
Imposing Order on Program Statements to Assist Anti-Virus Scanners 

Arun Lakhotia and Moinuddin Mohammed  

University of Louisiana at Lafayette 

arun@louisiana.edu

Abstract

A metamorphic virus applies semantics preserving 

transformations on itself to create a different variant 

before propagation. Metamorphic computer viruses 

thwart current anti-virus technologies that use 

signatures—a fixed sequence of bytes from a sample of a 

virus—since two variants of a metamorphic virus may not 

share the same signature. A method to impose an order 

on the statements and components of expressions of a 

program is presented. The method, called a “zeroing 

transformation,” reduces the number of possible variants 

of a program created by reordering statement, reshaping 

expression, and renaming variable. On a collection of C 

program used for evaluation, the zeroing transformation 

reduced the space of program variants due to statement 

reordering from 10183 to 1020. Further reduction can be 

expected by undoing other transformations. Anti-virus 

technologies may be improved by extracting signatures 

from zero form of a virus, and not the original version.  

1. Introduction 

A metamorphic computer virus transforms its code 

before propagating it to a new host [2, 4, 17, 18]. 

Win32/Evol, Win32/Zperm, and Win32/Bistro are some 

recent metamorphic viruses. Zperm carries with it the 

Real Permutating Engine (RPME), a metamorphic engine 

that can be combined with any virus to make it 

metamorphic [18]. There are other similar metamorphic 

engines available on websites catering to hackers. 

Metamorphic viruses can escape signature-based anti-

virus scanners [3]. The emergence of metamorphic 

viruses calls for new methods for anti-virus (AV) 

scanning. An ideal AV Scanner would be capable of 

detecting the different possible variants of a metamorphic 

virus by using signature from only one known variant. 

This investigation has been motivated by a desire to 

create an ideal AV scanner. In this paper we investigate 

the question: Is it possible to transform a program to a 

canonical form such that two variants of the program 

have the same form? If such a transformation is feasible 

then, instead of the original virus, signatures may be 

extracted from its canonical form. When scanning, a 

suspect program may be converted to its canonical form 

and then checked for the existence of signature of known 

viruses.

As a step towards the larger goal, this paper presents a 

set of heuristics to impose order on the statements of a C-

like program. By imposing such an order, it is expected 

that one can undo the effect of statement/instruction 

reordering transformation performed by metamorphic 

viruses. While the viruses posing greatest challenges are 

usually binary, an initial step is important. Besides, it is 

expected that for any significant analysis a virus will be 

first decompiled to a higher language. Thus, the method 

presented should be applicable for binary viruses.  

Using GrammaTech’s CodeSurfer™ we have 

implemented the proposed method in a prototype tool, 

C . Empirical analysis of the method on real-world C 

programs show that our method is promising. For the 

programs studied, after fixing order of statements using 

our method, the number of possible permutations of the 

programs was reduced by a factor of 10163. In the context 

of metamorphic viruses, this is the reduction in the 

number of signatures that may be needed if all possible 

reordered variants of a virus appear in the wild. 

In this paper we summarize our method for fixing 

order and the results from an empirical analysis of the 

method. Section 2 presents some transformations used by 

metamorphic viruses. Section 3 outlines how to undo the 

transformations by mapping a program into a zero form. 

It presents our algorithm for imposing order on the 

statements of a program. Section 4 summarizes the results 

of an empirical evaluation of our algorithm. Section 5 

contains a comparison with related works. Section 6 

presents our conclusions. 

2. Morphing transformations 

A metamorphic virus carries with itself a morpher: a 

subprogram that transforms the structure of the virus 
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without affecting its behavior. The morphing 

transformations used by recent metamorphic viruses 

include dead or irrelevant code insertion; register 

renaming; expression reshaping; break & join 

transformations; and statement reordering. Figure 1 

enumerates these transformations using examples. 

Inserting dead code (irrelevant/junk code) in a 

program has no effect on the results of the program. It is 

very effective in changing the program text. Dead code 

may be inserted by simply inserting the NOP instruction. 

There are other, more complex forms of dead code as 

well, such as inserting a PUSH instruction and a POP 

instruction at non-consecutive locations. 

The register renaming transformation changes the 

register used in a computation. In order to preserve the 

behavior of the original virus, it is necessary that all 

related occurrence of the register also be renamed. 

Break & join transformations break programs into 

pieces, select a random order of these pieces, and use 

unconditional branch statements to connect these pieces 

such that the statements are executed in the same 

sequence as in the original programs.  

Expression reshaping involves generating random 

permutations of operands in expressions with 

commutative and associative operators. This changes the 

structure of expressions. 

The statement reordering transformation reorders the 

statements in a program such that the behavior of the 

program does not change. It is possible to reorder 

statements if and only if there are no dependences [7] 

between the statements being reordered. If the virus 

signature includes bytes corresponding to a statement 

from this set of reorderable statements, then application 

of statement reordering transformation makes the original 

virus signature useless for as many different variants as 

possible. 

mov eax, V_S - 1 
add eax, ecx 
xor edx, edx 
div ecx  
mul ecx  
push eax 

mov eax, V_S - 1 
nop

add eax, ecx 
xor edx, edx 
add eax, 0 
div ecx  
nop
mul ecx  
push eax 

(a) Deadcode insertion 

push edx 
mov edx, ecx 
mov ebx, 000Ah 
add edx, ebx 
pop ebx 

push eax
mov eax, ebx
mov edx, 000Ah 
add eax, edx
pop edx

(b) Variable Renaming

statement-1 
statement-2 
statement-3 
statement-4 
statement-5 
statement-6 

goto L1 
L3: 
statement-3 
goto L4 

L1:
statement-1 
statement-2 
goto L3 

L5: 
statement-5 
goto L6 
L4: 

statement-4  
goto L5 
L6: 

statement-6 

(c) Break and Join Transformation 

if (i < a * b * c) 
{
      a = x * 100 + 2; 
      b = 10 * i; 
      c = y * a + b; 
      i = a + b + c; 
}

if (i < a * b * c) 
{
       a = 2 + x * 100; 
       b = 10 * i; 
       c = a * y + b; 
       i = b + c + a; 
}

(d) Expression Reshaping 

x = 25; 
y = x + get_index(); 
z= 100; 
while (i < y + z) 
{
      b = 200 * i; 
      c = y * i; 
      a = x * y + i * z; 
      i = i + 1; 
}

x = 25; 
y = x + get_index(); 
z= 100; 
while (i < y + z) 
{
       a = x * y + i * z;
       b = 200 * i;
       c = y * i;

       i = i + 1; 
}

(d) Statement Reordering

Figure 1 Morphing Transformations
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3. “Zeroing” transformation 

The effect of a morphing transformation, described 

above, could be removed by performing its inverse 

transformation, if one exists. For instance, dead-code 

elimination, constant propagation [1], removal of 

redundant computations, and elimination of spurious 

unconditional branch statements may be used to undo the 

effects of (some types of) dead code or irrelevant code 

insertion, expression reshaping, and break & join 

transformations, respectively. The final outcome may 

depend on the specific order in which these 

transformations are applied. It is an open research 

question on how to choose an order for applying these 

transformations such that it yields the same canonical 

form for different variants. 

The focus of our current investigation is on how to 

undo the effects of statement reordering, reshaping 

expressions, and variable renaming transformations. The 

inverse of these transformations have not been studied in 

the literature. We call our transformation the “zeroing” 

transformation, for its attempt to eliminate the effect of 

reordering, variable renaming, and expression reshaping. 

The program resulting from applying the zeroing 

transformation is called the zero form. 

We present the zeroing transformation top-down; 

presenting the high level steps first, followed by a 

description of the lower level steps. 

The zeroing transformation has the following steps: 

1. Create a Program Tree (PT) representation of the 

program. 

2. Partition the PT nodes into reorderable sets, each 

set containing statements that may be mutually 

reordered without affecting the program’s 

semantics. 

3. Partition each reorderable set into a sequence of 

isomorphic sets, where every statement in an 

isomorphic set has the same ‘string representation.’ 

The representation does not depend on names of 

the variables in the program, order of variable in 

commutative operators, and order of the statements 

in the program,  

4. Assign a number to each statement. The numbering 

is done using a depth-first traversal of the PT. 

Statements in a reorderable set are visited based on 

the order in the sequence of isomorphic set. 

Statements in an isomorphic set are visited in 

random order.  

5. Create a new program by ordering the statements as 

per the numbers assigned in the last step. In each 

expression, replace each variable name by a new 

A=0 
B=3 
IF (A>B) then 
     C = A + 1 
     D = A + B+ 20 
     E = C + D + 10 
FI
F = A + C 
G = A + B 

I=0 
I=3 
IF (I>I) then 
      I = I + 1 
      I = I +I + 20 
      I = I + I + 10 
FI
I = I + I 

I = I + I 

A=0 
B=3 
G = A + B 
IF (A>B) then 
      C = A + 1 
      D = A+B + 20 
      E = C + D + 10 
FI

F = A + C 

Create 
String 

Fix 
order 

(a) Fixing the statement order – Variant A 

(b) Fixing the statement order – Variant B 

Extract data dependence 

P=3 
Q=0 
G=P+Q 
IF (Q>P) then 
     D = Q +20+ P 
     C = Q + 1 
     E = C + D + 10 
FI 
F = Q + C 

I=3 
I=0 
I = I + I 
IF (I>I) then 
     I = I + I + 20 
     I = I + 1 
     I = I + I + 10 
FI

I = I + I 

Q = 0 
P = 3 
G = P + Q 
IF (Q>P) then 
    C = Q + 1 
    D = Q + P + 20 
    E = C + D + 10 
FI

F = Q + C 

Create 

String 
Fix 

order 

Extract data dependence 

V1=0 
V2=3 
V3 = V1 + V2 
IF (V1>V2) then 
      V4 = V1 + 1 
      V5= V1+V2+20 
      V6 = V4 + V5 + 10 
FI
V7 = V1 + V4 

Rename variables 

V1=0 
V2=3 
V3 = V1 + V2 
IF (V1>V2) then 
      V4 = V1 + 1 
      V5= V1+V2+20 
      V6 = V4 + V5 + 10 
FI

V7 = V1 + V4 

Rename variables 

Figure 2 Transforming program variants to zero form 
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variable name created using the number of the 

statement where it is first defined. 

The following subsections describe the first three 

steps. The last two steps are self-explanatory, and are not 

elaborated any further.

3.1. Program tree (PT) representation 

A program tree (PT) is a hierarchical ordering of 

statements in a program. While the abstract syntax tree 

(AST) of a program could serve as a PT, we do not use 

AST because its structure depends on the specific order 

of statements in the program. We use the control 

dependence sub-graph (CDG) [7] for constructing the PT. 

Construction of PT for structured programs, i.e., goto free 

programs, is straightforward. The nodes in the program 

tree are the statements of the program. We create an edge 

in the program tree from a node n1 to node n2 if there 

exists an edge from n1 to n2 in the corresponding CDG.  

The PT of the code segment in Figure 2 is shown in 

Figure 3.  For readability, we show the corresponding 

program statements for control predicates in the program 

tree. For example, in Figure 3, the control predicate 

(A>B) is shown as If (A>B). The node If (A>B) in Figure 

3 has an edge to the nodes C=A+1, D=A+B+200,

E=C+D+10 because of the control dependence 

relationship between the node If (A>B) and the nodes 

C=A+1, D=A+B+200, E=C+D+10.

In general, the control dependence graph may not be a 

tree. A CDG node may have multiple predecessors and 

the graph may have cycles. Consider the program in 

Figure 4(a). Its control dependence graph, shown in 

Figure 4(b), has a cycle. We create a PT by traversing a 

CDG in depth first order and terminating the traversal 

when a node in the ancestor list is visited again. To 

indicate the repetition we include a copy of that node in 

the tree. Figure 5 shows the PT for the CDG of Figure 

4(b).  Similarly, if a node in the CDG has multiple 

parents, we create a duplicate child node for each parent 

node.

A program tree is constructed for each procedure of 

the program.  

3.2. Partitioning PT into reorderable sets 

This section describes an algorithm for partitioning PT 

nodes into reorderable sets. The aim of this step is to find 

statements that may be mutually reordered without 

changing the semantics of the program. 

Definition: Reorderable set. A set of nodes in PT is 

reorderable if its nodes can be mutually reordered 

(swapped) without changing the semantics of the program 

represented by PT. 

For a set of nodes to be reordered they must be 

siblings in the PT. A pair of sibling PT nodes can be 

reordered if one does not depend on the other, as per the 

following definition. 

Definition: Tree dependence. Let n1, n2  PT be 

sibling nodes. Node n2 is tree-dependent on node n1 if 

and only if there exists a path from n1 to n2 in the control 

flow graph of P and (1) a node in the sub-tree of PT 

rooted at n2 is data dependent on a node in the sub-tree of 

PT rooted at n1 or (2) there exist two nodes n1’ and n2’ in 

the sub-trees of PT rooted at n1 and n2, respectively, such 

that the intersection of the set of variables defined in n1’

and n2’ is non-empty.  

The data-dependence relation in Condition (1), above, 

is as traditionally used in compilers, and in the 

construction of program dependence graph (PDG). This 

condition propagates to the parents the data dependence 

relation between its (transitive, reflexive) children. 

Condition (2) relates statements that may become data-

dependent if they were swapped.  

main()

A=0 B=3
If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

main()

A=0 B=3
If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

Figure 3 Program Tree for Example 1 (of Figure 2) 

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10) {
  x = x+1; 
  if (x>5) break; 

  print (x); 

}

(a) Program (b) CDG 

Figure 4 Example 2 

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

Figure 5 Program Tree for Example 2 
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The children of each node in the PT are partitioned 

into a sequence of reorderable sets. The order between 

the reorderable sets is fixed, but the order of the elements 

within a reorderable set is not fixed. Given a program (P) 

and its corresponding PT, the PT nodes can be partitioned 

into reorderable sets using the partitioning algorithm in 

Figure 7.  

The partitioning algorithm traverses the PT of P in the 

post order to find the nodes that can be reordered. It 

assigns a DG-Depth (dependence graph depth) value to 

each node. The DG-Depth is also the number of the 

reorderable set in which that node is placed. The DG-

Depth of all nodes is initially set to ‘0’. The children of a 

node are processed in the control flow order. For every 

child node c of n, the partitioning algorithm finds the 

node c’, having the maximum DG-Depth m, such that 

either c depends on c’ or c’ depends on c. The DG-Depth 

of c is set to m+1 implying that the child node c is placed 

in the reorderable set number m+1. The use of 

dependence graph depth for identifying order between 

statements assures that after the nodes are partitioned, the 

dependence order of the children is preserved. 

Consider the Node main () in Figure 2. Its root has the 

following children {A=0, B=3, If (A>B), F=A+C, 

G=A+B}. The dependence graph for this set of children 

is shown in Figure 6. The edge from the node A=0 to the 

node If (A>B) corresponds to the dependence relation 

from node A=0 to the node If (A>B); i.e., there exists a 

path from the node A=0 to the node If (A>B) in the 

control flow graph of P and a value defined by the node 

A=0 is used by at least one node in the sub-tree starting 

with the node If (A>B). Similarly, the edge from the node 

If (A>B) to the node F = A+C corresponds to a tree 

dependence relation from If (A>B) to F=A+C.

Figure 8 illustrates the working of the partitioning 

algorithm. The child nodes are processed in the control 

flow order. At each step, a node is picked and its DG-

Depth computed. Initially, all the child nodes are given a 

DG-Depth of ‘0’. Figure 8(a) shows the processing of the 

child node A=0. The incoming/outgoing edges of the 

node A=0 are directed from/to the nodes having a DG-

Depths as ‘0’. Hence, the node A=0 is placed in the 

reorderable set numbered ‘1’. The DG-Depth of the node 

A=0 is set to ‘1’. In Figure 8(d), the algorithm processes 

the child node F=A+C. The DG-Depths of the nodes that 

have a dependence relation with F=A+C are {2, 1}. The 

maximum value in this set is 2. Hence F=A+C is placed 

in the reorderable set numbered 3. The DG-Depth of the 

node F=A+C is set to ‘3’. 

After partitioning, the reorderable sets will be as 

follows.  

Reorderable set–1:  {A=0, B=3};

Reorderable set–2:  {If (A>B), G=A+B};

Reorderable set–3:  {F=A+C}.

Figure 8(f) shows the partitioned dependence graph. 

We apply one more transformation to undo the effect 

of splitting a single assignment expression into multiple 

assignments. This is done by identifying chains in the 

tree-dependence graph of siblings and abstracting the 

chain as a single expression. A dependence chain is 

defined as follows.  

Definition: Dependence Chain. A sequence of sibling 

nodes n1 to nk, k > 0, form a dependence chain iff (a) for 

all ni, 1 i < k there is at most one node, ni+1, tree-

dependent on ni, and (b) for all nj, 1 < j k, nj is tree-

dependent on at most one node, i.e., nj-1.

Figure 9(b) shows the dependence chains formed for 

the dependence graph of Figure 9(a).  

Definition of tree-dependence is extended to include 

dependence between chains, as follows. 

Definition: Dependence between chains. A 

dependence chain c1 is dependent on a dependence chain 

c2 if and only if a PT node in c1 is tree-dependent on a PT 

node in c2.

A=0 B=3 If (A>B) F=A+C G=A+BA=0 B=3 If (A>B) F=A+C G=A+B

Figure 6 Tree-dependence for the children of “root” 

of Example 1 

Partition-PT ( n : PT-Node ) { 

   for each child c of n do 

        Partition-PT ( c ); 

   for each child c of n

     (in control-flow order) do { 

        m = 0; 

        for each c’ such that 

                      c tree-depends on c’

                 or c’ tree-depends on c do 

              m = max ( DG-Depth(c), m); 

   } 

  // c is in reorderable set m+1

   DG-Depth (c) = m+1; 

}

Figure 7 Algorithm to Partition PT Siblings 
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The partitioning algorithm treats a dependence chain 

like a PT node. The algorithm produces the same 

reorderable sets independent of statement reordering, 

expression reshaping, and variable renaming 

transformations. The next section describes a strategy to 

order statements in a reorderable set. The use of 

dependence chains instead of individual program 

statements improves the probability of imposing an order 

using the string representation of the dependence chains. 

3.3. Partitioning reorderable sets 

The statements in a reorderable set are 

partitioned into a sequence of isomorphic sets by 

associating a special string representation to each 

statement, sorting the statements based on the string 

representation, and placing the statements with identical 

string representation in the corresponding isomorphic set. 

We have experimented with six string representations, 

referred to as SR1 to SR6. String representation SRi is 

used to partition statements that could not be partitioned 

using SRi-1. Thus, the six string representations act as a 

succession of filters. 

The string representations need not preserve the 

semantics of the original statement since they are used 

only for ordering statements.  The string representations 

are designed so that they do not depend on the names of 

the variable in the program, or the order of statements in 

the program, or order of expressions in commutative 

operators.

Figure 11 shows an example of SR1 representations of 

two expressions. Figure 10 gives the algorithm for 

computing this SR1 form. The result of the algorithm is 

placed in the property String of the expression node. In 

the SR1 form every identifier is replaced by the same 

symbol, “I”. The string representation of an operator is 

created by concatenating the string representations of its 

operands. To counter expression reshaping, the string 

representations of the operands of a commutative 

operator are sorted before concatenation. The algorithm 

assumes that nested sequences of commutative binary 

operators are represented using a single n-ary operator. In 

addition, other transformations may also be pre-applied 

on the AST, such as representing the subtraction operator 

as addition of a negative number.  

The string representation of expressions in a PT is 

used to create the string representation of a PT (and its 

subtrees).  Figure 12 presents the algorithm to compute 

(a) Processing the node [A=0]

(b) Processing the node [B=3]

Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1) 

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1) 

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]

Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1) 

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]

Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1) 

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]

Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1) 

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

(a) Processing the node [A=0]

(b) Processing the node [B=3]

Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1) 

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1) 

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]

Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1) 

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]

Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1) 

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]

Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1) 

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

Figure 8 Working of Partitioning Algorithm 

3

1

2 4 5

9

8

7

6

10

(a) Tree-Dependence Graph 

2 4 5

6 7 8

9 10

3

1

(b) Dependence Chains 

Figure 9 Examples of Dependence Chains 
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string form of a PT node, and its children. The 

reorderable sets are processed in their sequence order. 

The string representations of nodes are used to 

partition reorderable sets by sorting the nodes on their 

string representation.  The statements with the same 

string representation are grouped into isomorphic sets. 

The isomorphic sets are sorted using the string 

representation of its member elements. For instance, the 

statements A=B+20 and C=20+D have the same SR1s. If 

these statements are in the same reorderable set then they 

will also be placed in the same isomorphic set.  

Statements that cannot be differentiated into singleton 

sets by SRi are attempted to partition using SRi+1

through SR6, until one differentiates them. These 

representations are summarized below. 

SR1 representation: Replace each variable in the 

statement by the symbol ‘I’, convert commutative 

(binary) operators to N-ary operators, and sort the 

operands of the N-ary commutative operators using 

the SR1 representation for the operands. 

SR2 representation: For each variable used in an 

expression count the number of reaching definitions 

for that expression. For each variable defined in the 

expression, count the number of statements using 

that definition. Create a string using the counts of the 

number of uses and definitions.  Figure 13 contains 

an example of SR2 form. The string U{1,3} implies 

that of the two variables used in expression 

“A=C+D”, one variable has ‘1’ reaching definition 

and the other variable has ‘3’ reaching definitions. 

The string “D{2}” in the SR2 form implies that the 

variable defined in this expression is used in two 

statements. 

SR3 representation: Concatenate the sorted 

sequence of strings representing the SR1 

representations of all the data dependence 

predecessors of the statement.  

SR4 representation: Concatenate the sorted 

sequence of strings representing the SR1 

representations of all the data dependence successors 

of the statement. 

SR5 representation: Replace each function call in 

the statement by the SR1 representation of the body 

of that function. 

SR6 representation: Concatenate the sorted 

sequence of strings representing the SR1 

representations of all the statements in forward and 

backward slices of that statement. 

Reorderable statements that yield the same string 

representation for SR1 through SR6 representations are 

placed in the same isomorphic set. 

Let us return to Figure 2. All statements in the two 

programs in this example can be completely ordered 

using the SR1 representation. The box after ‘Create 

String’ gives the SR1 representation of the programs, 

with a caveat. The strings for the children have not been 

sorted. The box after ‘Fix Order’ shows the resulting 

order of statements. The result from renaming the 

variables is shown in the last step. 

More details on the zeroing transformation may be 

found in [13]. 

4. Empirical analysis 

We have developed a tool, C , that implements the 

proposed algorithm for imposing order on the statements 

of C programs. It does not implement transformations to 

undo expression reshaping. C  uses the Program 

Dependence Graph (PDG) [7], generated by 

CodeSurfer™ [8] of GrammaTech, to gather the control 

Stringify-Expression (e : Expression ) 

{

   if (e is a variable) e.String = “I”; 

   elseif (e is a constant) 

        e.String = string rep of e;

   else { 

      // e is an operator 

      S = string rep of root operator of e;

      for each child c of e do 

          Stringify-Expression (c); 

       if (e represents a commutative operator) 

           L = sorted list of string reps of children of e;

       else  

           L = list of string reps of children of e;

       fi; 

       S’ = concatenate strings in L; 

       e.String = concatenate S and S’; 

   } 

Figure 10 Creating SR1 Strings of Expressions 

D = B - 200 

=

D -

B 200

-I200

=I-I200

Expression AST String

A = B + 200 

=

A +

B 200

+200I

=I+200I

Figure 11 SR1 Form of Expressions 
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and data dependences needed to identify reorderable 

statements.  

We analyzed a set of real-world C programs to study 

how well the proposed approach imposed order on their 

statements. Our test systems represent a ‘best case’ 

scenario. If the results for the best case are not 

satisfactory, then one cannot expect any significant 

returns from using the method for metamorphic viruses 

whose code is inherently obfuscated. 

The test systems used in the experiments are described 

below: 

• Bison: The Bison program is a LALR parser 

generator. It consists of 33 C files generating 10,718 

nodes in the program dependence graph. 

• Cook: The COOK system [6] is used for writing 

build scripts for projects. It is a powerful and easy to use 

replacement for make [14]. It consists of 39 files 

generating 9,147 nodes in the PDG. 

• SNNS: The SNNS system is a neural network 

simulator for Unix® workstations. It consists of 11 files 

generating 8,835 nodes in the PDG. 

• Fractal: The Fractal programs [15] create fractals 

using C programming language. It contains 36 files 

generating 8,856 nodes in the PDG. 

• Computer vision: The Computer Vision programs 

is a collection of programs illustrating computer vision. It 

consists of 21 files generating 13,159 nodes in the PDG. 

For each of these systems we measure the following: 

1. Reorderable Percentages: The percentage of 

statements that can be reordered. 

2. Total Number of Permutations: Product of the 

number of permutations of each reorderable set. 

The two measures are computed for the original 

program, referred to as SR0 representation, and the 

program resulting after fixing statement order using the 

filters SR1 through SR6, but without the transformation 

for expression reshaping. 

Figure 14 shows the reorderable percentages for our 

test programs. On an average 55% of the statements of 

the original program are reorderable. The number of 

reorderable statements is reduced to 6% after 

transformation. The Fractal programs have higher 

reorderable percentages than other systems. This is 

because the Fractal programs have computer graphics 

code has many code fragments with similar statement 

structures, but which compute on different coordinate 

axes.

Table 1 shows the total number of possible 

permutations for the test programs before and after 

applying zeroing transformations. The rows P1 to P6 are 

number of possible permutations that can be created by 

reordering statements whose order is not fixed by SR1 to 

SR6, respectively. P0 is the permutations for the original 

program. 

The SR1 filter significantly reduces the number of 

possible permutations for each program. For Bison the 

reduction was from 1061 possible permutations to 1017.

The number of variants of the Cook system was reduced 

from 1047 to 1021; for SNNS a reduction from 10184 to 

1029; for Fractal a reduction from 1088 to 1021; and for 

Computer Vision a reduction from 10113 to 107. The 

sample programs exhibit significant variation on the 

effect of the successive filters SR2 to SR6. The SR2, 

SR4, and SR6 filters produce at least an order of 

magnitude reduction for Computer Vision and Fractal, 

whereas SR2 and SR6 produced similar reduction for 

SNNS. None of the other filters made any significant 

difference to Bison and Cook.   

5. Related work 

Besides making it difficult to detect a virus using 

signature-based analysis [3, 10], metamorphic 

transformations also obfuscate the code to make it 

difficult for an anti-virus analyst to analyze the program. 

Such obfuscations have legitimate uses too. Programs 

may be obfuscated to protect intellectual property, and to 

increase security by making it difficult for others to 

identify vulnerabilities [5, 11, 19]. The art of obfuscation 

is quite advanced. Collberg et al. [5] present a taxonomy 

Figure 12 Creating String Form of PT-Nodes 

A = C + D 

B = D + K

U{1,3}:D{2} 

U{2,3}:D{2} 

Expression SR2 Form 

Figure 13 SR2 Form of Expressions 

Stringify-PT-Node ( n: PT-Node) 

{

    if (n is a leaf node) { 

         Stringify-Expression (expression of n);

n.String = n.String;

   } else { 

         Stringify-Expression (expression of n);

         S = (expression of n).String;

         for each reorderable set r of n do { 

            for each child c in r do 

               Stringify-PT-Node-SR1 (c);

             R = sorted list of SRs of nodes in r;

r.String = concatenation of strings in R; 

         } 

       L = sorted list of SRs of reorderable sets of n;

       S’ = concatenation of strings in L; 

n.String = concatenate S and S’

}
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of obfuscating transformations and a detailed theoretical 

description of such transformations.   

The Bloodhound technology [16] of Symantec Inc. 

uses static and dynamic heuristic scanners. The static 

heuristic scanner maintains a signature database. The 

signatures are associated with program code representing 

different functional behaviors. The dynamic heuristic 

scanner uses CPU emulation to gather information about 

the interrupt calls the program is making. Based on this 

information it can identify the functional behavior of the 

program. Once different functional behaviors are 

identified, they are fed to an expert system, which judges 

whether the program is malicious or not. Static heuristics 

fail to detect morphed variants of the viruses because 

such variants may have different signatures. Dynamic 

heuristics consider only one possible execution of a 

program. A virus can avoid being detected by a dynamic 

scanner by introducing arbitrary loops. 

Lo et al.’s MCF [12] uses program slicing and flow 

analysis for detecting computer viruses, worms, Trojan-

horses, and time/logic bombs. MCF identifies telltale 

signs that differentiate between malicious and benign 

programs. MCF slices a program with respect to these 

telltale signs to get a smaller program segment 

representing the malicious behavior. This smaller 

program segment is manually analyzed for the existence 

of virus behavior.  

Szappanos [17] uses code normalization techniques to 

remove junk code & white spaces, and comments in 

macro viruses before they generate virus signature.  To 

deal with variable renaming, Szappanos suggests two 

methods: first, renaming variables using the order in 

which they appear in the program and second, renaming 

all the variables in a program with a same name. Former 

approach fails if the virus reorders its statements, and the 

later approach abstracts a lot of information and may lead 

to incorrect results. As our approach fixes the order of the 

statements in a program, the first approach suggested by 

Szappanos for renaming the variable can be used in 

combination with our method. 

Christodorescu et al. [3] have developed a method for 

detecting patterns of malicious code in executables. They 

use abstraction patterns—patterns representing sequences 

of instructions. These patterns are parameterized to match 

different instructions sequences with the same instruction 

set but different operands. Their approach gives fewer 

false positives but the cost of creating and matching the 

abstraction patterns is high. They detect the virus variants 

created by performing dead code insertion, variable 

renaming in the absence of statement reordering, and 

break & join transformations. Our method, in addition to 

the above morphing transformations, can be used to 

detect the viruses that apply statement reordering and 

expression reshaping transformations. 

The problem of detecting malicious code is related to 

that of detecting software clones. Current anti-virus 

technologies in essence check whether a given executable 

is a clone of a known, malicious executable. The primary 

difference is that an anti-virus software, running on a 

user’s desktop, must make the determination without 

having access to a complete copy of the original, or else 

the anti-virus software itself may be distributing viruses.  

Our algorithm has some similarities to Komondoor and 

Horwitz’s PDG based algorithm for detecting software 

clone [9]. While we create string representations using 

the data-dependence relations of a statement, Komondoor 

and Horwitz match theses statements to determine clones. 

They too compare statements by factoring out differences 

in the names of variables. 

6. Conclusions 

We are investigating methods for transforming a 

program into a canonical form. Such a method may be 

used to map different variants of a metamorphic virus to 

the same canonical form, thereby making it easier to 

detect such viruses. With this goal, we have developed 

transformations to undo the effect of statement 

reordering, expression reshaping, and variable renaming 

transformations.  We call the resulting form a zero form. 

As our method is a heuristic, we may not always map all 

the variants to a single zero form. But the application of 
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Figure 14 Reorderable percentages for test systems 

Table 1 Number of permutations for test systems 

Bison Cook SNNS Fractal C/Vision 

P0 1.8E61 2.8E47 1.4E184 9.1E88 1.3E113 

P1 8.5E17 9.1E21 2.7E29 3.0E21 5.9E7 

P2 8.5E17 9.1E21 4.9E9 3.0E21 15,156 

P3 8.5E17 4.6E21 4.9E9 5.9E16 15,155 

P4 8.5E17 4.6E21 3.0E9 1.8E9 1,591 

P5 8.5E17 4.6E21 3.0E9 1.8E9 1,104 

P6 8.5E17 4.6E21 1.3E6 6.6E8 203 
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zeroing transformations results in a significant decrease 

in the number of possible variants of a program. Our 

initial experiments show that on an average 55% of the 

statements of a program statements are reorderable. After 

imposing order on these statements using our zeroing 

transformation only 6% of the statements remained 

reorderable, that is, could not be ordered using our 

method. This is a significant reduction in the number of 

variants that can be created by statement reordering. To 

utilize the method in AV technologies, the method needs 

to be adapted for binary programs.  

Acknowledgments:  The authors thank Andrew 

Walenstein for his help in improving the presentation of 

this paper.  

7. References 

[1] A. Aho, R. Sethi, and J. Ullman, Compilers 

Principles, Techniques, and Tools: Addison-Wesley, 

1986.

[2] V. Bontchev, "Macro and Script Virus 

Polymorphism," in Proceedings of the 12th 

International Virus Bulletin Conference, 2002. 

[3] M. Christodrescu and S. Jha, "Static Analysis of 

Executables to Detect Malicious Patterns," in The

12th USENIX Security Symposium (Security '03),

Washington DC, USA, 2003. 

[4] F. Cohen, "Computer Viruses-Theory and 

Experiments," Computers and Security, 6, 1984 

[5] C. Collberg and C. Thomborson, "Watermarking, 

Tamper-Proofing, and Obfuscation - Tools for 

Software Protection," IEEE Transactions on 

Software Engineering, vol. 28, pp. 735-746, 2002. 

[6] C. G. Davis, "Debian Cook Package," 

http://packages.debian.org/stable/devel/cook.html,

Last accessed 08/29/2003. 

[7] J. Ferrante, K. J. Ottenstein, and J. Warren, "The 

Program Dependence Graphs and Its Use in 

Optimization," ACM Transactions on Programming 

Languages and Systems (TOPLAS), vol. 9, pp. 319-

349, 1987. 

[8] GrammaTech, "Codesurfer - Program Analysis Tool," 

http://www.codesurfer.com, Last accessed 

08/29/2003. 

[9] R. Komondoor and S. Horwitz, "Using Slicing to 

Identify Duplication in Source Code," in 

Proceedings of the 8th International Symposium on 

Static Analysis, Paris, France, 2001. 

[10] A. Lakhotia and P. K. Singh, "Challenges in Getting 

Formal with Viruses," Virus Bulletin, 2003, 

http://www.virusbtn.com/magazine/archives/200309/

formal.xml.

[11] C. Linn and S. Debray, "Obfuscation of Executable 

Code to Improve Resistance to Static Disassembly," 

in Proceedings of the 10th ACM Conference on 

Computer and Communication Security 2003,

Washington D.C., USA, 2003. 

[12] R. W. Lo, K. N. Levitt, and R. A. Olsson, "MCF: A 

Malicious Code Filter," Computers & Security, vol. 

14, pp. 541-566, 1995. 

[13] M. Mohammed, Zeroing in on Metamorpic 

Computer Viruses, Center for Advanced Computer 

Studies, University of Louisiana at Lafayette, M.S. 

Thesis, 2003. 

[14] R. M. Stallman, R. McGrath, and P. Smith, "GNU 

Make, a Program for Directing Recompilation," 

2002.

[15] R. T. Stevens, Fractal Programming in C: John 

Wiley and Sons, 1989. 

[16] Symantec, "Understanding Heuristics: Symantec's 

Bloodhound Technology," 

http://www.symantec.com/avcenter/reference/heurist

c.pdf, Last accessed July 1, 2004. 

[17] G. Szappanos, "Are There Any Polymorphic Macro 

Viruses at All? (… and What to Do with Them)," in 

Proceedings of the 12th International Virus Bulletin 

Conference, 2002. 

[18] P. Ször and P. Ferrie, "Hunting for Metamorphic," in 

Proceedings of the 11th International Virus Bulletin 

Conference, 2001. 

[19] G. Wroblewski, General Method of Program Code 

Obfuscation, Institute of Engineering Cybernetics, 

Wroclaw University of Technology, PhD. Thesis, 

2002.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04) 

1095-1350/04 $20.00 © 2004 IEEE 


