
Imposing Order on Program Statements to Assist Anti-Virus Scanners

Arun Lakhotia and Moinuddin Mohammed

University of Louisiana at Lafayette

arun@louisiana.edu

Abstract

A metamorphic virus applies semantics preserving

transformations on itself to create a different variant

before propagation. Metamorphic computer viruses

thwart current anti-virus technologies that use

signatures—a fixed sequence of bytes from a sample of a

virus—since two variants of a metamorphic virus may not

share the same signature. A method to impose an order

on the statements and components of expressions of a

program is presented. The method, called a “zeroing

transformation,” reduces the number of possible variants

of a program created by reordering statement, reshaping

expression, and renaming variable. On a collection of C

program used for evaluation, the zeroing transformation

reduced the space of program variants due to statement

reordering from 10183 to 1020. Further reduction can be

expected by undoing other transformations. Anti-virus

technologies may be improved by extracting signatures

from zero form of a virus, and not the original version.

1. Introduction

A metamorphic computer virus transforms its code

before propagating it to a new host [2, 4, 17, 18].

Win32/Evol, Win32/Zperm, and Win32/Bistro are some

recent metamorphic viruses. Zperm carries with it the

Real Permutating Engine (RPME), a metamorphic engine

that can be combined with any virus to make it

metamorphic [18]. There are other similar metamorphic

engines available on websites catering to hackers.

Metamorphic viruses can escape signature-based anti-

virus scanners [3]. The emergence of metamorphic

viruses calls for new methods for anti-virus (AV)

scanning. An ideal AV Scanner would be capable of

detecting the different possible variants of a metamorphic

virus by using signature from only one known variant.

This investigation has been motivated by a desire to

create an ideal AV scanner. In this paper we investigate

the question: Is it possible to transform a program to a

canonical form such that two variants of the program

have the same form? If such a transformation is feasible

then, instead of the original virus, signatures may be

extracted from its canonical form. When scanning, a

suspect program may be converted to its canonical form

and then checked for the existence of signature of known

viruses.

As a step towards the larger goal, this paper presents a

set of heuristics to impose order on the statements of a C-

like program. By imposing such an order, it is expected

that one can undo the effect of statement/instruction

reordering transformation performed by metamorphic

viruses. While the viruses posing greatest challenges are

usually binary, an initial step is important. Besides, it is

expected that for any significant analysis a virus will be

first decompiled to a higher language. Thus, the method

presented should be applicable for binary viruses.

Using GrammaTech’s CodeSurfer™ we have

implemented the proposed method in a prototype tool,

C . Empirical analysis of the method on real-world C

programs show that our method is promising. For the

programs studied, after fixing order of statements using

our method, the number of possible permutations of the

programs was reduced by a factor of 10163. In the context

of metamorphic viruses, this is the reduction in the

number of signatures that may be needed if all possible

reordered variants of a virus appear in the wild.

In this paper we summarize our method for fixing

order and the results from an empirical analysis of the

method. Section 2 presents some transformations used by

metamorphic viruses. Section 3 outlines how to undo the

transformations by mapping a program into a zero form.

It presents our algorithm for imposing order on the

statements of a program. Section 4 summarizes the results

of an empirical evaluation of our algorithm. Section 5

contains a comparison with related works. Section 6

presents our conclusions.

2. Morphing transformations

A metamorphic virus carries with itself a morpher: a

subprogram that transforms the structure of the virus

This work has been sponsored in part by funds from Louisiana

Governor’s Information Technology Initiative.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

without affecting its behavior. The morphing

transformations used by recent metamorphic viruses

include dead or irrelevant code insertion; register

renaming; expression reshaping; break & join

transformations; and statement reordering. Figure 1

enumerates these transformations using examples.

Inserting dead code (irrelevant/junk code) in a

program has no effect on the results of the program. It is

very effective in changing the program text. Dead code

may be inserted by simply inserting the NOP instruction.

There are other, more complex forms of dead code as

well, such as inserting a PUSH instruction and a POP

instruction at non-consecutive locations.

The register renaming transformation changes the

register used in a computation. In order to preserve the

behavior of the original virus, it is necessary that all

related occurrence of the register also be renamed.

Break & join transformations break programs into

pieces, select a random order of these pieces, and use

unconditional branch statements to connect these pieces

such that the statements are executed in the same

sequence as in the original programs.

Expression reshaping involves generating random

permutations of operands in expressions with

commutative and associative operators. This changes the

structure of expressions.

The statement reordering transformation reorders the

statements in a program such that the behavior of the

program does not change. It is possible to reorder

statements if and only if there are no dependences [7]

between the statements being reordered. If the virus

signature includes bytes corresponding to a statement

from this set of reorderable statements, then application

of statement reordering transformation makes the original

virus signature useless for as many different variants as

possible.

mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx
mul ecx
push eax

mov eax, V_S - 1
nop

add eax, ecx
xor edx, edx
add eax, 0
div ecx
nop
mul ecx
push eax

(a) Deadcode insertion

push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx

push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx

(b) Variable Renaming

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4

L1:
statement-1
statement-2
goto L3

L5:
statement-5
goto L6
L4:

statement-4
goto L5
L6:

statement-6

(c) Break and Join Transformation

if (i < a * b * c)
{
 a = x * 100 + 2;
 b = 10 * i;
 c = y * a + b;
 i = a + b + c;
}

if (i < a * b * c)
{
 a = 2 + x * 100;
 b = 10 * i;
 c = a * y + b;
 i = b + c + a;
}

(d) Expression Reshaping

x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{
 b = 200 * i;
 c = y * i;
 a = x * y + i * z;
 i = i + 1;
}

x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{
 a = x * y + i * z;
 b = 200 * i;
 c = y * i;

 i = i + 1;
}

(d) Statement Reordering

Figure 1 Morphing Transformations

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

3. “Zeroing” transformation

The effect of a morphing transformation, described

above, could be removed by performing its inverse

transformation, if one exists. For instance, dead-code

elimination, constant propagation [1], removal of

redundant computations, and elimination of spurious

unconditional branch statements may be used to undo the

effects of (some types of) dead code or irrelevant code

insertion, expression reshaping, and break & join

transformations, respectively. The final outcome may

depend on the specific order in which these

transformations are applied. It is an open research

question on how to choose an order for applying these

transformations such that it yields the same canonical

form for different variants.

The focus of our current investigation is on how to

undo the effects of statement reordering, reshaping

expressions, and variable renaming transformations. The

inverse of these transformations have not been studied in

the literature. We call our transformation the “zeroing”

transformation, for its attempt to eliminate the effect of

reordering, variable renaming, and expression reshaping.

The program resulting from applying the zeroing

transformation is called the zero form.

We present the zeroing transformation top-down;

presenting the high level steps first, followed by a

description of the lower level steps.

The zeroing transformation has the following steps:

1. Create a Program Tree (PT) representation of the

program.

2. Partition the PT nodes into reorderable sets, each

set containing statements that may be mutually

reordered without affecting the program’s

semantics.

3. Partition each reorderable set into a sequence of

isomorphic sets, where every statement in an

isomorphic set has the same ‘string representation.’

The representation does not depend on names of

the variables in the program, order of variable in

commutative operators, and order of the statements

in the program,

4. Assign a number to each statement. The numbering

is done using a depth-first traversal of the PT.

Statements in a reorderable set are visited based on

the order in the sequence of isomorphic set.

Statements in an isomorphic set are visited in

random order.

5. Create a new program by ordering the statements as

per the numbers assigned in the last step. In each

expression, replace each variable name by a new

A=0
B=3
IF (A>B) then
 C = A + 1
 D = A + B+ 20
 E = C + D + 10
FI
F = A + C
G = A + B

I=0
I=3
IF (I>I) then
 I = I + 1
 I = I +I + 20
 I = I + I + 10
FI
I = I + I

I = I + I

A=0
B=3
G = A + B
IF (A>B) then
 C = A + 1
 D = A+B + 20
 E = C + D + 10
FI

F = A + C

Create
String

Fix
order

(a) Fixing the statement order – Variant A

(b) Fixing the statement order – Variant B

Extract data dependence

P=3
Q=0
G=P+Q
IF (Q>P) then
 D = Q +20+ P
 C = Q + 1
 E = C + D + 10
FI
F = Q + C

I=3
I=0
I = I + I
IF (I>I) then
 I = I + I + 20
 I = I + 1
 I = I + I + 10
FI

I = I + I

Q = 0
P = 3
G = P + Q
IF (Q>P) then
 C = Q + 1
 D = Q + P + 20
 E = C + D + 10
FI

F = Q + C

Create

String
Fix

order

Extract data dependence

V1=0
V2=3
V3 = V1 + V2
IF (V1>V2) then
 V4 = V1 + 1
 V5= V1+V2+20
 V6 = V4 + V5 + 10
FI
V7 = V1 + V4

Rename variables

V1=0
V2=3
V3 = V1 + V2
IF (V1>V2) then
 V4 = V1 + 1
 V5= V1+V2+20
 V6 = V4 + V5 + 10
FI

V7 = V1 + V4

Rename variables

Figure 2 Transforming program variants to zero form

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

variable name created using the number of the

statement where it is first defined.

The following subsections describe the first three

steps. The last two steps are self-explanatory, and are not

elaborated any further.

3.1. Program tree (PT) representation

A program tree (PT) is a hierarchical ordering of

statements in a program. While the abstract syntax tree

(AST) of a program could serve as a PT, we do not use

AST because its structure depends on the specific order

of statements in the program. We use the control

dependence sub-graph (CDG) [7] for constructing the PT.

Construction of PT for structured programs, i.e., goto free

programs, is straightforward. The nodes in the program

tree are the statements of the program. We create an edge

in the program tree from a node n1 to node n2 if there

exists an edge from n1 to n2 in the corresponding CDG.

The PT of the code segment in Figure 2 is shown in

Figure 3. For readability, we show the corresponding

program statements for control predicates in the program

tree. For example, in Figure 3, the control predicate

(A>B) is shown as If (A>B). The node If (A>B) in Figure

3 has an edge to the nodes C=A+1, D=A+B+200,

E=C+D+10 because of the control dependence

relationship between the node If (A>B) and the nodes

C=A+1, D=A+B+200, E=C+D+10.

In general, the control dependence graph may not be a

tree. A CDG node may have multiple predecessors and

the graph may have cycles. Consider the program in

Figure 4(a). Its control dependence graph, shown in

Figure 4(b), has a cycle. We create a PT by traversing a

CDG in depth first order and terminating the traversal

when a node in the ancestor list is visited again. To

indicate the repetition we include a copy of that node in

the tree. Figure 5 shows the PT for the CDG of Figure

4(b). Similarly, if a node in the CDG has multiple

parents, we create a duplicate child node for each parent

node.

A program tree is constructed for each procedure of

the program.

3.2. Partitioning PT into reorderable sets

This section describes an algorithm for partitioning PT

nodes into reorderable sets. The aim of this step is to find

statements that may be mutually reordered without

changing the semantics of the program.

Definition: Reorderable set. A set of nodes in PT is

reorderable if its nodes can be mutually reordered

(swapped) without changing the semantics of the program

represented by PT.

For a set of nodes to be reordered they must be

siblings in the PT. A pair of sibling PT nodes can be

reordered if one does not depend on the other, as per the

following definition.

Definition: Tree dependence. Let n1, n2 PT be

sibling nodes. Node n2 is tree-dependent on node n1 if

and only if there exists a path from n1 to n2 in the control

flow graph of P and (1) a node in the sub-tree of PT

rooted at n2 is data dependent on a node in the sub-tree of

PT rooted at n1 or (2) there exist two nodes n1’ and n2’ in

the sub-trees of PT rooted at n1 and n2, respectively, such

that the intersection of the set of variables defined in n1’

and n2’ is non-empty.

The data-dependence relation in Condition (1), above,

is as traditionally used in compilers, and in the

construction of program dependence graph (PDG). This

condition propagates to the parents the data dependence

relation between its (transitive, reflexive) children.

Condition (2) relates statements that may become data-

dependent if they were swapped.

main()

A=0 B=3
If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

main()

A=0 B=3
If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

Figure 3 Program Tree for Example 1 (of Figure 2)

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10) {
 x = x+1;
 if (x>5) break;

 print (x);

}

(a) Program (b) CDG

Figure 4 Example 2

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

Figure 5 Program Tree for Example 2

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

The children of each node in the PT are partitioned

into a sequence of reorderable sets. The order between

the reorderable sets is fixed, but the order of the elements

within a reorderable set is not fixed. Given a program (P)

and its corresponding PT, the PT nodes can be partitioned

into reorderable sets using the partitioning algorithm in

Figure 7.

The partitioning algorithm traverses the PT of P in the

post order to find the nodes that can be reordered. It

assigns a DG-Depth (dependence graph depth) value to

each node. The DG-Depth is also the number of the

reorderable set in which that node is placed. The DG-

Depth of all nodes is initially set to ‘0’. The children of a

node are processed in the control flow order. For every

child node c of n, the partitioning algorithm finds the

node c’, having the maximum DG-Depth m, such that

either c depends on c’ or c’ depends on c. The DG-Depth

of c is set to m+1 implying that the child node c is placed

in the reorderable set number m+1. The use of

dependence graph depth for identifying order between

statements assures that after the nodes are partitioned, the

dependence order of the children is preserved.

Consider the Node main () in Figure 2. Its root has the

following children {A=0, B=3, If (A>B), F=A+C,

G=A+B}. The dependence graph for this set of children

is shown in Figure 6. The edge from the node A=0 to the

node If (A>B) corresponds to the dependence relation

from node A=0 to the node If (A>B); i.e., there exists a

path from the node A=0 to the node If (A>B) in the

control flow graph of P and a value defined by the node

A=0 is used by at least one node in the sub-tree starting

with the node If (A>B). Similarly, the edge from the node

If (A>B) to the node F = A+C corresponds to a tree

dependence relation from If (A>B) to F=A+C.

Figure 8 illustrates the working of the partitioning

algorithm. The child nodes are processed in the control

flow order. At each step, a node is picked and its DG-

Depth computed. Initially, all the child nodes are given a

DG-Depth of ‘0’. Figure 8(a) shows the processing of the

child node A=0. The incoming/outgoing edges of the

node A=0 are directed from/to the nodes having a DG-

Depths as ‘0’. Hence, the node A=0 is placed in the

reorderable set numbered ‘1’. The DG-Depth of the node

A=0 is set to ‘1’. In Figure 8(d), the algorithm processes

the child node F=A+C. The DG-Depths of the nodes that

have a dependence relation with F=A+C are {2, 1}. The

maximum value in this set is 2. Hence F=A+C is placed

in the reorderable set numbered 3. The DG-Depth of the

node F=A+C is set to ‘3’.

After partitioning, the reorderable sets will be as

follows.

Reorderable set–1: {A=0, B=3};

Reorderable set–2: {If (A>B), G=A+B};

Reorderable set–3: {F=A+C}.

Figure 8(f) shows the partitioned dependence graph.

We apply one more transformation to undo the effect

of splitting a single assignment expression into multiple

assignments. This is done by identifying chains in the

tree-dependence graph of siblings and abstracting the

chain as a single expression. A dependence chain is

defined as follows.

Definition: Dependence Chain. A sequence of sibling

nodes n1 to nk, k > 0, form a dependence chain iff (a) for

all ni, 1 i < k there is at most one node, ni+1, tree-

dependent on ni, and (b) for all nj, 1 < j k, nj is tree-

dependent on at most one node, i.e., nj-1.

Figure 9(b) shows the dependence chains formed for

the dependence graph of Figure 9(a).

Definition of tree-dependence is extended to include

dependence between chains, as follows.

Definition: Dependence between chains. A

dependence chain c1 is dependent on a dependence chain

c2 if and only if a PT node in c1 is tree-dependent on a PT

node in c2.

A=0 B=3 If (A>B) F=A+C G=A+BA=0 B=3 If (A>B) F=A+C G=A+B

Figure 6 Tree-dependence for the children of “root”

of Example 1

Partition-PT (n : PT-Node) {

 for each child c of n do

 Partition-PT (c);

 for each child c of n

 (in control-flow order) do {

 m = 0;

 for each c’ such that

 c tree-depends on c’

 or c’ tree-depends on c do

 m = max (DG-Depth(c), m);

 }

 // c is in reorderable set m+1

 DG-Depth (c) = m+1;

}

Figure 7 Algorithm to Partition PT Siblings

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

The partitioning algorithm treats a dependence chain

like a PT node. The algorithm produces the same

reorderable sets independent of statement reordering,

expression reshaping, and variable renaming

transformations. The next section describes a strategy to

order statements in a reorderable set. The use of

dependence chains instead of individual program

statements improves the probability of imposing an order

using the string representation of the dependence chains.

3.3. Partitioning reorderable sets

The statements in a reorderable set are

partitioned into a sequence of isomorphic sets by

associating a special string representation to each

statement, sorting the statements based on the string

representation, and placing the statements with identical

string representation in the corresponding isomorphic set.

We have experimented with six string representations,

referred to as SR1 to SR6. String representation SRi is

used to partition statements that could not be partitioned

using SRi-1. Thus, the six string representations act as a

succession of filters.

The string representations need not preserve the

semantics of the original statement since they are used

only for ordering statements. The string representations

are designed so that they do not depend on the names of

the variable in the program, or the order of statements in

the program, or order of expressions in commutative

operators.

Figure 11 shows an example of SR1 representations of

two expressions. Figure 10 gives the algorithm for

computing this SR1 form. The result of the algorithm is

placed in the property String of the expression node. In

the SR1 form every identifier is replaced by the same

symbol, “I”. The string representation of an operator is

created by concatenating the string representations of its

operands. To counter expression reshaping, the string

representations of the operands of a commutative

operator are sorted before concatenation. The algorithm

assumes that nested sequences of commutative binary

operators are represented using a single n-ary operator. In

addition, other transformations may also be pre-applied

on the AST, such as representing the subtraction operator

as addition of a negative number.

The string representation of expressions in a PT is

used to create the string representation of a PT (and its

subtrees). Figure 12 presents the algorithm to compute

(a) Processing the node [A=0]

(b) Processing the node [B=3]

Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1)

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1)

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]

Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1)

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]

Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1)

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]

Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1)

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

(a) Processing the node [A=0]

(b) Processing the node [B=3]

Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1)

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1)

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]

Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1)

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]

Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1)

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]

Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1)

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

Figure 8 Working of Partitioning Algorithm

3

1

2 4 5

9

8

7

6

10

(a) Tree-Dependence Graph

2 4 5

6 7 8

9 10

3

1

(b) Dependence Chains

Figure 9 Examples of Dependence Chains

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

string form of a PT node, and its children. The

reorderable sets are processed in their sequence order.

The string representations of nodes are used to

partition reorderable sets by sorting the nodes on their

string representation. The statements with the same

string representation are grouped into isomorphic sets.

The isomorphic sets are sorted using the string

representation of its member elements. For instance, the

statements A=B+20 and C=20+D have the same SR1s. If

these statements are in the same reorderable set then they

will also be placed in the same isomorphic set.

Statements that cannot be differentiated into singleton

sets by SRi are attempted to partition using SRi+1

through SR6, until one differentiates them. These

representations are summarized below.

SR1 representation: Replace each variable in the

statement by the symbol ‘I’, convert commutative

(binary) operators to N-ary operators, and sort the

operands of the N-ary commutative operators using

the SR1 representation for the operands.

SR2 representation: For each variable used in an

expression count the number of reaching definitions

for that expression. For each variable defined in the

expression, count the number of statements using

that definition. Create a string using the counts of the

number of uses and definitions. Figure 13 contains

an example of SR2 form. The string U{1,3} implies

that of the two variables used in expression

“A=C+D”, one variable has ‘1’ reaching definition

and the other variable has ‘3’ reaching definitions.

The string “D{2}” in the SR2 form implies that the

variable defined in this expression is used in two

statements.

SR3 representation: Concatenate the sorted

sequence of strings representing the SR1

representations of all the data dependence

predecessors of the statement.

SR4 representation: Concatenate the sorted

sequence of strings representing the SR1

representations of all the data dependence successors

of the statement.

SR5 representation: Replace each function call in

the statement by the SR1 representation of the body

of that function.

SR6 representation: Concatenate the sorted

sequence of strings representing the SR1

representations of all the statements in forward and

backward slices of that statement.

Reorderable statements that yield the same string

representation for SR1 through SR6 representations are

placed in the same isomorphic set.

Let us return to Figure 2. All statements in the two

programs in this example can be completely ordered

using the SR1 representation. The box after ‘Create

String’ gives the SR1 representation of the programs,

with a caveat. The strings for the children have not been

sorted. The box after ‘Fix Order’ shows the resulting

order of statements. The result from renaming the

variables is shown in the last step.

More details on the zeroing transformation may be

found in [13].

4. Empirical analysis

We have developed a tool, C , that implements the

proposed algorithm for imposing order on the statements

of C programs. It does not implement transformations to

undo expression reshaping. C uses the Program

Dependence Graph (PDG) [7], generated by

CodeSurfer™ [8] of GrammaTech, to gather the control

Stringify-Expression (e : Expression)

{

 if (e is a variable) e.String = “I”;

 elseif (e is a constant)

 e.String = string rep of e;

 else {

 // e is an operator

 S = string rep of root operator of e;

 for each child c of e do

 Stringify-Expression (c);

 if (e represents a commutative operator)

 L = sorted list of string reps of children of e;

 else

 L = list of string reps of children of e;

 fi;

 S’ = concatenate strings in L;

 e.String = concatenate S and S’;

 }

Figure 10 Creating SR1 Strings of Expressions

D = B - 200

=

D -

B 200

-I200

=I-I200

Expression AST String

A = B + 200

=

A +

B 200

+200I

=I+200I

Figure 11 SR1 Form of Expressions

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

and data dependences needed to identify reorderable

statements.

We analyzed a set of real-world C programs to study

how well the proposed approach imposed order on their

statements. Our test systems represent a ‘best case’

scenario. If the results for the best case are not

satisfactory, then one cannot expect any significant

returns from using the method for metamorphic viruses

whose code is inherently obfuscated.

The test systems used in the experiments are described

below:

• Bison: The Bison program is a LALR parser

generator. It consists of 33 C files generating 10,718

nodes in the program dependence graph.

• Cook: The COOK system [6] is used for writing

build scripts for projects. It is a powerful and easy to use

replacement for make [14]. It consists of 39 files

generating 9,147 nodes in the PDG.

• SNNS: The SNNS system is a neural network

simulator for Unix® workstations. It consists of 11 files

generating 8,835 nodes in the PDG.

• Fractal: The Fractal programs [15] create fractals

using C programming language. It contains 36 files

generating 8,856 nodes in the PDG.

• Computer vision: The Computer Vision programs

is a collection of programs illustrating computer vision. It

consists of 21 files generating 13,159 nodes in the PDG.

For each of these systems we measure the following:

1. Reorderable Percentages: The percentage of

statements that can be reordered.

2. Total Number of Permutations: Product of the

number of permutations of each reorderable set.

The two measures are computed for the original

program, referred to as SR0 representation, and the

program resulting after fixing statement order using the

filters SR1 through SR6, but without the transformation

for expression reshaping.

Figure 14 shows the reorderable percentages for our

test programs. On an average 55% of the statements of

the original program are reorderable. The number of

reorderable statements is reduced to 6% after

transformation. The Fractal programs have higher

reorderable percentages than other systems. This is

because the Fractal programs have computer graphics

code has many code fragments with similar statement

structures, but which compute on different coordinate

axes.

Table 1 shows the total number of possible

permutations for the test programs before and after

applying zeroing transformations. The rows P1 to P6 are

number of possible permutations that can be created by

reordering statements whose order is not fixed by SR1 to

SR6, respectively. P0 is the permutations for the original

program.

The SR1 filter significantly reduces the number of

possible permutations for each program. For Bison the

reduction was from 1061 possible permutations to 1017.

The number of variants of the Cook system was reduced

from 1047 to 1021; for SNNS a reduction from 10184 to

1029; for Fractal a reduction from 1088 to 1021; and for

Computer Vision a reduction from 10113 to 107. The

sample programs exhibit significant variation on the

effect of the successive filters SR2 to SR6. The SR2,

SR4, and SR6 filters produce at least an order of

magnitude reduction for Computer Vision and Fractal,

whereas SR2 and SR6 produced similar reduction for

SNNS. None of the other filters made any significant

difference to Bison and Cook.

5. Related work

Besides making it difficult to detect a virus using

signature-based analysis [3, 10], metamorphic

transformations also obfuscate the code to make it

difficult for an anti-virus analyst to analyze the program.

Such obfuscations have legitimate uses too. Programs

may be obfuscated to protect intellectual property, and to

increase security by making it difficult for others to

identify vulnerabilities [5, 11, 19]. The art of obfuscation

is quite advanced. Collberg et al. [5] present a taxonomy

Figure 12 Creating String Form of PT-Nodes

A = C + D

B = D + K

U{1,3}:D{2}

U{2,3}:D{2}

Expression SR2 Form

Figure 13 SR2 Form of Expressions

Stringify-PT-Node (n: PT-Node)

{

 if (n is a leaf node) {

 Stringify-Expression (expression of n);

n.String = n.String;

 } else {

 Stringify-Expression (expression of n);

 S = (expression of n).String;

 for each reorderable set r of n do {

 for each child c in r do

 Stringify-PT-Node-SR1 (c);

 R = sorted list of SRs of nodes in r;

r.String = concatenation of strings in R;

 }

 L = sorted list of SRs of reorderable sets of n;

 S’ = concatenation of strings in L;

n.String = concatenate S and S’

}

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

of obfuscating transformations and a detailed theoretical

description of such transformations.

The Bloodhound technology [16] of Symantec Inc.

uses static and dynamic heuristic scanners. The static

heuristic scanner maintains a signature database. The

signatures are associated with program code representing

different functional behaviors. The dynamic heuristic

scanner uses CPU emulation to gather information about

the interrupt calls the program is making. Based on this

information it can identify the functional behavior of the

program. Once different functional behaviors are

identified, they are fed to an expert system, which judges

whether the program is malicious or not. Static heuristics

fail to detect morphed variants of the viruses because

such variants may have different signatures. Dynamic

heuristics consider only one possible execution of a

program. A virus can avoid being detected by a dynamic

scanner by introducing arbitrary loops.

Lo et al.’s MCF [12] uses program slicing and flow

analysis for detecting computer viruses, worms, Trojan-

horses, and time/logic bombs. MCF identifies telltale

signs that differentiate between malicious and benign

programs. MCF slices a program with respect to these

telltale signs to get a smaller program segment

representing the malicious behavior. This smaller

program segment is manually analyzed for the existence

of virus behavior.

Szappanos [17] uses code normalization techniques to

remove junk code & white spaces, and comments in

macro viruses before they generate virus signature. To

deal with variable renaming, Szappanos suggests two

methods: first, renaming variables using the order in

which they appear in the program and second, renaming

all the variables in a program with a same name. Former

approach fails if the virus reorders its statements, and the

later approach abstracts a lot of information and may lead

to incorrect results. As our approach fixes the order of the

statements in a program, the first approach suggested by

Szappanos for renaming the variable can be used in

combination with our method.

Christodorescu et al. [3] have developed a method for

detecting patterns of malicious code in executables. They

use abstraction patterns—patterns representing sequences

of instructions. These patterns are parameterized to match

different instructions sequences with the same instruction

set but different operands. Their approach gives fewer

false positives but the cost of creating and matching the

abstraction patterns is high. They detect the virus variants

created by performing dead code insertion, variable

renaming in the absence of statement reordering, and

break & join transformations. Our method, in addition to

the above morphing transformations, can be used to

detect the viruses that apply statement reordering and

expression reshaping transformations.

The problem of detecting malicious code is related to

that of detecting software clones. Current anti-virus

technologies in essence check whether a given executable

is a clone of a known, malicious executable. The primary

difference is that an anti-virus software, running on a

user’s desktop, must make the determination without

having access to a complete copy of the original, or else

the anti-virus software itself may be distributing viruses.

Our algorithm has some similarities to Komondoor and

Horwitz’s PDG based algorithm for detecting software

clone [9]. While we create string representations using

the data-dependence relations of a statement, Komondoor

and Horwitz match theses statements to determine clones.

They too compare statements by factoring out differences

in the names of variables.

6. Conclusions

We are investigating methods for transforming a

program into a canonical form. Such a method may be

used to map different variants of a metamorphic virus to

the same canonical form, thereby making it easier to

detect such viruses. With this goal, we have developed

transformations to undo the effect of statement

reordering, expression reshaping, and variable renaming

transformations. We call the resulting form a zero form.

As our method is a heuristic, we may not always map all

the variants to a single zero form. But the application of

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������

����������
����������
����������

���������
���������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������

����������
����������

�����������
�����������
�����������

�����������
�����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������

����������
����������

����������
����������
���������� ����������

����������
����������
����������
����������
����������
����������

����������
����������

����������
����������

����������
����������
���������� ���������

����������
����������
����������
����������
����������
����������

����������
����������

����������
����������

����������
���������� ����������

����������
����������
����������
����������
����������

����������
����������

0

10

20

30

40

50

60

70

80

90

100

Bison Cook SNNS Fractal Computer

Vision

Test systems

R
e

o
rd

e
ra

b
le

 p
e

rc
e

n
ta

g
e

�������
������� SR0

�������
������� SR1

�������
������� SR2 SR3

������
������ SR4

������
������ SR5

������
������ SR6

Figure 14 Reorderable percentages for test systems

Table 1 Number of permutations for test systems

Bison Cook SNNS Fractal C/Vision

P0 1.8E61 2.8E47 1.4E184 9.1E88 1.3E113

P1 8.5E17 9.1E21 2.7E29 3.0E21 5.9E7

P2 8.5E17 9.1E21 4.9E9 3.0E21 15,156

P3 8.5E17 4.6E21 4.9E9 5.9E16 15,155

P4 8.5E17 4.6E21 3.0E9 1.8E9 1,591

P5 8.5E17 4.6E21 3.0E9 1.8E9 1,104

P6 8.5E17 4.6E21 1.3E6 6.6E8 203

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

zeroing transformations results in a significant decrease

in the number of possible variants of a program. Our

initial experiments show that on an average 55% of the

statements of a program statements are reorderable. After

imposing order on these statements using our zeroing

transformation only 6% of the statements remained

reorderable, that is, could not be ordered using our

method. This is a significant reduction in the number of

variants that can be created by statement reordering. To

utilize the method in AV technologies, the method needs

to be adapted for binary programs.

Acknowledgments: The authors thank Andrew

Walenstein for his help in improving the presentation of

this paper.

7. References

[1] A. Aho, R. Sethi, and J. Ullman, Compilers

Principles, Techniques, and Tools: Addison-Wesley,

1986.

[2] V. Bontchev, "Macro and Script Virus

Polymorphism," in Proceedings of the 12th

International Virus Bulletin Conference, 2002.

[3] M. Christodrescu and S. Jha, "Static Analysis of

Executables to Detect Malicious Patterns," in The

12th USENIX Security Symposium (Security '03),

Washington DC, USA, 2003.

[4] F. Cohen, "Computer Viruses-Theory and

Experiments," Computers and Security, 6, 1984

[5] C. Collberg and C. Thomborson, "Watermarking,

Tamper-Proofing, and Obfuscation - Tools for

Software Protection," IEEE Transactions on

Software Engineering, vol. 28, pp. 735-746, 2002.

[6] C. G. Davis, "Debian Cook Package,"

http://packages.debian.org/stable/devel/cook.html,

Last accessed 08/29/2003.

[7] J. Ferrante, K. J. Ottenstein, and J. Warren, "The

Program Dependence Graphs and Its Use in

Optimization," ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 9, pp. 319-

349, 1987.

[8] GrammaTech, "Codesurfer - Program Analysis Tool,"

http://www.codesurfer.com, Last accessed

08/29/2003.

[9] R. Komondoor and S. Horwitz, "Using Slicing to

Identify Duplication in Source Code," in

Proceedings of the 8th International Symposium on

Static Analysis, Paris, France, 2001.

[10] A. Lakhotia and P. K. Singh, "Challenges in Getting

Formal with Viruses," Virus Bulletin, 2003,

http://www.virusbtn.com/magazine/archives/200309/

formal.xml.

[11] C. Linn and S. Debray, "Obfuscation of Executable

Code to Improve Resistance to Static Disassembly,"

in Proceedings of the 10th ACM Conference on

Computer and Communication Security 2003,

Washington D.C., USA, 2003.

[12] R. W. Lo, K. N. Levitt, and R. A. Olsson, "MCF: A

Malicious Code Filter," Computers & Security, vol.

14, pp. 541-566, 1995.

[13] M. Mohammed, Zeroing in on Metamorpic

Computer Viruses, Center for Advanced Computer

Studies, University of Louisiana at Lafayette, M.S.

Thesis, 2003.

[14] R. M. Stallman, R. McGrath, and P. Smith, "GNU

Make, a Program for Directing Recompilation,"

2002.

[15] R. T. Stevens, Fractal Programming in C: John

Wiley and Sons, 1989.

[16] Symantec, "Understanding Heuristics: Symantec's

Bloodhound Technology,"

http://www.symantec.com/avcenter/reference/heurist

c.pdf, Last accessed July 1, 2004.

[17] G. Szappanos, "Are There Any Polymorphic Macro

Viruses at All? (… and What to Do with Them)," in

Proceedings of the 12th International Virus Bulletin

Conference, 2002.

[18] P. Ször and P. Ferrie, "Hunting for Metamorphic," in

Proceedings of the 11th International Virus Bulletin

Conference, 2001.

[19] G. Wroblewski, General Method of Program Code

Obfuscation, Institute of Engineering Cybernetics,

Wroclaw University of Technology, PhD. Thesis,

2002.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

