approach for software restructuring
[23]. Using the DIME environment, currently under devel-
opment, a programmer may interactively, using a mouse,
identify the seed statements and the restructuring context,
and the system would perform the tucking operation. The
interactive environment gives better control to the pro-
grammer. However, it may not always be the best alter-
native when a major restructuring of a program is desired.

In this paper we focus on the problems related to de-
veloping a batch tool for restructuring. Though we do not



Table 1 Stevenset al.’s rules for cohesion. Associative
principle between two processing elements
and the corresponding cohesion in
increasing order of levels [22].

Cohesion Associative principles

Coincidental
(Low)

None of the following associations
hold.

Logical At each invocation, one of them is
executed.

Temporal Both are executed within the same
limited period of time during the
execution of the system.

Procedural Both are elements of some iteration or
decision operation.

Communi-
cational

Both reference the same input data set
and/or produce the same output data
set.

Sequential The output of one serves as input for
the other.

Functional
(High)

Both contribute to a single specific
function.

believe that it is possible to restructure a program without
human intervention, the intent of this study is to look at
the other extreme of the problem. This will give us in-
sight into how much of the work can be deferred to the
machine, thereby laying the foundation of a effective strat-
egy for developing restructuring environments.

3. Computing cohesion

The restructuring technique presented in the next sec-
tion requires computing cohesion between various output
variables of a program. We use Lakhotia and Nandigam’s
rule-based measure for cohesion [22, 29]. Their measure
is summarized in this section.

The degree of interrelation between activities performed
by a code fragment is calledcohesion, a term coined by
researchers in IBM T. J. Watson Research Laboratories in
the early 1970s [38]. These researchers also identified a set
of “associative principles” used by systems analysts when
evaluating alternative designs. These associative princi-
ples, summarized in Table 1, are ordered in seven levels.
Designs demonstrating associations placed at higher lev-
els are considered to be better (hence more preferred) than
those placed at lower levels.

For instance, a procedure containing a computedgoto
(or a case statement) only one of whose branch is ex-
ecuted during any invocation of the procedure is consid-
ered to be poorly designed (with logical cohesion). The

Table 2 Rules for computing pairwise cohesion
between output variables.

i
Cohesion

Ci

Associative principles or Rules
rulei : V ar � V ar ! Boolean

1. Coincid-
ental

:(
W

i2f2...5g rulei(x; y))

2. Logi-
cal

9znk8l: z !c(n;k) x ^ z !c(n;:k)

y ^ :(z !c(n;l) x ^ z !c(n;l) y)

3. Proce-
dural

9znk: z !c(n;k) x ^ z !c(n;k) y

4. Commu-
nicational

9z:8nkl: :(z !c(n;k) x ^ z !c(n;:k)

y) ^:(z !c(n;k) x ^ z !c(n;k)

y)^((z ! x^z ! y) _(x! z^y ! z))

5. Sequen-
tial

x! y _ y ! x

rationale being that the computation performed in different
branches were not related to each other and could as well
have been placed in different procedures. On the other
hand, a procedure performing a sequence of computations,
where the results of one are fed into the other is considered
to have a better design, since there is a strong relationship
between the computations. However, even such a pro-
cedure is not as good as one that performs just a single
computation.

Lakhotia and Nandigam have translated Stevenset al.’s
rules into an objective measure [22, 29]. They achieved
this by analyzing the sources of ambiguity in the IBM’s
associative principles and choosing an interpretation that
removed this ambiguity. They then translated these rules
into formal logic. Finally, Nandigam fine-tuned the rules
by experimenting with a large set of real-world programs
[29]. This formalization, summarized in Table 2, consists
of expressions denoting the data and control flow relation-
ships in a program.

In Lakhotia and Nandigam’s approach cohesion of a
module is determined by first computing the pairwise co-
hesion between every pair of output variables of the pro-
gram. Computation of pairwise cohesion requires com-
puting control and data dependence relationships between
variables. Notice that such dependence relationships are
usually associated to statements, rather expressions. The
dependence between variables are computed by simplyab-
stracting the corresponding dependences between assign-
ment statements of the variables.

The pairwise cohesion is computed as the highest cohe-
sion level assigned to a pair of variables as per the rules in
Table 2. In this tablex andy denote output variables. The
notationx ! c(n, k) y means that the variabley is defined
in the kth branch of the branch statementn whose pred-



sale

stdin profit

pay

communicational 

logical 

sequential 

logical logical 

logical 

Figure 3 Pairwise cohesion graph for output
variables of function in Figure 1

icate contains the variablex. The expressionx ! c(n, k)

:y is analogous except that the variabley is defined in
a branch other thank. The notationx !d y means that
here is a def-use chain [1] from a statement definingx to
a statement definingy. [22]

Lakhotia and Nandigam’s approach of assessing cohe-
sion has an important advantage over methods that assign
numeric values [6, 30]. The rule-based approach does not
just assign levels of cohesion to a module, it can also give
the rationale behind that assignment. As a result we find
Lakhotia and Nandigam’s formalization is especially suit-
able for program restructuring.

4. Restructuring technique

The automated restructuring we desire may be per-
formed by repeatedly tucking computations of a function
into a new function. Each application of the tuck transfor-
mation requires two parameters, the seed statements and
the restructuring context. Our restructuring problem may
be therefore be reduced to that of automatically finding
parameters to the successive tuck transformations.

A restructuring context for a tuck transformation is a
SESE region containing all the seed statements. For any
set of seed statements, there are as many alternatives for
restructuring context as the SESE regions containing the
seed statements. An automatic restructuring technique
must therefore automatically choose one of these many
restructuring contexts. In this study we simply choose
the SESE region defined by the function entry as the
restructuring context. The function entry is a SESE region
for every possible seed statements and is also the largest
SESE region. Though this simplistic choice does not
always yield optimal results, it helps us narrow the focus
further.

Having fixed the restructuring context our problem then
is reduced to finding seed statements for tuck transforma-
tions. A method to do precisely that is the key technical

sale

stdin profit

pay

Figure 4 Cohesion graph after removing edges
representing cohesion level below (and
including) communicational cohesion

contribution of this paper. We use the following steps
to find the seed statements identifying computations to be
tucked:

1. Identify all the output variables of the function.
2. Compute pairwise cohesion between these output vari-

ables using Lakhotia and Nandigam’s rule-based mea-
sure for computing cohesion (Table 2). The pairwise
cohesion can be represented by a completely connected
graph.

3. Remove from the pairwise cohesion graph all edges
representing cohesion below a given threshold level.

4. Partition the set of output variables based on the new
graph. Each connected component of the new graph
defines an equivalence class.

5. Each equivalence class of variables defines a single tuck
transformation. All the assignment statements of the
variables in an equivalence class form the parameter to
tuck.

These steps are elaborated by applying them to the
function (really, procedure) in Figure 1.

Our example function has four output variablessale ,
pay , profit and stdin . The first three are explicitly
declared as reference parameters. The last one is the
variable representing the input stream implicitly associated
with the readln statement.

The graph in Figure 3 gives the pairwise cohesion be-
tween these variables. Variablessale and stdin have
sequential cohesion becausesale has data dependence on
stdin . There is logical cohesion betweensale andpay
becausepay is not computed if the value ofprocess is
False . For the same reason there is logical cohesion be-
tweensale andprofit , betweenstdin andpay , and
betweenstdin andprofit . There is communicational
cohesion betweenpay and profit because they both
depend on a common variablesale .



Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: float; 

                         process: boolean); 
begin 
   F_sale(days, sale); 
   F_pay(pay, days, sale, process); 
   F_profit(profit, cost,  days, sale, process); 
 end; 
Procedure F_sale(days:integer; 
     var sale: int_array); 
var i: integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]); 
     end; 

end;  

Function  F_pay(var pay: float; 
       days: integer; 
          sale: int_array; 
           process: boolean) ; 
var  total_pay: float; 
         j: integer; 
begin 
 If process = True then begin 
     total_pay := 0; 
     for j := 1 to days do 
     begin 
          total_pay := total_pay + 0.1 * sale[j]; 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50; 
     end; 
      pay := total_pay/days + 100 
    end; 
end;

Function F_profit(var profit: float; 
      cost: float;  
      days: integer; 
       sale: int_array; 
       process: boolean); 
var  total_sale, profit: float; 
      j: integer; 
begin 
 If process = True then begin 
     total_sale := 0; 
     for j := 1 to days do 
     begin 
          total_sale := total_sale + sale[j]; 
     end; 
     total_sale := Compute_Sale(days, sale); 
     profit := 0.9 * total_sale - cost; 
    end; 
 end;

Figure 5 Final program created by “automatically” restructuring the program in Figure 1

Figure 4 gives the graph resulting from removing all
edges below (and including) communicational cohesion.
The equivalence classes defined by the connected compo-
nents of the resulting graph are: {stdin , sale }, { pay },
and {profit }. These classes define seed statements to
three tuck transformation, as follows:

1. Statementreadlin(sale[i]) , since it assigns
variablesstdin and sale .

2. Statementpay := total_pay/days +100 , since
it assigns to variablepay .

3. Statementprofit := 0.9 * total_sale —
cost , since it assigns to variableprofit .

The result of applying the three tuck transformations,
see Figure 5, contains three new functions, one reads the
input and computessale , another computespay , and
the last computesprofit . These three functions are
individually more cohesive than the original function.

The function decomposition in Figure 5, the final de-
composition, is not the same as that in Figure 2, the ex-
pected decomposition, the one we set out to achieve. The
differences between the two give insight into the limitation
of automated restructuring. There are two major differ-
ences between the two decompositions. First, the expected
decomposition has more functions than the final decompo-
sition. Second, theif statement controlling whetherpay
andprofit are computed is in the highest level function
in the expected decomposition, whereas in the final decom-
position this statement is moved to lower level functions
and is also duplicated.

It appears at first glance that the extra functions in the
expected decomposition can be constructed by further re-
structuring the new functions created in the final decom-
position. That, however, is not true. Our restructuring
algorithm only separates computations related to output
variables. Each of the two new functions have a single

output variable, so they cannot be split any further. Thus,
to split a function with only one output variable we should
either adapt our current strategy or else invent a new one.

In the final decomposition, theif statement has been
moved to the new function because we define the function
entry as the restructuring context. To keep theif state-
ment at the topmost level, the restructuring context should
be the body of theif statement. This could be achieved if
the restructuring context was limited to the smallest SESE
region containing the seed statements. For structured pro-
grams, this smallest region would be the same as the near-
est common ancestor of all the seed statements in the ab-
stract syntax tree. While that alternative may yield the
desired result for the example function chosen, it is not
guaranteed to behave as desired for all functions.

Instead of using communicational cohesion as the
threshold level if we use procedural cohesion as the thresh-
old we get the following equivalence classes: {stdin ,
sale }, { pay , profit }. These define seed statements
for two tuck transformations. The first transformation is
the same as earlier. The seed statements of the second
transformation will consist of two statements, the assign-
ments topay andprofit . The result contains a function
that computes bothpay and profit . This is still more
cohesive than the original function, but it is less cohesive
than the previous result.

If a search for the most cohesive function is the purpose,
then one would set the threshold level to functional cohe-
sion. We then get four equivalence classes, one for each
output variable. In this case however the tuck transforma-
tion is not feasible. Reason,sale cannot be computed
without performingreadln so it must be in the function
defining sale . In additionstdin may be computed in
a separate function by just performingreadln . This will
lead to duplication ofreadln , something that cannot be
permitted sincestdin is an implicit global variable.



5. Implementation

We have developed a system calledWolfPack * that
implements the proposed restructuring approach. Wolf-
Pack is developed using CBMS, formerly called Software
Refinery, from Reasoning, Inc.†. It restructures C pro-
grams.

The WolfPack system consists of the following signif-
icant modules:

Module 1. Convert source code to internal format
(control-flow graph, abstract syntax tree).

Module 2. Compute data and control dependence relations
on statements.

Module 3. Abstract data and control dependence relations
for variables.

Module 4. Compute pairwise cohesion graph.
Module 5. Identify seed statements for tucking.
Module 6. Tuck computation related to a set of seed state-

ments into separate functions.
Module 7. Generate source code.

The tuck transformation, Module 6, operates on abstract
syntax tree (AST) of the original function and creates ASTs
for the new functions. Module 6 prints these ASTs into
format.

The system, as implemented, is quite limited in that it
does not perform alias analysis. Hence the results it pro-
duces are unsafe. It does, however, provide a reasonable
platform to experiment with restructuring programs that
do not have aliases.

6. Empirical observations

We have used WolfPack to restructure over 100 small
and large functions of programs from the public domain
and those of our sponsors. The largest program we exper-
imented with is of 35,000 lines. This section summarizes
our observations.

The set of functions we analyzed may be classified into
three categories:

1. Classic
2. Real
3. Special.

* Information on WolfPack is available on-line at
http://www.cacs.usl.edu/˜arun/Wolf ,
† Software Refinery and CBMS are trademarks of Reasoning, Inc.

The classic category contains functions handcrafted to
represent classic textbook examples used for demonstrating
a particular type of cohesion, and to represent classic
examples used by other researchers to demonstrate the
application of slicing for decomposition. These functions
represent the best case scenario for the type of restructuring
discussed. One expects the technique to perform well at
least on these functions.

The real category contains functions extracted from ac-
tual programs, taken from third-party sources, such as stu-
dent programs, textbooks, public domain, and our spon-
sors. These programs are real in that they were not hand-
crafted by us.

The special category contains functions handcrafted
to represent complex control flows, with goto-statements
branching in and out structured programming constructs.
These were constructed to verify the correctness of the slic-
ing algorithm and to check the correctness of the algorithm
to construct new abstract syntax trees.

WolfPack worked perfectly with the classic and special
programs. Since we used these programs to iteratively
improve our algorithm, this performance was expected.

In real programs we found WolfPack to have two short-
comings. First, its analysis, being unsafe, did not give cor-
rect results. Second, the cohesion rules did not work well
when astruct like data structure was implemented as a
collection of independent variables.

The first shortcoming was not a surprise because Wolf-
Pack system was designed as a prototype to demonstrate
proof-of-concept. In the role of a prototype it did help
us evaluate our strategy for decomposing a function. We
found that except for situations captured in the second
shortcoming, our method did work extremely well in par-
titioning output variables. The grouping of variables pro-
posed by our algorithm at various threshold level appeared
quite “intelligent.”

For instance, the public domain systemsc , a 10,000
lines C spread sheet program, contains a function called
update . This function is 142 lines long and has seven
output variables:stcol , FullUpdate , strow , cur-
col , line , currow , andlinelim . The names of these
variables indicate that variablesstcol and curcol are
related,strow and currow are related, andline and
linelim are related. The pairwise cohesion algorithm
indeed found sequential cohesion between the first two
pairs of variables. It indicated that variablesline and
linelim had procedural cohesion, i.e., they were both
being modified in the same loop, but did not have any
control and data dependence. The algorithm also found
that FullUpdate had sequential cohesion withstcol
and curcol .

Inspection of the 142 lines of code indeed validated the
strength of the relationships as proposed by the system.



That is, we found that the code segments usingstcol
andcurcol were quite isolated from the code segments
using strow and currow . It was further surprising
because these pairs of variables appeared together in not
just one but severalinterleavedcode segments. For the
purpose of extracting their computation, this grouping was
perfect. Similarly, the low cohesion betweenline and
linelim was also perfect, in spite of similarity in their
names. These are, in a relative sense, unrelated variables.
Variable line was used to compute expression values
before placing them into the matrix containing the contents
of the spreadsheet. Whereaslinelim was a flag used to
track if certain limit in the matrix was reached. While they
are both related the matrix,linelim did not impose any
limit on line . The variableFullUpdate was also a
flag. It tracked whether the matrix had been changed. It
was related tostcol andcurcol because the flag was
used to check if the matrix had changed in the context of
processing rows. This happens to be a coincidence, for
the programmer could as well have checked the flag in the
context of processing columns.

In a nutshell, the grouping proposed by the pairwise
algorithm matched very well what we, as programmers,
would have done.

The system did not always function that well. The one
scenario that it invariably failed in indicates a weakness
in our method of assigning cohesion, as also of that of
others. In a 1000 line program implemented by a graduate
student as part of his doctoral work we found that instead
of grouping two related variables asstruct , the author
had chosen to keep them as separate parameters. (To
visualize, consider an implementation of stack with two
variables: buffer an array to keep the data andsp an
index into the array representing the top of stack. The
two variables are kept separate, and are not collected into
a single unit usingstruct . These variables are passed
as parameters to any function operating on stack.) There
were functions that modified the two parameters without
causing any control or data dependence. As a result,
our system indicated that these variables had coincidental
cohesion. In the absence of any design knowledge, we
would make the same assertion. However, in the context
of the additional piece of information treating the two
variables as coincidental is definitely incorrect.

The largest program we analyzed, about 30,000 lines,
tested the limit of our implementation. Processing pro-
grams of this size became unwieldy because of the time
and space required to perform data and control flow anal-
ysis. That we needed to retain the abstract syntax tree fur-
ther added to the memory requirement. Which was made
worse because CBMS does not provide any (easy) method
to delete unneeded intermediate structures, such as the con-
trol flow graphs. It was a challenge to just compute all the

information of this program. The first time we tried we
exhausted 40 MB of swap space after having run the pro-
gram for a whole day. The second time we exhausted
patience. Thus, when experimenting withsc we manu-
ally located the large code fragments and placed them into
separate files, before performing any analysis.

This difficulty with processing large programs is not any
indication of the limits of the proposed method or that of
performing dataflow analysis. It is primarily an indicator
of poor design, something that can be overcome by a
better engineered product. For instance, with CBMS we
were constrained to keep all the intermediate structures in
memory. A better design would be to keep the intermediate
structures in files. This would reduce the load on the
primary memory, therefore reducing the time spent in
managing swap space.

7. Related works

We now compare the work presented with other efforts
in (a) restructuring functions [19, 21, 35], (b) using pro-
gram slicing for decompositions [13, 12, 11, 14, 15], (c)
identifying computations that are interleaved [34, 33, 32],
(d) and the inverse problem of function composition or
integration [17, 25].

Sneed and Jandrasics have presented a technique that
uses the control flow of a COBOL program to identify
code segments that can be converted into modules [35].
For instance, they create a module for a loop or a section
containing more than 200 statements. In the absence of
any cue from control statements, they propose breaking off
continuous blocks of 800 statements into separate modules.
Since a statement is placed in at most one module, their
approach does not lead to any duplication of code. On
the other hand, the modules this approach creates are
also not guaranteed to contain code that performs related
computations.

The restructuring techniques of Kimet al. [21] and
Kang and Bieman [19] is closest to our work. They both
use the cohesion (though Kimet al. call it coupling) be-
tween output variables of a function to identify compu-
tations that may be extracted into separate functions and
then use program slicing to extract the needed statements.
The differences lie in how each technique measures cohe-
sion, how it uses this measure to group related variables,
and the class of programs for which the technique is safe
(i.e., does not produce incorrect results), and the class for
which it produces correct results.

Kim et al.’s [21] definition of cohesion has two major
weaknesses. First, it appears to split coincidental and log-
ical cohesion into procedural, communicational, and func-
tional cohesion. Second, their cohesion rules are not ro-
bust. The cohesion assigned by their rules changes by



slight perturbation of the program, such as introducing as-
signment statements that simply copy value of variables
without changing the program. Kimet al. define depen-
dence between output variable as a result of the direct
dependence between assignment statements of that vari-
able. They do not account for flow due to a chain of
indirect assignments. Thus, output variables that depend
on each other may be considered as independent of each
other. Furthermore, unlike tuck, their transformation is
not formally defined and does not always preserve origi-
nal behavior. For instance, it introduces calls to the new
function in any order without taking into account the data
dependences between them.

Kang and Bieman’s method for partitioning variables is
very close to ours [19]. Their measure is based on Lakho-
tia’s original measure [22], though using a different set
of dependence relations between variables. To compute
pairwise cohesion we use data and control dependence be-
tweenall the variables whether input, output, or local. In
contrast, Kang and Bieman use data and control depen-
dence between only the input and output variables. The
information lost due to this abstraction is significant since
it leads to unsafe restructuring when two output variables
have sequential cohesion, but whose assignments cannot
be reordered. They too do not provide a formal transfor-
mation for actually extracting a function, thus leading to
similar errors as Kimet al.

Lanubile and Visaggio’s work on extracting reusable
functions from program flow graphs solves one part of
the problem discussed here [26]. They extract a reusable
function without changing the original program. In order
to identify a reusable function they require a partial spec-
ification of the program’s input and output. They too use
program slicing, albeit bounded within a region of the flow
graph, to extract the reusable function.

Gallagher and Lyle’s [13] lattice of decomposition slices
is useful in identifying changes that may ripple through to
other computations. Their lattice orders the slices of output
variables using the proper subset relation, which they refer
to asstrong dependence. That two slices do not have strong
dependence does not imply that they have no dependence.
The intersection of the slices may still be non-empty, a
relation that Gallagher and Lyle callweak dependence.
Weak dependence between the slices of output variables
plays an important role when splitting functions. But
this relation is not captured in the decomposition slice.
Hence, restructuring based on decomposition slice may
yield unsafe results.

Rugaberet al. [33] have investigated the problem of
detecting “interleaved” computation, where interleaving is
defined as “the merging of two or more distinct plans

within some contiguous textual area of a program.” A
plan is a “computational structure to achieve some purpose
or goal.” A program plan is not necessarily the same as
our notion of a program’s computation represented by the
computation of a variable. Yet Rugaberet al. observe that
if a subroutine (function) has multiple outputs there is a
high likelihood that it has interleaved computation. They
report that 25% of subprograms in a library of 600 Fortran
programs had multiple outputs. While Rugaberet al. have
investigated the issue of detecting interleaved computation,
they have not investigated how the subprograms may be
restructured to reduce or eliminate the interleaving.

Restructuring a function by decomposing it is inversely
related to the problem of creating a function by composing
smaller functions. This inverse problem has been under the
names of program integration [18], program composition
[25, 37], and program merging [5].

8. Conclusions

The main contribution of this paper is a method for
automatically restructuring functions with low cohesion
by splitting them into smaller functions with higher cohe-
sion. The method uses Lakhotia and Nandigam measure
for computing cohesion [22, 29] to identify computations
that can be extracted from a function. It uses program
tucking to actually transform the program [24]. This trans-
formation moves into a new function code that affects a
set of statements and replaces the moved statement by a
call to the new function.

The method proposed may be used to automatically re-
structure a program. Though good restructuring without
human intervention is most likely not feasible, the authors
have investigated this problem to gain insights into the
limits of machine capability. This work lays the founda-
tion for sophisticated interactive restructuring tools using
which a programmer may restructure programs by simply
choosing between alternatives provided by the machine.

9. Acknowledgments

Leverage Technologists, Inc., Bethesda, MD helped
with implementing code to create abstract syntax trees
of the new functions from that of the original function.
The work was partially supported by a contract from the
Department of Defense and a grant from the Department
of Army, US Army Research Office. The contents of the
paper do not necessarily reflect the position or the policy of
the funding agencies, and no official endorsement should
be inferred.



10. References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] Robert S. Arnold. Software restructuring.Proc. IEEE,
77(4):607–617, April 1989.

[3] E. Aschroft and Z. Manna. The translation of ‘goto’
programs to ‘while’ programs. InProceedings of the
1971 IFIP Congress, pages 250–260, Amsterdam, The
Netherlands, 1971. North-Holland.

[4] Brenda S. Baker. An algorithm for structuring flow-
graphs.Journal of the ACM, 24(1):98–120, January
1977.

[5] Valdis Berzins. On merging software extensions.Acta
Informatica, 23:607–619, 1986.

[6] James M. Bieman and Linda M. Ott. Measuring
functional cohesion.IEEE Transactions on Software
Engineering, 20(8):476–493, June 1994.

[7] Peter T. Breuer and Kevin Lano. Creating specifica-
tions from code; reverse-engineering techniques.Jour-
nal of Software Maintenance: Research and Practice,
3:145–162, 1991.

[8] Eric Bush. A CASE for existing systems. Technical
report, Language Technology, Salem, MA, 1989.

[9] Frank W. Calliss. Problems with automatic restructur-
ers.SIGPLAN Notices, 23:13–21, March 1988.

[10] Elliot J. Chikofsky and J. H. Cross II. Reverse
engineering and design recovery: A taxonomy.IEEE
Software, 7(1):13–17, January 1990.

[11] Keith Gallagher. Visual impact analysis. InInterna-
tional Conference on Software Maintenance, 1996.

[12] Keith B. Gallagher. Evaluating the surgeon’s assis-
tant: Results of a pilot study. InProceedings of the
Conference on Software Maintenance - 1992, pages
236–244, November 1992.

[13] Keith B. Gallagher and James R. Lyle. Using pro-
gram slicing in software maintenance.IEEE Transac-
tions on Software Engineering, 17(8):751–761, Au-
gust 1991.

[14] Rajiv J. Gopal and Stephen R. Schach. Using auto-
matic program decomposition techniques in software
maintenance. InProceedings of Conference on Soft-
ware Maintenance, pages 132–141, 1989.

[15] Rajiv J. Gopal and Stephen R. Schach. Application
of automatic decomposition schemes in proof main-
tenance for evolving programs,.Journal Software
Maintenance: Research and Practice, 4:183–198, De-
cember 1992.

[16] Philip A. Hausler, Mark G. Pleszkoch, Richard C.
Linger, and Alan R. Hevner. Using function abstrac-
tion to understand program behaviour.IEEE Soft-
ware, 7(1):55–65, January 1990.

[17] Susan Horwitz, Jan Prins, and Thomas Reps. Inte-
grating non-interfering versions of programs. InPro-
ceedings of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, San Diego,
pages 133–145, 1988.

[18] Susan Horwitz, Jan Prins, and Thomas Reps. Inte-
grating non-interfering versions of programs.ACM
Transactions on Programming Languages and Sys-
tems, 11(3):345–387, July 1989.

[19] Byung-Kyoo Kang and James Bieman. Using design
cohesion to visualize, quantify, and restructure soft-
ware. InEighth International Conference on Software
Engineering and Knowledge Engineering (SEKE’96),
pages 222–229, Skokie, IL, June 1996. Knowledge
Systems Institute.

[20] Takumi Kasai. Translatability of flowcharts into
while programs.Journal of Computer and System
Sciences, 9:177–195, 1974.

[21] Hyeon Soo Kim, In Sang Chung, and Yong Rae
Kwon. Restructuring programs through program slic-
ing. International Journal of Software Engineering
and Knowledge Engineering, 4(3):349–368, Septem-
ber 1994.

[22] Arun Lakhotia. Rule-based approach to computing
module cohesion. InProceedings of 15th Interna-
tional Conference on Software Engineering, pages
35–44, Los Alamitos, CA, May 1993. IEEE Com-
puter Society Press.

[23] Arun Lakhotia. DIME: A direct manipulation envi-
ronment for evolutionary development of software.
In Proceedings of the International Workshop on Pro-
gram Comprehension (IWPC’98), pages 72–79, Los
Alamitos, CA, June 1998. IEEE Computer Society
Press.

[24] Arun Lakhotia and Jean-Christophe Deprez. Restruc-
turing programs by tucking statements into func-
tions. Journal of Information and Software technol-
ogy, 40(11-12):677–689, November 1998.

[25] Arun Lakhotia and Leon S. Sterling. Composing
recursive logic programs with clausal join.New
Generation Computing, 6(2):211–225, 1988.

[26] Filippo Lanubile and Giuseppe Visaggio. Extracting
reusable functions by flow graph-based program
slicing. IEEE Transactions on Software Engineering,
23(4):246–258, April 1997.

[27] Carma McClure.The Three Rs of Software Automa-
tion: Reeingineering, Repository, and Reusability.



Prentice Hall, Inc., Englewood Cliffs, New Jersey,
1992.

[28] Glenford J. Myers.Composite/Structured Design.
Van Nostrand Reinhold Company, New York, NY,
1978.

[29] Jagadeesh Nandigam.A measure for module co-
hesion. PhD thesis, University of Southwestern
Louisiana, The Center for Advanced Computer Stud-
ies, Lafayette, Louisiana, 1995.

[30] Linda Ott and James Bieman. Program slices as
an abstraction for cohesion measurement.Journal
of Information and Software technology, 40(11-
12):691–699, November 1998.

[31] Roger S. Pressman.Software Engineering: A Prac-
titioner’s Approach. McGraw Hill, New York, NY,
third edition, 1992.

[32] Spencer Rugaber, Kurt Stirewalt, and Linda Wills.
Understanding interleaved code.Automated Software
Engineering, 3(1-2):47–76, June 1996.

[33] Spencer Rugaber, Kurt Stirewalt, and Linda M.
Wills. Detecting interleaving. InProceedings of the
International Conference on Software Maintenance,
pages 265–274, Los Alamitos, CA, 1995. IEEE
Computer Society Press.

[34] Spencer Rugaber, Kurt Stirewalt, and Linda M. Wills.
The interleaving problem in program understanding.
In Proceedings of 2nd Working Conference on
Reverse Engineering, pages 166–175, Los Alamitos,
CA, July 1995. IEEE Computer Society Press.

[35] Harry M. Sneed and Gabor Jandrasics. Software
recycling. In Proceedings of the Conference on
Software Maintenance, pages 82–90, Los Alamitos,
CA, 1987. IEEE Computer Society Press.

[36] John A. Stankovic. Good system structure features:
Their complexity and execution time cost.IEEE
Transactions on Software Engineering, SE-8(4):306–
318, July 1982.

[37] Leon Sterling, Ashish Jain, and Marc Kirschenbaum.
Composition based on skeletons and techniques. In
ILPS ’93 Post Conference Workshop onMethodolo-
gies for Composing Logic Programs, Vancouver, Oc-
tober 1993.

[38] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design.IBM Systems Journal, 13(2):115–
139, 1974.

[39] Martin Ward. Abstracting a specification from code.
Journal of Software Maintenance: Research and
Practice, 5:101–122, 1993.

[40] Richard C. Waters. Program translation via ab-
straction and reimplementation.IEEE Transactions
on Software Engineering, 14(8):1207–1228, August
1988.

[41] Mark Weiser. Program slicing.IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

[42] Edward Yourdon.Decline and Fall of the American
Programmer. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1992.

[43] Edward Yourdon and Larry L. Constantine.Struc-
tured Design. Yourdon Press, 1978.


