

Zeroing in on Metamorphic Computer Viruses

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Moinuddin Mohammed

Fall 2003

© Moinuddin Mohammed

2003

All Rights Reserved

To Mom and Dad

Zeroing in on Metamorphic Computer Viruses

Moinuddin Mohammed

APPROVED:

__________________________ __________________________
Arun Lakhotia, Chair Mihai Ciocoiu
Associate Professor of Computer Science Assistant Professor of Computer Science

__________________________ __________________________
Chung Yeung Lee C. E. Palmer
Assistant Professor of Computer Science Dean of the Graduate School

Acknowledgements

I thank my advisor, Dr. Arun Lakhotia, for his support, guidance, patience, and

inspiration, without which this thesis never would have never been conceptualized.

I thank my parents for their support and encouragement during all times. I thank

Sharath Malladi and Prashant Pathak for their thoughtful criticisms and valuable

comments on my thesis. Lastly, I thank the members of the software research laboratory

for reviewing my thesis document.

Moinuddin Mohammed

July 15 2003.

Table of Contents

1 Introduction... 1

1.1 Motivation... 1
1.2 Research objectives... 3
1.3 Research contributions.. 3
1.4 Impact of the research... 4
1.5 Organization of thesis ... 4

2 Morphing transformations... 5

2.1 Morphing transformations .. 6
2.1.1 Dead code insertion... 6
2.1.2 Variable renaming... 8
2.1.3 Break & join transformations.. 9
2.1.4 Expression reshaping .. 10
2.1.5 Statement reordering... 11

3 Background ... 13

3.1 Control flow graph (CFG) .. 13
3.2 Dominator ... 13
3.3 Post-Dominator ... 15
3.4 Program dependence graph... 16
3.5 Data dependence predecessors.. 17
3.6 Data dependence successors ... 17

4 Zeroing transformations .. 18

4.1 Program Tree (PT) representation .. 20
4.1.1 Handling unstructured programs... 21

4.2 Algorithm for imposing an order on the statements ... 24
4.3 Partitioning PT into reorderable sets... 25
4.4 Ordering strategies .. 30
4.5 Limitations .. 37

5 Related work.. 38

6 Implementation & results... 40

6.1 Reorderable percentage... 41
6.2 Reorderable set sizes... 43
6.3 Number of possible variants ... 47

7 Conclusions and future work... 48

8 Bibliography .. 49

ABSTRACT... 52

Biographical sketch... 53

List of Figures

Figure 2-1: Metamorphic viruses.. 5

Figure 2-2: Dead code insertion.. 7

Figure 2-3: Variable renaming.. 8

Figure 2-4: Break & join transformations... 9

Figure 2-5: Expression reshaping ... 10

Figure 2-6: Statement reordering .. 12

Figure 3-1: Sample program segment... 14

Figure 3-2: Control flow graph for the program segment in Figure 3-1........................... 14

Figure 3-3: Dominator tree for Figure 3-2.. 15

Figure 3-4: Post-Dominator tree for Figure 3-2.. 15

Figure 3-5: A sample program.. 16

Figure 3-6: Program dependence graph for the program in Figure 3-5............................ 17

Figure 4-1: Detection approach .. 18

Figure 4-2: Zeroing transformations... 19

Figure 4-3: A sample program segment.. 20

Figure 4-4: Program tree for the program segment in Figure 4-3..................................... 21

Figure 4-5: A self-loop in the control dependence subgraph.. 21

Figure 4-6: A sample unstructured program segment... 22

Figure 4-7: Control dependence subgraph for the program segment in Figure 4-6.......... 22

Figure 4-8: A sample program segment.. 23

Figure 4-9: Control dependence graph for program segment in Figure 4-8 23

Figure 4-10: PT for program segment in Figure 4-6... 23

 ix

Figure 4-11: PT for the program segment in Figure 4-8... 24

Figure 4-12: Algorithm for fixing the order of statements in a program.......................... 25

Figure 4-13: Data dependence graph for the children of “root” in Figure 4-4 27

Figure 4-14: Working of partitioning algorithm... 28

Figure 4-15: Restructuring AST to handle expression reshaping..................................... 31

Figure 4-16: Algorithm for creating string representation of expressions........................ 32

Figure 4-17: Algorithm for creating SR1.. 33

Figure 4-18: String representation of an AST - example.. 35

Figure 4-19: SR2 - example.. 35

Figure 4-20: SR3 - example.. 35

Figure 4-21: SR4 - example.. 36

Figure 4-22: Dependence chains – example ... 36

Figure 4-23: Instances for which orderings are not possible .. 37

Figure 6-1: C⊕ architecture .. 40

Figure 6-2: Test programs used in C⊕ ... 41

Figure 6-3: Reorderable percentages for the test programs .. 43

Figure 6-4: COOK - Reorderable set sizes ... 45

Figure 6-5: FRACTAL - Reorderable set sizes .. 46

Figure 6-6: SEARCH/SORT – Reorderable set sizes... 46

Figure 6-7: Number of possible permutations for test programs...................................... 47

1 Introduction

1.1 Motivation

The security of computers is an important concern for any organization that uses

computers, which in today’s world leaves out very few organizations, if any. A

compromise in security of its computer systems can cause severe losses in terms of

sensitive information, money, time, and reputation of the organization. The most

common and damaging security attacks are done using programs called computer viruses

and worms. These are computer programs that can rapidly spread from one machine to

another. They spread by exploiting some weakness in the existing programs on a

computer, or weakness in the security policy of an organization, or by simply fooling the

user into executing the programs. Damages caused by viruses and worms are estimated to

be in the billions of dollars. For example, CodeRed II worm is estimated to have caused

damages in excess of $2.6 billion [21].

The number of virus and worm attacks is increasing at an alarming rate. The

number of known viruses was about 70,000 in 2002, which is 700% more than the

number of known viruses in 1997 [6, 16]. This increase can be attributed to the increasing

use of the Internet. As the number of machines on the Internet increases, so does the

number of target hosts that can be exploited. The most common exploit is to transmit a

virus by email. In addition, hackers also exploit the Internet to connect to remote,

compromised machines to initiate other attacks. They also use compromised machines to

give commands to viruses on other compromised machines. Using compromise machines

help a hacker in hiding his/her identity.

 2

Though viruses and worms are very complex computer programs, it is not very

difficult to write a virus. Recipes for writing such programs are abundantly available on

the Internet. There is no need to write these programs from scratch. The simplest method

is to modify an existing virus to generate a new one. One does not need to be a

programmer to write a virus, either. There are many virus generation tools available on

the Internet [20]. Using these tools, creating a new virus is as easy as selecting its

lethality from a menu of options and clicking “Ok.”

Current AV technologies use virus signature, a sequence of bytes extracted from a

sample of a virus, to detect copies of that virus. Thus, they can detect a virus if the virus

signature extracted in the laboratory of the AV Company is found in a program on users’

desktops.

It has been observed before that detecting whether a given program is a virus is an

undecidable problem [3, 23]. A problem is undecidable if a computer (or a network of

computers) cannot solve it no matter how fast the computer(s) may be. AV technologies

are thus limited by this theoretical result. While they can detect a specific virus that is

known a priori to the technology, they cannot always detect whether an arbitrary

program is a virus.

Virus writers exploit this inherent limitation of AV technologies. If a virus is

written such that two instances of the virus do not have the same signature, then the virus

can evade detection. This is precisely what metamorphic viruses do. A metamorphic virus

can modify its own program as it spreads from one host to another [7, 10-13]. The child

virus, the one on the newly infected host, may not have the same sequence of bytes as the

parent virus. Hence, the same signature cannot be used for detecting such viruses.

 3

The experiments conducted by Christodorescu et al. [1] suggest that commercial

anti-virus software systems fail to detect morphed virus variants, the virus variants

obtained by changing the program text without changing the virus behavior. If an anti-

virus system were to detect metamorphic viruses using signature-scanning approach, it

would need to maintain signatures for all possible variants of the metamorphic viruses.

This approach is infeasible as the number of signatures to be maintained is too high, if

not infinite. More sound methods need to be developed for detecting metamorphic

viruses.

1.2 Research objectives

The aim of our research is to develop methods that will help in detecting morphed

variants of a virus created by changing the program text without changing the behavior of

the virus.

1.3 Research contributions

In this thesis, we present a strategy for augmenting current AV technologies to

detect metamorphic viruses. The key contribution is a sequence of transformations called

zeroing transformations to nullify the effect of the code modifications performed by a

metamorphic virus. Zeroing transformations are used to map any program to a zero form,

a single-unique form for all variants of a program created using modifications applied by

known metamorphic viruses. The name “zeroing transformations” is derived from its

similarity with the multiplicative property of the number zero. Multiplication of any real

number with zero always results in zero. Similarly, application of zeroing transformations

on a program results in its zero form.

 4

1.4 Impact of the research

The zero form of a virus may be used in the laboratory of an AV company to

generate a zero signature. The zero signatures may be distributed to the AV scanners on

users’ desktops. The scanners can then convert a program to a zero form and then match

the zero signatures. Since variants of a metamorphic virus will have the same zero form,

this method improves the ability of AV technologies in detecting metamorphic viruses.

Moreover, zero signatures reduce the overhead of maintaining a separate signature for

every variant of a virus.

1.5 Organization of thesis

Chapter 2 introduces metamorphic viruses and transformations applied on

metamorphic viruses. Chapter 3 discusses background. In Chapter 4 we describe our

approach for dealing with the metamorphic viruses. We also give the algorithms for

creating ZERO form for programs. Chapter 5 discusses related work. Chapter 6 gives the

implementation details. In Chapter 7, we discuss the results. Chapter 8 gives the

conclusions.

2 Morphing transformations

A computer virus is a program that infects a host program with its malicious code

[3]. When executed, the infected host program further spreads the infection to other host

programs. Metamorphic viruses are viruses that alter their instructions before spreading

to a host. These viruses change their instructions without changing their behavior.

Figure 2-1 gives a diagrammatic representation of the working of a metamorphic

virus. The varying shapes in Figure 2-1 suggest different variants of the same virus. The

transformations that the virus applies to change its program code (shape) without

changing its behavior are called morphing transformations.

Definition Variant of a virus: A variant of a virus V is a virus V’ where V, V’ have the

same behavior but some difference in the code.

Definition Morphing Transformations: Morphing transformations are the

transformations that, when applied to a virus, yields a variant of that virus. These

transformations change the shape of a virus, but do not change its behavior.

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Figure 2-1: Metamorphic viruses

 6

Definition Morpher: The part of virus program logic responsible for generating different

variants of the virus using morphing transformations, is referred to as morpher.

Definition Metamorphic virus: A metamorphic virus is a virus that carries a morpher

with itself to generate a variant for each infection.

2.1 Morphing transformations

Common morphing transformations used by virus writers are: dead code

insertion, variable renaming, statement reordering, expressions reshaping and break &

join transformations. This section discusses these transformations.

2.1.1 Dead code insertion

Dead code is the part of a program that is either not executed in the program or

has no effect on results of the program. Addition/Removal of such code to/from a

program doesn’t change its behavior.

Figure 2-2 shows an example of dead code insertion. Adding nops, and add eax, 0

to V1 creates V2, a morphed variant of V1. Similarly, addition of nops, add exa, 0 and

sub ebx, 0 to V2 creates V3. All the three variants, V1, V2 and V3, have same behavior.

If AV software uses the sequence of bytes corresponding to the instructions xor edx, edx

and div ecx as the virus signature, the morphed variants V2, and V3 will go undetected as

add eax, 0 is inserted after xor edx, edx.

 7

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx
nop
mul ecx
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx
mul ecx
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx
nop
mul ecx
push eax
….

D

Legend

D : dead code inserion
{V1, V2, V3} : virus variants

V1

V2

V3

D

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx
nop
mul ecx
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx
mul ecx
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx
nop
mul ecx
push eax
….

D

Legend

D : dead code inserion
{V1, V2, V3} : virus variants

V1

V2

V3

D

Figure 2-2: Dead code insertion

 8

2.1.2 Variable renaming

Variable renaming transformation changes the names of a variable by changing

all the instances of the variable with a new name. Variants created by variable renaming

have the same behavior, as this transformation doesn’t change the program behavior.

Figure 2-3 shows two examples of variable renaming transformations. The

example code segment shown in Figure 2-3 is in IA-32 assembly language. Renaming

variables corresponds to renaming registers in assembly language. Instructions in variants

V1, V2 and V3 differ in their usage of registers. The register edx is renamed to eax from

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R : variable renaming transformations
{V1, V2, V3} : virus variants

V1

V2

V3

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R : variable renaming transformations
{V1, V2, V3} : virus variants

V1

V2

V3

Figure 2-3: Variable renaming

 9

V1 to its morphed variant V2. If the signature for V1 has edx in its byte sequence, its

morphed variants V2 and V3 will not be detected using that signature.

2.1.3 Break & join transformations

Break & join transformations break a program into pieces, select a random order

of these pieces, and use unconditional branch statements to connect these pieces such that

the statements are executed in the same sequence as in the original program.

Figure 2-4 shows an example of break & join transformation. The order of

statements in variant V2 is different from the order in which these statements appear in

variant V1. Unconditional branch statements (GOTO statements) are used to connect

these pieces so that the statements in variants V1 and V2 are executed in the same order.

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

B : break & join transformations

{V1, V2} : virus variants

V2

V1

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

B : break & join transformations

{V1, V2} : virus variants

V2

V1

Figure 2-4: Break & join transformations

 10

2.1.4 Expression reshaping

Generating random permutations of operands in expressions with commutative

and associative operators reshapes expressions in programs. This changes the structure of

expressions. Expression reshaping doesn’t change the behavior of the program.

Figure 2-5 shows an example of expression reshaping transformations. The

expression x*100+2 in variant V1 is reshaped to 2+x*100 in variant V2. Behavior of the

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S : expression reshaping
{V1, V2, V3} : virus variants

V2

V3

V1

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S : expression reshaping
{V1, V2, V3} : virus variants

V2

V3

V1

Figure 2-5: Expression reshaping

 11

variants V1, V2, and V3 remains the same. If the virus signature of variant V1 includes

the expression x*100+2, variants V2 and V3 will not be detected by AV software.

2.1.5 Statement reordering

Statement reordering transformation reorders statements in a program such that

the behavior of the program doesn’t change. It is possible to reorder statements if and

only if there are no dependences [9] between the statements being reordered. If the virus

signature includes bytes corresponding to a statement from this set of reorderable

statements, application of statement reordering transformation makes the original virus

signature useless for morphed variants.

Figure 2-6 shows an example of statement reordering transformations. The

statements a=y*i, b=200*i, and a=x*y+i*z can be reordered as there are no

dependencies between these statements. Selection of random permutations of such

reorderable statements creates the morphed variants V2 and V3.

 12

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O : statement reordering
{V1, V2, V3} : virus variants

V2

V3

V1

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O : statement reordering
{V1, V2, V3} : virus variants

V2

V3

V1

Figure 2-6: Statement reordering

3 Background

This chapter gives the definitions of the terms used and briefly discusses these

concepts.

3.1 Control flow graph (CFG)

A control flow graph [2] is a directed graph containing a set of vertices V and a

set of edges, E. Each vertex (also classed a node) in the control flow graph represents a

sequence of instructions that are executed sequentially (also called basic block). Control

flow graph edges represent the control flow in the program. A control flow graph has two

special nodes called start and end. There is a path from start node to every node in V and

a path from every node to the end node. Figure 3-2 shows the control flow graph for the

program segment shown in Figure 3-1.

3.2 Dominator

A node n1 in the control flow graph is said to dominate the node n2 iff all the

paths in the control flow graph from the start node to node n2 include node n1 [8].

Figure 3-3 shows the dominator relationships for the blocks of the control flow graph

shown in Figure 3-2. In the tree shown in Figure 3-3, the ancestors of a node dominate

that node and the parent node of a node immediately dominates that node.

 14

 m in = A [0];
for (i = 0; i < n; i++)
{
 if (m in > A [i])
 {
 m in = A [i];
 }
}

Figure 3-1: Sample program segment

Start

min = A [0]

i = 0

if (i<n) : B1 : B2

if (min>A[i]) : B3 : B4

min = A[i]

i = i + 1

if (i<n) : B1 : B2

End

Bstart

Bend

B0

B1

B3

B4

B2

Start

min = A [0]

i = 0

if (i<n) : B1 : B2

if (min>A[i]) : B3 : B4

min = A[i]

i = i + 1

if (i<n) : B1 : B2

End

Bstart

Bend

B0

B1

B3

B4

B2

Figure 3-2: Control flow graph for the program segment in Figure 3-1

 15

3.3 Post-Dominator

A node n1 in the control flow graph is said to post-dominate the node n2 if and

only if all the paths in the control flow graph from node n2 to the end node include node

n1 [8].

Figure 3-4 shows the post-dominator relationships for the blocks of the control

flow graph shown in Figure 3-2. In the tree shown in Figure 3-4, the ancestors of a node

post-dominate that node, and the parent node of a node immediately post-dominates that

node.

Bstart

B0

B1 B2

B3 B4 Bend

Bstart

B0

B1 B2

B3 B4 Bend

Bstart

B0

B1 B2

B3 B4 Bend

Figure 3-3: Dominator tree for Figure 3-2

Bstart

B0

B1

B2

B3

B4

Bend

Bstart

B0

B1

B2

B3

B4

Bend

Bstart

B0

B1

B2

B3

B4

Bend

Figure 3-4: Post-Dominator tree for Figure 3-2

 16

3.4 Program dependence graph

Program dependence graph [4] is a directed graph containing a set of vertices and

a set of edges. The vertices in a program dependence graph represent the program points

and the edges represent the dependencies between the program points. The edges can be

of two types – control dependence edges and data dependence edges. Figure 3-6 shows

the program dependence graph for the program in Figure 3-5.

A program point p1 is said to be data dependent on the program point p2 if and

only if there exists a path from program point p2 to program point p1 in the control flow

graph and there exists at least one variable defined at the program point p2 that is used at

the program point p1 and the variable is not killed along that path.

The program point p2 is said to be control dependent on the program point p1 if

and only if there exists a path in the control flow graph from p1 to p2 and p2 post-

dominates all nodes on that path except p1.

void main() {
int i = 1;
while (i<100) {

if(i%2 == 0)
printf(“%d is even\n”, i);

else
printf(“%d is odd\n”, i);

i = i + 1;
}

}

Figure 3-5: A sample program

 17

3.5 Data dependence predecessors

Data dependence predecessors of a program point ‘p’ are program points that

have a data dependence edge to p.

3.6 Data dependence successors

Data dependence successors of a program point ‘p’ are program points that have a

data dependence edge from p.

Start

i = 1 while (i<100)

if(i%2 ==0)-else

printf(“%d is even\n”, i); printf(“%d is odd\n”, i);

i = i + 1

Legend
Control Dependence
Data Dependece

Start

i = 1 while (i<100)

if(i%2 ==0)-else

printf(“%d is even\n”, i); printf(“%d is odd\n”, i);

i = i + 1

Legend
Control Dependence
Data Dependece

Figure 3-6: Program dependence graph for the program in Figure 3-5

4 Zeroing transformations

We now propose zeroing transformations, a set of transformations to nullify the

effect of morphing transformations. Zeroing transformations, when applied to a virus,

result in its zero form. Application of these transformations on the set of morphed

variants of a virus related by morphing transformations result in the same zero form.

Figure 4-1 illustrates the idea of applying zeroing transformations to create zero forms of

the viruses. V1, V2, and V3 in Figure 4-1 are transformed to V⊕. AV companies can use

this method and store the virus signature extracted from V⊕ instead of maintaining

separate virus signatures for V1, V2 and V3. To use these zero signatures for virus

detection, the AV software will need to apply zeroing transformations on the programs to

be checked for the existence of virus behavior to get their zero forms. Zero forms of the

programs can then be searched for zero signatures of the viruses.

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2 S3

Legend

M – Morphing transformations
⊕ – Zeroing Transformations
{S1, S2, S3} – Virus Signatures
S⊕ – Zero signature

Zero form

S⊕

⊕
⊕

⊕

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2 S3

Legend

M – Morphing transformations
⊕ – Zeroing Transformations
{S1, S2, S3} – Virus Signatures
S⊕ – Zero signature

Zero form

S⊕

⊕
⊕

⊕

Figure 4-1: Detection approach

 19

Figure 4-2 shows the procedure for creating the zero form of a program. A series

of transformations are applied to the input program. These transformations include dead-

code elimination [8], constant propagation and removal of redundant computations [8],

elimination of spurious unconditional branch statements, reshaping expressions to zero

form, fixing an order for the statements that can be reordered and renaming variables to a

zero form. This thesis contributes a method for fixing an order for the statements in the

program.

For fixing the statement order, we need to find the reorderable statements in the

program and impose an ordering on them. To find the reorderable statements, we use a

tree representation called program tree. We also create a graph showing the dependence

relation between the nodes in the program tree.

Propagate constants

Eliminate dead code

Remove redundant
computations

Remove spurious unconditional
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Propagate constants

Eliminate dead code

Remove redundant
computations

Remove spurious unconditional
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Figure 4-2: Zeroing transformations

 20

4.1 Program Tree (PT) representation

For each procedure/function in a program we create a program tree (PT). The PT

representation of the function in Figure 4-3 is shown in Figure 4-4. We use the control

dependence sub-graph (CDG) for constructing the PT. Construction of PT for structured

programs is straightforward. The nodes in the program tree are the statements of the

program. We create an edge in the program tree from a node n1 to node n2 if there exists

an edge from n1 to n2 in the corresponding control dependence subgraph. In order to

make the program tree more readable, we show the corresponding program statements for

control predicates in the program tree. For example, in Figure 4-4, the control predicate

(A>B) is shown as If (A>B).

The node If (A>B) in Figure 4-4 has an edge to the nodes C=A+1, D=A+B+200,

E=C+D+10 because of the control dependence relationship between the node If (A>B)

and the nodes C=A+1, D=A+B+200, E=C+D+10. Some nodes have self-loops in their

control dependence sub-graph. An example of a self-loop in the control dependence

subgraph is shown in the Figure 4-5. We do not place any edges in the program tree for

the control dependence edges involving self-loops in the control dependence subgraph.

A=0
B=3
IF (A>B) then

C = A + 1
D = A + B + 200
E = C + D + 10

FI
F = A + C
G = A + B

Figure 4-3: A sample program segment

 21

We construct a program tree for each procedure of the program. For handling

unstructured programs we use a different approach.

4.1.1 Handling unstructured programs

While constructing the program tree from the control dependence subgraph, we

may encounter cycles in the control dependence subgraph involving more than one node.

Moreover, a node can be control dependent on multiple nodes. These cases arise for some

unstructured programs. For example, consider the program segment in Figure 4-6. The

main()

A=0 B=3 If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

main()

A=0 B=3 If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

Figure 4-4: Program tree for the program segment in Figure 4-3

while (x<10)

x=x+1 print(x)

while (x<10)

x=x+1 print(x)

Figure 4-5: A self-loop in the control dependence subgraph

 22

control dependence subgraph for this program segment, shown in Figure 4-7, has a node

that is control dependent on multiple nodes. Figure 4-9 gives an example of a cycle in the

control dependence subgraph. Any node in a tree cannot have multiple parents and it

cannot be involved in a cycle.

main()
{

read (x)
if (x>5)

goto L1
read (x)
x = x – 1
if (x>10)

goto L1
goto L2
L1:
read(x)
L2:
write(x)

}

Figure 4-6: A sample unstructured program segment.

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

Figure 4-7: Control dependence subgraph for the program segment in Figure 4-6

 23

If a node in the control dependence subgraph has multiple parents, we create a

duplicate child node for each parent node. Figure 4-10 shows the PT for the program

segment shown in Figure 4-6 obtained by following this strategy.

while (x<10)
x = x+1
if (x>5)

break
print (x)

Figure 4-8: A sample program segment

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10)

x=x+1

print(x)

if (x>5)

break

Figure 4-9: Control dependence graph for program segment in Figure 4-8

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

L1:read(x)

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

L1:read(x)

Figure 4-10: PT for program segment in Figure 4-6

 24

To handle loops in a control dependence subgraph, we use the following method.

If a node p1 has p2 as its successor in the control dependence subgraph, such that p2 is an

ancestor of p1 in the program tree constructed so far, we create a special node for p2 and

add it as children of p1. We do not explore this special node any further. Figure 4-11

shows the program tree obtained for Figure 4-8 using this strategy.

4.2 Algorithm for imposing an order on the statements

The algorithm for imposing an ordering on the nodes in a PT is shown in the

Figure 4-12. This algorithm has two steps.

1) Partition PT nodes into reorderable sets.

2) Use ordering strategies to get an ordering of statements in each

reorderable set.

This algorithm uses string representations of the statements (explained in Section 4.4) for

imposing an ordering on the program statements.

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

Figure 4-11: PT for the program segment in Figure 4-8

 25

4.3 Partitioning PT into reorderable sets

This section describes a partitioning algorithm for creating reorderable sets of PT

nodes. The aim of this step is to find statements in the program that can be reordered

without changing the program semantics.

Sibling PT nodes can be reordered if there are no dependencies between these

nodes. Dependence relation between two nodes n1, n2 ∈ PT, with the same parent node

is defined as follows. Node n2 is said to be dependent on node n1 if and only if there

exists a path from n1 to n2 in the control flow graph of P and either a node in the sub-tree

of PT rooted at n2 is data dependent on a node in the sub-tree of PT rooted at n1 or there

Algorithm Impose-Order (P)

PT = Program Tree of P

Build the string representations for each node in the PT.

Partition the PT into reorderable sets.

Create-String-Form (PT-root)

Sort the elements in each reorderable set by comparing the SR1 of the nodes in PT.

For the sets of statements that cannot be sorted using SR1

Sort the reorderable set by comparing the SR2 of the nodes in PT.

For the sets of statements that cannot be sorted using SR2

Sort the reorderable set by comparing the SR3 of the nodes in PT.

For the sets of statements that cannot be sorted using SR3

Sort the reorderable set by comparing the SR4 of the nodes in PT.

End Algorithm Impose-Order

Figure 4-12: Algorithm for fixing the order of statements in a program

 26

exist two nodes n1’ and n2’ in the sub-trees of PT rooted at n1 and n2 respectively such

that the intersecting set of variables defined in n1’ and n2’ in non-empty.

The sets of nodes that can be reordered are computed. Each of such set is a

reorderable set. The process of creating these reorderable sets is called partitioning.

Definition Reorderable set: A set of nodes in PT are said to form a reorderable set if and

only if they have the same parent node and they can be reordered without changing the

semantics of the program represented by PT.

The children of the nodes in the PT are partitioned into one or more reorderable

sets. The order of the reorderable set is fixed, but the order of the elements within the

reorderable set is not fixed. Given a program (P) and its corresponding PT, the PT nodes

can be partitioned into reorderable sets using the partitioning algorithm. The partitioning

algorithm traverses the PT of P in the post order to find the nodes that can be reordered.

The partitioning algorithm places each node in its corresponding reorderable set. It

maintains data dependence information using a dependence graph. The dependence graph

has an edge from node n1 to node n2 if n2 depends on n1. Figure 4-13 shows the

dependence graph for the node main () in the Figure 4-4. We use dependence graph depth

(DG-Depth) of a node, which is initially set to ‘0’ for all the nodes, for placing the nodes

into reorderable sets. The children of a node are processed in the control flow order. For

every child node C of N, the partitioning algorithm finds the node C’, having the

maximum DG-Depth ‘m’, such that either C depends on C’ or C’ depends on C. The

child node C is placed in the reorderable set numbered m+1 and the DG-Depth of C is set

to m+1. This assures that after the nodes are partitioned, the dependence order of the

reorderable sets is preserved.

 27

Consider the Node main () in Figure 4-4. It has {A=0, B=3, If (A>B), F=A+C,

G=A+B} as its children. The dependence graph for this set of children is shown in Figure

4-13. The edge from the node A=0 to the node If (A>B) corresponds to the dependence

relation from node A=0 to the node If (A>B); i.e., there exists a path from the node A=0

to the node If (A>B) in the control flow graph of P and a value defined by the node A=0

is used by at least one node in the sub-tree starting with the node If (A>B). Similarly, the

edge from the node If (A>B) to the node F = A+C corresponds to a dependence relation

from If (A>B) to F=A+C.

A=0 B=3 If (A>B) F=A+C G=A+BA=0 B=3 If (A>B) F=A+C G=A+B

Figure 4-13: Data dependence graph for the children of “root” in Figure 4-4

 28

(a) Processing the node [A=0]

(b) Processing the node [B=3]
Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1)

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1)

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]
Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1)

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]
Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1)

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]
Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1)

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

(a) Processing the node [A=0]

(b) Processing the node [B=3]
Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1)

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1)

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]
Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1)

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]
Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1)

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]
Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1)

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B

Depth :

Depth :

Depth :

Depth :

Depth :

Depth :

Figure 4-14: Working of partitioning algorithm

 29

The working of the partitioning algorithm is shown in Figure 4-14. The child

nodes are processed in the control flow order. At each step, we pick a node and find the

reorderable set to which it belongs. Initially, all the child nodes are given a DG-Depth of

‘0’. Figure 4-14(a) shows the processing of the child node A=0. The incoming/outgoing

edges of the node A=0 are directed from/to the nodes having a DG-Depths as ‘0’. Hence,

the node A=0 is placed in the reorderable set numbered ‘1’. The DG-Depth of the node

A=0 is set to ‘1’. In Figure 4-14(d), the algorithm processes the child node F=A+C. The

DG-Depths of the nodes that have a dependence relation with F=A+C are {2, 1}. The

maximum value in this set is 2. Hence F=A+C is placed in the reorderable set numbered

3. The DG-Depth of the node F=A+C is set to ‘3’.

After partitioning, the reorderable sets will be as follows.

� Reorderable set–1: {A=0, B=3};

� Reorderable set–2: {If (A>B), G=A+B};

� Reorderable set–3: {E=A+C}.

Figure 4-14(f) shows the partitioned dependence graph.

The partitioning algorithm described above gives the same reorderable sets

independent of statement reordering expression reshaping and variable renaming

transformations. The next step in getting the ZERO form for a program is to impose an

order on the nodes in the reorderable sets. Since we get the same reorderable sets even in

the presence of statement reordering, expression reshaping, and variable renaming, the

same order will be imposed for all the metamorphic variants of a virus. In the next

section, we describe the ordering strategies that we have used for creating the ZERO

form.

 30

4.4 Ordering strategies

The ordering strategies we have used for getting the ZERO form require a string

representation of the statements in the program. In this section, we describe the procedure

for constructing string from the program statements. The basic idea behind using string

representation for program statements is to impose an ordering on the statements in the

same reorderable sets by comparing their string representations. Since morphing

transformations can rename variables, we cannot use variable names in the string

representation of the statements. In order to get the string representation of a statement,

for each of the variables in the statement, we use the PT depths of the reaching

definitions [9] of that variable as a string to represent that variable. This is based on the

observation that the PT depths of the statements remain the same even if the metamorphic

transformation for statement reordering is applied.

Another problem that needs to be addressed when constructing the string

representation of statements is expression reshaping. We give a reshaping strategy for

constructing string representation for expressions with commutative operators. Figure

4-15 illustrates the method for getting a string form for an expression. The Abstract

Syntax Tree representation of the expression given in Figure 4-15(a) has to be

restructured so that the expression reshaping transformation doesn’t affect the string

representation of the expression. For achieving this, we construct a tree (which can have

more than two children) from AST of the expression. This tree representation constructed

from the AST in Figure 4-15(a) is shown in Figure 4-15(b). Using this restructured tree

for constructing the string form ensures that the expression reshaping done to the

commutative and associative operators is zeroed out.

 31

Once we get the restructured ASTs, we create a string representation for the

expression represented by the AST. We use the algorithm shown in Figure 4-16 for

creating string representations of expressions. Figure 4-18 shows an example of string

representations for two expressions. This figure uses the string “I” to represent the

variables in the program.

x

y

z

z

e

d

+

*

*

-

+

x

y z

z-e

d+

*

+

(c) Restructured AST for x * (y + z) * d – e + z

x

z

e

*

*

-

+

z y

+

d

(a) AST for
x * (y + z) * d – e + z

(b) AST for
x * d * (z + y) – e + z

R

Legend
R : Reshape expressions
S : Restructure AST

S S

x

y

z

z

e

d

+

*

*

-

+

x

y z

z-e

d+

*

+

(c) Restructured AST for x * (y + z) * d – e + z

x

y z

z-e

d+

*

+

(c) Restructured AST for x * (y + z) * d – e + z

x

z

e

*

*

-

+

z y

+

d

(a) AST for
x * (y + z) * d – e + z

(b) AST for
x * d * (z + y) – e + z

R

Legend
R : Reshape expressions
S : Restructure AST

S S

Figure 4-15: Restructuring AST to handle expression reshaping

 32

After creating the string representations for the expressions in the statements, we

apply the algorithm shown in Figure 4-17 to get the string representations for the nodes in

program tree.

Algorithm Create-Expression-String-Form (expression)

If (expression is leaf)

If (expression represents a variable)

String-Representation of expression = “I”.

Else

String-Representation of expression = constant value in expression

End If

Else

S = String representation of the operator in expression

For each child C of PT-Node

Create-Expression-String-Form (C)

End For

If (PT-Node represents a commutative operator)

L = Sorted list of string representations of the children of PT-Node

Else

L = List of string representations of the children of PT-Node.

End If

S’ = String formed by appending strings in L.

String-Represetation of expression = String formed by appending S and S’

End If

End Create-Expression-String-Form

Figure 4-16: Algorithm for creating string representation of expressions

 33

We name the string representation obtained by using this procedure as SR1. To

impose an order on the statements present in the same reorderable set, we compare the

SR1s of the statements in the reorderable sets. The statements in the same reorderable

sets may have the same SR1. For instance, the statements A=B+20 and C=20+D have

the same SR1s. In that case, we will not be able to impose an order on the statements

appearing in the reorderable sets using SR1. To minimize such cases, we modify the

partitioning algorithm. Instead of partitioning the statements, we partition the dependence

chains. A dependence chain is defined as follows. Two nodes n1 and n2 will be part of

the same dependence chain if and only if n1 has only one dependent n2, and n2 is

dependent on only one node n1. Figure 4-22 (b) shows the dependence chains formed for

Algorithm Create-String-Form (PT-Node)

If (PT-Node is leaf)

Create-Expression-String-Form(expression in PT-Node)

SR1 of PT-Node = String-Representation of expression in PT-Node.

Else

S = String representation of the expression in PT-Node

For each child C of PT-Node

Create-String-Form (C)

End For

L = Sorted list of SR1s of the children of PT-Node

S’ = String formed by appending strings in L.

SR1 of PT-Node = String formed by appending S and S’

End If

End Create-String-Form

Figure 4-17: Algorithm for creating SR1

 34

the dependence graph shown in Figure 4-22 (a). The partitioning algorithm is modified to

partition these dependence chains. The algorithm for partitioning the dependence chains

into reorderable sets is similar to the one that partitions the PT nodes into reorderable

sets. Each dependence chain is treated as a PT node. To create a dependence graph for the

dependence chains, we use the following definition of dependence relation between the

dependence chains. A dependence chain c1 is said to be dependent on a dependence

chain c2 if and only if a PT node in c1 is dependent on a PT node in c2. The use of

dependence chains instead of individual program statements improves the probability of

imposing an order using the string representation of the dependence chains. This is

because the string representations of two dependence chains differ if they have at least

one statement with a different string representation in the dependence chains.

For the statements that cannot be ordered using SR1, we create a string from the

total number of uses and definitions of the variables used and defined in the statement.

We call this string representation SR2. Figure 4-19 shows an example of SR2. SR2 is

used to impose an ordering on the statements that could not be ordered by SR1. If we still

fail to get an ordering for the statements in the reorderable sets, we create a string from of

data dependence predecessors of the statements that are to be ordered by sorting the SR1s

of predecessors and appending them to get a string called SR3. Figure 4-20 shows an

example of SR4. If we fail to impose an order using SR3, we create a string from the data

successors of the statements to be ordered by sorting the SR1s of the successors and

concatenating the sorted strings to get SR4. Figure 4-21 shows an example of SR4.

 35

A = B + 200

=

A +

B 200

+200I

=I+200I

D = B - 200

=

D -

B 200

-I200

=I-I200

A = B + 200

=

A +

B 200

+200I

=I+200I

D = B - 200

=

D -

B 200

-I200

=I-I200

Figure 4-18: String representation of an AST - example

A = C+10 U{1, 3} – D{2, 4}

B = D+10 U{2, 3} – D{2, 4}

A = C+10 U{1, 3} – D{2, 4}

B = D+10 U{2, 3} – D{2, 4}

Figure 4-19: SR2 - example

A = C+10 B = D+10

C = 100 D = 10 D = A + C / 2

A = C+10 B = D+10

C = 100 D = 10 D = A + C / 2

Figure 4-20: SR3 - example

 36

A = C+10 B = D+10

X = A / 2 Y = A * 2 Z = B + 2

A = C+10 B = D+10

X = A / 2 Y = A * 2 Z = B + 2

Figure 4-21: SR4 - example

(a) Dependency graph

1

2 4 5
3

6

8

7

9 10

1

2 4 5

3

6 87

9 10

(b) Dependency Chains

(a) Dependency graph

1

2 4 5
3

6

8

7

9 10

1

2 4 5

3

6 87

9 10

(b) Dependency Chains

(a) Dependency graph

1

2 4 5
3

6

8

7

9 10

1

2 4 5

3

6 87

9 10

(b) Dependency Chains

Figure 4-22: Dependence chains – example

 37

4.5 Limitations

Virus detection in general is an undecidable problem. We cannot devise a method

that can detect all possible viruses. Our method is also bounded by this theoretical limit.

For instance, the dead code removal technique may not remove all possible dead code in

a program as this technique sometimes cannot decide whether a particular code fragment

is dead code or not.

The transformation to fix an order on the statements may not always get an

ordering on all the program statements. Some instances for which an ordering is not

possible are shown in Figure 4-23. But, most of the time, we observed that the statements

for which an ordering cannot be imposed are either initialization statements or function

calls with the same number of arguments.

Our expression reshaping approach only considers reshaping done to the

commutative and associative operations. We do not take into account the reshaping done

to the distributive operators.

• Initialization code
a=0
b=0

• Function calls with same arguments
a(x, y)
b(c, d)

Figure 4-23: Instances for which orderings are not possible

5 Related work

 The Bloodhound technology of Symantec Inc., uses heuristics for detecting

malicious code [19]. Bloodhound uses two types of heuristic scanners: static and

dynamic. The static heuristic scanner maintains a signature database. The signatures are

associated with program code representing different functional behaviors. The dynamic

heuristic scanner uses CPU emulation to gather information about the interrupt calls the

program is making. Based on this information it can identify the functional behavior of

the program. Once different functional behaviors are identified using the static and

dynamic heuristic scanners, they are fed to an expert system, which judges whether the

program is malicious or not. Static heuristics fail to detect morphed variants of the

viruses as morphed variants have different signatures. Dynamic heuristics consider only

one possible execution of a program. A virus can avoid being detected by a dynamic

scanner by introducing arbitrary loops.

Lo et al.’s MCF [15] uses program slicing and flow analysis for detecting computer

viruses, worms, Trojan-horses, and time/logic bombs. MCF identifies telltale signs that

differentiate between malicious and benign programs. MCF slices a program with respect

to these telltale signs to get a smaller program segment representing the malicious

behavior. This smaller program segment is manually analyzed for the existence of virus

behavior.

Szappanos [13] uses code normalization techniques to detect polymorphic viruses.

Normalization techniques remove junk code & white spaces, and comments in programs

before they generate virus signature. To deal with variable renaming, Szappanos

suggests two methods – first, renaming variables by the order they appear in the program

 39

and second, renaming all the variables in a program with a same name. Former approach

fails if the virus reorders its statements, and the later approach abstracts a lot of

information and may lead to incorrect results. As our approach fixes the order of the

statements in a program, the first approach suggested by Szappanos for renaming the

variable can be used in combination with our method.

Our work relates to the work done by Christodorescu et al. [1] for detecting of

malicious patterns in the executables. They use abstraction patterns, patterns representing

sequences of instructions. These patterns are parameterized in order to match different

instructions sequences with the same instruction set but different operands. They use this

mechanism for handling the variable renaming transformation. A pattern may contain

instructions that can be reordered. To detect variants with renamed variables that have

reorderable statements, they would need to maintain all possible permutations of the

reorderable statements in the abstraction patterns. Another problem with abstraction

patterns is that it becomes difficult for AV companies to distribute virus signatures, as the

virus may be reconstructed using these patterns. Their approach gives fewer false

positives but the cost of creating and matching the abstraction patterns is high. They

detect the virus variants created by performing dead code insertion, variable renaming in

the absence of statement reordering, and break & join transformations. Our method, in

addition to the above morphing transformations, can detect the viruses that apply

statement reordering and expression reshaping transformations.

6 Implementation & results

We have implemented a tool, C⊕, for generating the ZERO form for C programs.

C⊕ uses the Program Dependence Graph (PDG), generated by the CodeSurfer [5], to

perform the analysis required for imposing an order on the statements of the program.

CodeSurfer provides an API in Scheme [14] to access the PDG representation of the C

programs. The use-def and def-use dependence information is calculated using this PDG

representation. We calculate the def-def dependencies using the CodeSurfer’s defs/kill

sets of the statements. Figure 6-1 shows the architecture of C⊕.

Partitioning
Engine

CodeSurfer Dependency
GeneratorPT Generator

Ordering
Engine

C

Zero
Form

PDG PT

PT DG

Reorderable sets

String Form Generator

Expression AST

String Forms

Figure 6-1: C⊕ architecture

 41

We performed a series of experiments on different sets of C programs to find

study how well our approach imposed order on the statement of the program. The C

programs used in the experiments are listed in Figure 6-2. The Fractal programs [17]

create fractals using C programming language. The COOK system [22] is used for

writing build scripts for projects. It is a powerful and easy to use replacement for make

[18]. Search/Sort programs are the programs that search for data and sort data. We

calculated reorderable percentages, zeroing percentages, and sizes of reorderable sets for

these test programs.

6.1 Reorderable percentage

We calculated the percentage of program statements that can be reordered by

using the morphing transformation for reordering statements. We call this reorderable

percentage. To calculate this reorderable percentage before the application of zeroing

transformations, we used the following formulae.

Reorderable nodes in PT={n | n∈PT, ∃n’ ∈ PT and parent (n)=parent (n’) &

reorderable-set-number (n)=reorderable-set-number (n’)} (i.e. the set of nodes that fall in

the reorderable set with size greater than one before application of zeroing

transformations).

Number Name Description

S1
S2
S3

Fractal (6 files)
COOK (5 files)
Search & Sort (5
files)

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

NumberNumber NameName DescriptionDescription

S1
S2
S3

S1
S2
S3

Fractal (6 files)
COOK (5 files)
Search & Sort (5
files)

Fractal (6 files)
COOK (5 files)
Search & Sort (5
files)

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

Figure 6-2: Test programs used in C⊕

 42

Percentage of Reorderable nodes = (total number of reorderable nodes in PT *

100) / (total number of nodes in the PT).

After the application of zeroing transformations, reorderable percentage is

calculated using following formulae.

Reorderable nodes in PT={n | n∈PT, ∃n’ ∈ PT ∋ parent (n)=parent (n’) &

equivalence-class-number (n)=equivalence-class-number (n’) & SR (n)=SR (n’)} (i.e. the

set of nodes that fall in the reorderable set with size greater than one after application of

zeroing transformations).

Reorderable percentage = (total number of failure nodes) *100 / (total number of

nodes in the PT).

We calculated the reorderable percentages for different string representations.

With the increase in reorderable percentage for a given program, the number of possible

permutations for that program increases. Figure 6-3 shows the reorderable percentages

for our test programs. SR0 corresponds to the reorderable percentage before the

application of zeroing transformations. The Fractal programs have higher reorderable

percentages than COOK system and Search/Sort programs. This is because the Fractal

programs have image processing code that has similar structure of statements that operate

on X and Y coordinates.

 43

6.2 Reorderable set sizes

We calculated the sizes of the reorderable sets for the test programs before and

after the application of zeroing transformations on those programs.

The number of reorderable sets with larger size before the appicaltion of zeroing

transformations will be more than the number of reorderable sets with the same size after

application of zeroing transformations. For example, zeroing transformations break

reorderable set of size 25 to two reorderable sets of size 15, and 10 respectively. Ideal

case for zeroing transformations is when the zeroing transformations yield reorderable

sets of size ‘1’ only.

53.8
62.8

49.7

4

19

5 4

15

4 3
13

4 1

13
4

0

20

40

60

80

100

Cook Fractal search/sort

Test Systems

Ze
ro

in
g

Pe
rc

en
ta

ge

SR0 SR1 SR2 SR3 SR4

Figure 6-3: Reorderable percentages for the test programs

 44

61

24
19

7
2

15

0 2 0 0 0 0 0
6

0 2 0 0 0 0 0
3

0 2 0 0 0 0 0
3

0 2 0 0 0 0 02 4 1
0

10

20

30

40

50

60

70

2 3 4

Reorderable set size

N
um

be
r o

f R
eo

rd
er

ab
le

 s
et

s

SR0 SR1 SR2 SR3 SR4

Figure 6-4 plots the sizes of reorderable sets against the number of reorderable

sets with that size for the COOK system before and after application of zeroing

transformations. Reorderable sets with size ‘1’ are not shown in this figure. The aim of

zeroing transformations is to reduce the number of reorderable sets with larger size and

break them into reorderable sets of size ‘1’.

 45

Figure 6-5 and Figure 6-6 show the reorderable set sizes before and after applying

zeroing transformations on Fractal and SEARCH/SORT programs, respectively. The

Fractal programs have reorderable sets of larger sizes when compared to other programs.

This is because the Fractal programs have more dependencies between its statements

when compared to other programs

61

24
19

7
2

15

0 2 0 0 0 0 0
6

0 2 0 0 0 0 0
3

0 2 0 0 0 0 0
3

0 2 0 0 0 0 02 4 1
0

10

20

30

40

50

60

70

2 3 4

Reorderable set size

N
um

be
r o

f R
eo

rd
er

ab
le

 s
et

s

SR0 SR1 SR2 SR3 SR4

Figure 6-4: COOK - Reorderable set sizes

 46

47

6160

41

31

36

13
9

13
11

3
13

33335544
2

7

1111
5

1 2
3 1 2 1 1 1

0

10

20

30

40

50

60

70
Nu

m
be

r
of

 R
eo

rd
er

ab
le

 s
et

s

2 3 4 5 6 7 8 9 10 11 17 18 20 26

Reorderable set size
SR0 SR1 SR2 SR3 SR4

Figure 6-5: FRACTAL - Reorderable set sizes

37

9

5 5

1

11

2 1 1

7

4
1 2 1

0
5
10
15
20
25
30
35
40
45
50

N
um

be
r o

f R
eo

rd
er

ab
le

 s
et

s

2 3 4 5 6 7 8

Reorderable set size
SR0 SR1 SR2 SR3 SR4

Figure 6-6: SEARCH/SORT – Reorderable set sizes

 47

6.3 Number of possible variants

The total number of possible variants of a program that can be generated using

statement-reordering transformation is calculated using the procedure given below.

 P = A node in PT

C1, C2,…, Cn are children of P.

E1, E2,…, Eq are Reorderable sets obtained by partitioning C1, C2,…, Cn.

K1, K2,…, Kq are sizes of reorderable sets E1, E2,…, Eq.

ρ(P) = Total number of permutation obtained by reordering the nodes in the sub-tree

starting with P.

.1)(

.)).)((!()(
1

nodesPTLeafPIfP

nodesPTleafNonPIfECCKP ij
j

ji

q

i

−∈=

−−∈∈∋= ∏∏
=

ρ

ρρ

The total number of possible permutations for the test programs before and after

applying zeroing transformations is shown in Figure 6-7.

2
1
196787849

Permutations after Zeroing

383968511
78674
1.19 * 1043

COOK
SEARCH/SORT
Fractal

Permutations before ZeroingTest System

2
1
196787849

Permutations after Zeroing

383968511
78674
1.19 * 1043

COOK
SEARCH/SORT
Fractal

Permutations before ZeroingTest System

Figure 6-7: Number of possible permutations for test programs

7 Conclusions and future work

We have described a method for detecting morphed variants of the viruses. Our

method maps different variants of a virus obtained by morphing transformations to their

respective zero forms. This method may be used to augment the current AV technologies

such as traditional signature scanning approach, and other static and dynamic detection

schemes. AV technologies can use our method to create zero form for a virus and extract

zero signatures of that virus. These zero signatures can be distributed to the users as virus

signatures.

Our method uses zeroing transformations to map different variants of a virus to

zero form. The effectiveness of our method is determined by the effectiveness of zeroing

transformations that map a program to zero form. As our method is a heuristic, we may

not always map all the variants to a single zero form. But the application of zeroing

transformations results in a significant decrease in the number of possible variants of a

program. The experiments we conducted show that, on an average, 55% of the program

statements were reorderable before the application of zeroing transformations which

decreased to 6% after the application of zeroing transformation for fixing the statement

order.

The morphing transformations we consider are dead code insertion, statement

reordering, variable renaming, expression reshaping, and break & join transformations.

In future work, we would like to test our method on actual viruses. We would also

like to do an investigation on other possible morphing transformations and the zeroing

transformations to create zero forms in such cases.

8 Bibliography

[1] Mihai Christodorescu and Somesh Jha,"Static analysis of executables to detect

malicious patterns," In Proceedings of the 12th USENIX Security Symposium,

Washington, DC, 2003.

[2] Alfred Aho, Ravi Sethi, and Jeffrey Ullman, Compilers principles, techniques,

and tools, Addison-Wesley, 1986.

[3] Fredrick Cohen, "Computer viruses-Theory and experiments," Computers and

Security, pp:22-35, 6(1), 1984.

[4] Jeanne Ferrante, Karl J. Ottenstein, and Joe Warren, "The program dependence

graphs and its use in optimization," ACM Transactions on Programming

Languages and Systems (TOPLAS), pp:319-349, 9(3), 1987.

[5] GrammaTech, "CodeSurfer - Program analysis tool," 2003

http://www.codesurfer.com, (last accessed: 08/29/2003).

[6] Jan Hruska, "Computer virus prevention: a primer," Sophos Labs, 2002

http://www.sophos.com/virusinfo/whitepapers/prevention.html, (last accessed:

08/29/2003).

[7] Myles Jordon, "Dealing with metamorphism," Virus Bulletin, pp:4-6, 2002.

[8] Robert Morgan, Building an optimizing compiler, Butterworth-Heinemann, 1998.

[9] Fleming Nielson, Hanne Riis Nielson, and Chris Hankin, Principles of program

analysis, Springer, 1999.

[10] Gabor Szappanos, "Polymorphic macro viruses, part one," Security Focus, 2002

http://online.securityfocus.com/infocus/1635, (last accessed: 08/29/2003).

 50

[11] Péter Ször and Peter Ferrie,"Hunting for metamorphic," In Proceedings of the

11th International Virus Bulletin Conference, pp:521-541, 2001.

[12] Vesselin Bontchev,"Macro and script virus polymorphism," In Proceedings of the

12th International Virus Bulletin Conference, pp:406-438, 2002.

[13] Gabor Szappanos,"Are there any polymorphic macro viruses at all? (… and what

to do with them)," In Proceedings of the 12th International Virus Bulletin

Conference, pp:477-477, 2002.

[14] William Clinger and Jonathan Rees, "Revised report on the algorithmic language

scheme," ACM Lisp Pointers, 4(3), 1991.

[15] Raymond W. Lo, Karl N. Levitt, and Ronald A. Olsson, "MCF: A malicious code

filter," Computers & Security, pp:541-566, 14(6), 1995.

[16] Lawrence M. Bridwell, ICSA Labs 7th Annual computer virus prevalence survey

2001, ICSA Labs, 2001.

[17] Roger T. Stevens, Fractal programming in C, M&T Books, 1989.

[18] Richard M. Stallman, Ronald McGrath, and Paul Smith, "GNU Make, A program

for directing recompilation," 2002.

[19] Symantec, "Understanding heuristics; Symantec's Bloodhound technology," 1997.

[20] VX Heavens, "Virus creation tools," 2002 http://vx.netlux.org/dat/vct.shtml, (last

accessed: 08/29/2003).

[21] David Moore, Colleen Shannon, and Jeffery Brown,"Code-Red: a case study on

the spread and victims of an Internet worm," In Proceedings of the 2nd Internet

Measurement Workshop, 2002.

 51

[22] Chris G. Davis, "Debian cook package," 2003

http://packages.debian.org/stable/devel/cook.html, (last accessed: 08/29/2003).

[23] David M. Chess and Steve R. White,"An undetectable computer virus," In Virus

Bulletin Conference, 2000.

ABSTRACT

Metamorphic computer viruses programmatically vary their instructions to create

a different form for each infection. This is done using code evolution techniques, such as

introducing dead code, reordering statements, reshaping expressions, and changing

variable names. Current anti-virus technologies use signature, a fixed sequence of bytes

from a sample of a virus, to detect its copies on a user’s machine. Use of signatures does

not work very well with metamorphic viruses since two versions of a metamorphic virus

may have very little in common.

This thesis presents a method to transform different variants of a metamorphic

virus to the same form, called the zero form. Current technologies can be improved to

detect metamorphic viruses by using the zero form of a virus, and not the original

version, for extracting signature. We developed a tool for generating zero forms for C

programs. For the test programs we used, we found that 55% of the statements were

reorderable before applying zeroing transformations for fixing the statement order. After

applying zeroing transformations for fixing the statement order, only 6% of the

statements could not be ordered. The average number of possible permutations of the

program statements obtained by statement reordering transformation reduced from 1043 to

108 with the application of zeroing transformations for fixing the statement order.

Biographical sketch

Mr. Moinuddin Mohammed was born in Rajgaopalpet, India on August 01, 1980.

He graduated with a Bachelor’s degree in Computer Science in June 2001 from Osmania

University, Hyderabad, India. He entered the Master’s program in Computer Science at

the University of Louisiana at Lafayette in Fall 2001. Following completion of this

degree, he will be pursuing a Ph.D. in the area of compilers.

