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1 Introduction 

1.1 Motivation 

The security of computers is an important concern for any organization that uses 

computers, which in today’s world leaves out very few organizations, if any. A 

compromise in security of its computer systems can cause severe losses in terms of 

sensitive information, money, time, and reputation of the organization. The most 

common and damaging security attacks are done using programs called computer viruses 

and worms. These are computer programs that can rapidly spread from one machine to 

another. They spread by exploiting some weakness in the existing programs on a 

computer, or weakness in the security policy of an organization, or by simply fooling the 

user into executing the programs. Damages caused by viruses and worms are estimated to 

be in the billions of dollars. For example, CodeRed II worm is estimated to have caused 

damages in excess of $2.6 billion [21].  

The number of virus and worm attacks is increasing at an alarming rate. The 

number of known viruses was about 70,000 in 2002, which is 700% more than the 

number of known viruses in 1997 [6, 16]. This increase can be attributed to the increasing 

use of the Internet. As the number of machines on the Internet increases, so does the 

number of target hosts that can be exploited. The most common exploit is to transmit a 

virus by email. In addition, hackers also exploit the Internet to connect to remote, 

compromised machines to initiate other attacks. They also use compromised machines to 

give commands to viruses on other compromised machines. Using compromise machines 

help a hacker in hiding his/her identity.  
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Though viruses and worms are very complex computer programs, it is not very 

difficult to write a virus. Recipes for writing such programs are abundantly available on 

the Internet. There is no need to write these programs from scratch. The simplest method 

is to modify an existing virus to generate a new one. One does not need to be a 

programmer to write a virus, either. There are many virus generation tools available on 

the Internet [20]. Using these tools, creating a new virus is as easy as selecting its 

lethality from a menu of options and clicking “Ok.” 

Current AV technologies use virus signature, a sequence of bytes extracted from a 

sample of a virus, to detect copies of that virus. Thus, they can detect a virus if the virus 

signature extracted in the laboratory of the AV Company is found in a program on users’ 

desktops. 

It has been observed before that detecting whether a given program is a virus is an 

undecidable problem [3, 23]. A problem is undecidable if a computer (or a network of 

computers) cannot solve it no matter how fast the computer(s) may be. AV technologies 

are thus limited by this theoretical result. While they can detect a specific virus that is 

known a priori to the technology, they cannot always detect whether an arbitrary 

program is a virus. 

Virus writers exploit this inherent limitation of AV technologies. If a virus is 

written such that two instances of the virus do not have the same signature, then the virus 

can evade detection. This is precisely what metamorphic viruses do. A metamorphic virus 

can modify its own program as it spreads from one host to another [7, 10-13]. The child 

virus, the one on the newly infected host, may not have the same sequence of bytes as the 

parent virus. Hence, the same signature cannot be used for detecting such viruses.  
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The experiments conducted by Christodorescu et al. [1] suggest that commercial 

anti-virus software systems fail to detect morphed virus variants, the virus variants 

obtained by changing the program text without changing the virus behavior. If an anti-

virus system were to detect metamorphic viruses using signature-scanning approach, it 

would need to maintain signatures for all possible variants of the metamorphic viruses. 

This approach is infeasible as the number of signatures to be maintained is too high, if 

not infinite. More sound methods need to be developed for detecting metamorphic 

viruses.  

1.2 Research objectives  

The aim of our research is to develop methods that will help in detecting morphed 

variants of a virus created by changing the program text without changing the behavior of 

the virus.  

1.3 Research contributions 

In this thesis, we present a strategy for augmenting current AV technologies to 

detect metamorphic viruses. The key contribution is a sequence of transformations called 

zeroing transformations to nullify the effect of the code modifications performed by a 

metamorphic virus. Zeroing transformations are used to map any program to a zero form, 

a single-unique form for all variants of a program created using modifications applied by 

known metamorphic viruses. The name “zeroing transformations” is derived from its 

similarity with the multiplicative property of the number zero. Multiplication of any real 

number with zero always results in zero. Similarly, application of zeroing transformations 

on a program results in its zero form. 
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1.4 Impact of the research 

The zero form of a virus may be used in the laboratory of an AV company to 

generate a zero signature. The zero signatures may be distributed to the AV scanners on 

users’ desktops. The scanners can then convert a program to a zero form and then match 

the zero signatures. Since variants of a metamorphic virus will have the same zero form, 

this method improves the ability of AV technologies in detecting metamorphic viruses. 

Moreover, zero signatures reduce the overhead of maintaining a separate signature for 

every variant of a virus. 

1.5 Organization of thesis 

Chapter 2 introduces metamorphic viruses and transformations applied on 

metamorphic viruses. Chapter 3 discusses background. In Chapter 4 we describe our 

approach for dealing with the metamorphic viruses. We also give the algorithms for 

creating ZERO form for programs. Chapter 5 discusses related work. Chapter 6 gives the 

implementation details. In Chapter 7, we discuss the results. Chapter 8 gives the 

conclusions. 



 

 

2 Morphing transformations 

A computer virus is a program that infects a host program with its malicious code 

[3]. When executed, the infected host program further spreads the infection to other host 

programs. Metamorphic viruses are viruses that alter their instructions before spreading 

to a host. These viruses change their instructions without changing their behavior.  

Figure 2-1 gives a diagrammatic representation of the working of a metamorphic 

virus. The varying shapes in Figure 2-1 suggest different variants of the same virus. The 

transformations that the virus applies to change its program code (shape) without 

changing its behavior are called morphing transformations.  

Definition Variant of a virus:  A variant of a virus V is a virus V’ where V, V’ have the 

same behavior but some difference in the code. 

Definition Morphing Transformations:  Morphing transformations are the 

transformations that, when applied to a virus, yields a variant of that virus. These 

transformations change the shape of a virus, but do not change its behavior. 

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

Virus
Variant -3

Virus
Variant -1

Virus
Variant -2

M M

S1 S2
S3

Legend

M – Morphing transformations
{S1, S2, S3} – Virus Signatures

 

Figure 2-1: Metamorphic viruses 
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Definition Morpher:  The part of virus program logic responsible for generating different 

variants of the virus using morphing transformations, is referred to as morpher. 

Definition Metamorphic virus:  A metamorphic virus is a virus that carries a morpher 

with itself to generate a variant for each infection. 

2.1 Morphing transformations 

Common morphing transformations used by virus writers are: dead code 

insertion, variable renaming, statement reordering, expressions reshaping and break & 

join transformations. This section discusses these transformations. 

2.1.1 Dead code insertion 

Dead code is the part of a program that is either not executed in the program or 

has no effect on results of the program. Addition/Removal of such code to/from a 

program doesn’t change its behavior.  

Figure 2-2 shows an example of dead code insertion. Adding nops, and add eax, 0 

to V1 creates V2, a morphed variant of V1. Similarly, addition of nops, add exa, 0 and 

sub ebx, 0 to V2 creates V3. All the three variants, V1, V2 and V3, have same behavior. 

If AV software uses the sequence of bytes corresponding to the instructions xor edx, edx 

and div ecx as the virus signature, the morphed variants V2, and V3 will go undetected as 

add eax, 0 is inserted after xor edx, edx. 
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….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx 
nop
mul ecx 
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx 
mul ecx 
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx 
nop
mul ecx 
push eax
….

D

Legend

D : dead code inserion
{V1, V2, V3} : virus variants 

V1

V2

V3

D

….
mov eax, V_S - 1
nop
add eax, ecx
sub ebx, 0
xor edx, edx
add eax, 0
nop
div ecx 
nop
mul ecx 
push eax
….

….
mov eax, V_S - 1
add eax, ecx
xor edx, edx
div ecx 
mul ecx 
push eax
….

….
mov eax, V_S - 1
nop
add eax, ecx
xor edx, edx
add eax, 0
div ecx 
nop
mul ecx 
push eax
….

D

Legend

D : dead code inserion
{V1, V2, V3} : virus variants 

V1

V2

V3

D

 

Figure 2-2: Dead code insertion 
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2.1.2 Variable renaming 

Variable renaming transformation changes the names of a variable by changing 

all the instances of the variable with a new name. Variants created by variable renaming 

have the same behavior, as this transformation doesn’t change the program behavior. 

Figure 2-3 shows two examples of variable renaming transformations. The 

example code segment shown in Figure 2-3 is in IA-32 assembly language. Renaming 

variables corresponds to renaming registers in assembly language. Instructions in variants 

V1, V2 and V3 differ in their usage of registers. The register edx is renamed to eax from 

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R : variable renaming transformations
{V1, V2, V3} : virus variants 

V1

V2

V3

….
push ecx
mov ecx, esi
mov edi, 000Ah
add ecx, edi
pop edi
….

….
push edx
mov edx, ecx
mov ebx, 000Ah
add edx, ebx
pop ebx
….

….
push eax
mov eax, ebx
mov edx, 000Ah
add eax, edx
pop edx
….

R

R

Legend

R : variable renaming transformations
{V1, V2, V3} : virus variants 

V1

V2

V3

 

Figure 2-3: Variable renaming 
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V1 to its morphed variant V2. If the signature for V1 has edx in its byte sequence, its 

morphed variants V2 and V3 will not be detected using that signature. 

2.1.3 Break & join transformations 

Break & join transformations break a program into pieces, select a random order 

of these pieces, and use unconditional branch statements to connect these pieces such that 

the statements are executed in the same sequence as in the original program.  

Figure 2-4 shows an example of break & join transformation. The order of 

statements in variant V2 is different from the order in which these statements appear in 

variant V1. Unconditional branch statements (GOTO statements) are used to connect 

these pieces so that the statements in variants V1 and V2 are executed in the same order. 

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

B : break & join transformations

{V1, V2} : virus variants 

V2

V1

B

statement-1
statement-2
statement-3
statement-4
statement-5
statement-6

goto L1
L3:
statement-3
goto L4
L1:
statement-1
statement-2
goto L3
L5:
statement-5
goto L6
L4:
statement-4
goto L5
L6:
statement-6

Legend

B : break & join transformations

{V1, V2} : virus variants 

V2

V1

 

Figure 2-4: Break & join transformations 
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2.1.4 Expression reshaping 

Generating random permutations of operands in expressions with commutative 

and associative operators reshapes expressions in programs. This changes the structure of 

expressions. Expression reshaping doesn’t change the behavior of the program.  

Figure 2-5 shows an example of expression reshaping transformations. The 

expression x*100+2 in variant V1 is reshaped to 2+x*100 in variant V2. Behavior of the 

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S : expression reshaping
{V1, V2, V3} : virus variants 

V2

V3

V1

….
if (i < b * a * c)
{

a = 100 * x + 2;
b = i * 10;
c = b+ y * a;
i = a + c + b;

}
….

….
if (i < a * b * c)
{

a = x * 100 + 2;
b = 10 * i;
c = y * a + b;
i = a + b + c;

}
….

….
if (i < a * b * c)
{

a = 2 + x * 100;
b = 10 * i;
c = a * y + b;
i = b + c + a;

}
….

S

S

Legend

S : expression reshaping
{V1, V2, V3} : virus variants 

V2

V3

V1

 

Figure 2-5: Expression reshaping 
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variants V1, V2, and V3 remains the same. If the virus signature of variant V1 includes 

the expression x*100+2, variants V2 and V3 will not be detected by AV software. 

2.1.5 Statement reordering  

Statement reordering transformation reorders statements in a program such that 

the behavior of the program doesn’t change. It is possible to reorder statements if and 

only if there are no dependences [9] between the statements being reordered. If the virus 

signature includes bytes corresponding to a statement from this set of reorderable 

statements, application of statement reordering transformation makes the original virus 

signature useless for morphed variants. 

Figure 2-6 shows an example of statement reordering transformations. The 

statements a=y*i, b=200*i, and a=x*y+i*z can be reordered as there are no 

dependencies between these statements. Selection of random permutations of such 

reorderable statements creates the morphed variants V2 and V3. 
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….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O : statement reordering
{V1, V2, V3} : virus variants 

V2

V3

V1

….
z= 100;
x = 25;
y = x +get_index();
while (i < y + z)
{

b = 200 * i;
a = x * y + i * z;
c = y * i;
i = i + 1;

}
….

….
x = 25;
y = x + get_index();
z= 100;
while (i < y + z)
{

a = x * y + i * z;
b = 200 * i;
c = y * i;
i = i + 1;

}
….

….
x = 25;
z= 100;
y = x + get_index();
while (i < y + z)
{

c = y * i;
b = 200 * i;
a = x * y + i * z;
i = i + 1;

}
….

O

O

Legend

O : statement reordering
{V1, V2, V3} : virus variants 

V2

V3

V1

 

Figure 2-6: Statement reordering 



 

 

3 Background 

This chapter gives the definitions of the terms used and briefly discusses these 

concepts.  

3.1 Control flow graph (CFG) 

A control flow graph [2] is a directed graph containing a set of vertices V and a 

set of edges, E. Each vertex (also classed a node) in the control flow graph represents a 

sequence of instructions that are executed sequentially (also called basic block). Control 

flow graph edges represent the control flow in the program. A control flow graph has two 

special nodes called start and end. There is a path from start node to every node in V and 

a path from every node to the end node. Figure 3-2 shows the control flow graph for the 

program segment shown in Figure 3-1. 

3.2 Dominator 

A node n1 in the control flow graph is said to dominate the node n2 iff all the 

paths in the control flow graph from the start node to node n2 include node n1 [8]. 

Figure 3-3 shows the dominator relationships for the blocks of the control flow graph 

shown in Figure 3-2. In the tree shown in Figure 3-3, the ancestors of a node dominate 

that node and the parent node of a node immediately dominates that node. 
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 m in =  A  [0]; 
for ( i =  0; i <  n; i++) 
{ 
 if (m in >  A  [i]) 
 {  
  m in =  A  [i]; 
 }  
} 

 

Figure 3-1: Sample program segment 

Start

min = A [0]

i = 0

if (i<n) : B1 : B2

if (min>A[i]) : B3 : B4

min = A[i]

i = i + 1

if (i<n) : B1 : B2

End

Bstart

Bend

B0

B1

B3

B4

B2

Start

min = A [0]

i = 0

if (i<n) : B1 : B2

if (min>A[i]) : B3 : B4

min = A[i]

i = i + 1

if (i<n) : B1 : B2

End

Bstart

Bend

B0

B1

B3

B4

B2

 

Figure 3-2: Control flow graph for the program segment in Figure 3-1 
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3.3 Post-Dominator 

A node n1 in the control flow graph is said to post-dominate the node n2 if and 

only if all the paths in the control flow graph from node n2 to the end node include node 

n1 [8]. 

Figure 3-4 shows the post-dominator relationships for the blocks of the control 

flow graph shown in Figure 3-2. In the tree shown in Figure 3-4, the ancestors of a node 

post-dominate that node, and the parent node of a node immediately post-dominates that 

node. 

Bstart

B0

B1 B2

B3 B4 Bend

Bstart

B0

B1 B2

B3 B4 Bend

Bstart

B0

B1 B2

B3 B4 Bend
 

Figure 3-3: Dominator tree for Figure 3-2 

Bstart

B0

B1

B2

B3

B4

Bend

Bstart

B0

B1

B2

B3

B4

Bend

Bstart

B0

B1

B2

B3

B4

Bend

 

Figure 3-4: Post-Dominator tree for Figure 3-2 
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3.4 Program dependence graph 

Program dependence graph [4] is a directed graph containing a set of vertices and 

a set of edges. The vertices in a program dependence graph represent the program points 

and the edges represent the dependencies between the program points. The edges can be 

of two types – control dependence edges and data dependence edges. Figure 3-6 shows 

the program dependence graph for the program in Figure 3-5. 

A program point p1 is said to be data dependent on the program point p2 if and 

only if there exists a path from program point p2 to program point p1 in the control flow 

graph and there exists at least one variable defined at the program point p2 that is used at 

the program point p1 and the variable is not killed along that path. 

The program point p2 is said to be control dependent on the program point p1 if 

and only if there exists a path in the control flow graph from p1 to p2 and p2 post-

dominates all nodes on that path except p1. 

void  main() {
int i = 1;
while (i<100) {

if(i%2 == 0)
printf(“%d is even\n”, i);

else
printf(“%d is odd\n”, i);

i = i + 1;
}

}  

Figure 3-5: A sample program 
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3.5 Data dependence predecessors 

Data dependence predecessors of a program point ‘p’ are program points that 

have a data dependence edge to p. 

3.6 Data dependence successors 

Data dependence successors of a program point ‘p’ are program points that have a 

data dependence edge from p. 

Start

i = 1 while (i<100)

if(i%2 ==0)-else

printf(“%d is even\n”, i); printf(“%d is odd\n”, i);

i = i + 1

Legend
Control Dependence
Data Dependece

Start

i = 1 while (i<100)

if(i%2 ==0)-else

printf(“%d is even\n”, i); printf(“%d is odd\n”, i);

i = i + 1

Legend
Control Dependence
Data Dependece

 

Figure 3-6: Program dependence graph for the program in Figure 3-5 



 

 

4 Zeroing transformations 

We now propose zeroing transformations, a set of transformations to nullify the 

effect of morphing transformations. Zeroing transformations, when applied to a virus, 

result in its zero form. Application of these transformations on the set of morphed 

variants of a virus related by morphing transformations result in the same zero form. 

Figure 4-1 illustrates the idea of applying zeroing transformations to create zero forms of 

the viruses. V1, V2, and V3 in Figure 4-1 are transformed to V⊕. AV companies can use 

this method and store the virus signature extracted from V⊕ instead of maintaining 

separate virus signatures for V1, V2 and V3. To use these zero signatures for virus 

detection, the AV software will need to apply zeroing transformations on the programs to 

be checked for the existence of virus behavior to get their zero forms. Zero forms of the 

programs can then be searched for zero signatures of the viruses. 
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⊕
⊕
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Figure 4-1: Detection approach 
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Figure 4-2 shows the procedure for creating the zero form of a program. A series 

of transformations are applied to the input program. These transformations include dead-

code elimination [8], constant propagation and removal of redundant computations [8], 

elimination of spurious unconditional branch statements, reshaping expressions to zero 

form, fixing an order for the statements that can be reordered and renaming variables to a 

zero form. This thesis contributes a method for fixing an order for the statements in the 

program.  

For fixing the statement order, we need to find the reorderable statements in the 

program and impose an ordering on them. To find the reorderable statements, we use a 

tree representation called program tree. We also create a graph showing the dependence 

relation between the nodes in the program tree. 

Propagate constants

Eliminate dead code

Remove redundant 
computations

Remove spurious unconditional 
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form

Propagate constants

Eliminate dead code

Remove redundant 
computations

Remove spurious unconditional 
branch statements

Reshape Expressions

Fix statement order

Rename Variables

Program

Zero Form
 

Figure 4-2: Zeroing transformations 
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4.1 Program Tree (PT) representation 

For each procedure/function in a program we create a program tree (PT). The PT 

representation of the function in Figure 4-3 is shown in Figure 4-4. We use the control 

dependence sub-graph (CDG) for constructing the PT. Construction of PT for structured 

programs is straightforward. The nodes in the program tree are the statements of the 

program. We create an edge in the program tree from a node n1 to node n2 if there exists 

an edge from n1 to n2 in the corresponding control dependence subgraph. In order to 

make the program tree more readable, we show the corresponding program statements for 

control predicates in the program tree. For example, in Figure 4-4, the control predicate 

(A>B) is shown as If (A>B). 

The node If (A>B) in Figure 4-4 has an edge to the nodes C=A+1, D=A+B+200, 

E=C+D+10 because of the control dependence relationship between the node If (A>B) 

and the nodes C=A+1, D=A+B+200, E=C+D+10. Some nodes have self-loops in their 

control dependence sub-graph. An example of a self-loop in the control dependence 

subgraph is shown in the Figure 4-5. We do not place any edges in the program tree for 

the control dependence edges involving self-loops in the control dependence subgraph. 

A=0
B=3
IF (A>B) then

C = A + 1
D = A + B + 200
E = C + D + 10

FI
F = A + C
G = A + B

 

Figure 4-3: A sample program segment 
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We construct a program tree for each procedure of the program. For handling 

unstructured programs we use a different approach. 

4.1.1 Handling unstructured programs 

While constructing the program tree from the control dependence subgraph, we 

may encounter cycles in the control dependence subgraph involving more than one node. 

Moreover, a node can be control dependent on multiple nodes. These cases arise for some 

unstructured programs. For example, consider the program segment in Figure 4-6. The 

main()

A=0 B=3 If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

main()

A=0 B=3 If (A>B) F=A+C G=A+B

C=A+1 D=A+B+200 E=C+D+10

 

Figure 4-4: Program tree for the program segment in Figure 4-3 

while (x<10)

x=x+1 print(x)

while (x<10)

x=x+1 print(x)

 

Figure 4-5: A self-loop in the control dependence subgraph 
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control dependence subgraph for this program segment, shown in Figure 4-7, has a node 

that is control dependent on multiple nodes. Figure 4-9 gives an example of a cycle in the 

control dependence subgraph. Any node in a tree cannot have multiple parents and it 

cannot be involved in a cycle.  

 

main()
{

read (x)
if (x>5)

goto L1
read (x)
x = x – 1
if (x>10)

goto L1
goto L2
L1:
read(x)
L2:
write(x)

}  

Figure 4-6: A sample unstructured program segment. 

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

 

Figure 4-7: Control dependence subgraph for the program segment in Figure 4-6 
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If a node in the control dependence subgraph has multiple parents, we create a 

duplicate child node for each parent node. Figure 4-10 shows the PT for the program 

segment shown in Figure 4-6 obtained by following this strategy. 

while (x<10)
x = x+1
if (x>5)

break
print (x)  

Figure 4-8: A sample program segment 

while (x<10)

x=x+1

print(x)

if (x>5)

break

while (x<10)

x=x+1

print(x)

if (x>5)

break
 

Figure 4-9: Control dependence graph for program segment in Figure 4-8 

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

L1:read(x)

x = x – 1

if (x>5)

goto L1 read(x) if (x>10)

goto L1 goto L2

L1:read(x)

L2:write(x)read (x)

main()

L1:read(x)
 

Figure 4-10: PT for program segment in Figure 4-6 
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To handle loops in a control dependence subgraph, we use the following method. 

If a node p1 has p2 as its successor in the control dependence subgraph, such that p2 is an 

ancestor of p1 in the program tree constructed so far, we create a special node for p2 and 

add it as children of p1. We do not explore this special node any further. Figure 4-11 

shows the program tree obtained for Figure 4-8 using this strategy. 

4.2 Algorithm for imposing an order on the statements 

The algorithm for imposing an ordering on the nodes in a PT is shown in the 

Figure 4-12. This algorithm has two steps. 

1) Partition PT nodes into reorderable sets. 

2) Use ordering strategies to get an ordering of statements in each 

reorderable set. 

This algorithm uses string representations of the statements (explained in Section 4.4) for 

imposing an ordering on the program statements. 

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

while (x<10)

x=x+1

print(x)

if (x>5)

break while (x<10)

 

Figure 4-11: PT for the program segment in Figure 4-8 
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4.3 Partitioning PT into reorderable sets 

This section describes a partitioning algorithm for creating reorderable sets of PT 

nodes. The aim of this step is to find statements in the program that can be reordered 

without changing the program semantics.  

Sibling PT nodes can be reordered if there are no dependencies between these 

nodes. Dependence relation between two nodes n1, n2 ∈ PT, with the same parent node 

is defined as follows. Node n2 is said to be dependent on node n1 if and only if there 

exists a path from n1 to n2 in the control flow graph of P and either a node in the sub-tree 

of PT rooted at n2 is data dependent on a node in the sub-tree of PT rooted at n1 or there 

Algorithm Impose-Order (P)

PT = Program Tree of P

Build the string representations for each node in the PT.

Partition the PT into reorderable sets.

Create-String-Form (PT-root)

Sort the elements in each reorderable set by comparing the SR1 of the nodes in PT.

For the sets of statements that cannot be sorted using SR1

Sort the reorderable set by comparing the SR2 of the nodes in PT.

For the sets of statements that cannot be sorted using SR2

Sort the reorderable set by comparing the SR3 of the nodes in PT.

For the sets of statements that cannot be sorted using SR3

Sort the reorderable set by comparing the SR4 of the nodes in PT.

End Algorithm Impose-Order
 

Figure 4-12: Algorithm for fixing the order of statements in a program 
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exist two nodes n1’ and n2’ in the sub-trees of PT rooted at n1 and n2 respectively such 

that the intersecting set of variables defined in n1’ and n2’ in non-empty.  

The sets of nodes that can be reordered are computed. Each of such set is a 

reorderable set. The process of creating these reorderable sets is called partitioning. 

Definition Reorderable set: A set of nodes in PT are said to form a reorderable set if and 

only if they have the same parent node and they can be reordered without changing the 

semantics of the program represented by PT. 

The children of the nodes in the PT are partitioned into one or more reorderable 

sets. The order of the reorderable set is fixed, but the order of the elements within the 

reorderable set is not fixed. Given a program (P) and its corresponding PT, the PT nodes 

can be partitioned into reorderable sets using the partitioning algorithm. The partitioning 

algorithm traverses the PT of P in the post order to find the nodes that can be reordered. 

The partitioning algorithm places each node in its corresponding reorderable set. It 

maintains data dependence information using a dependence graph. The dependence graph 

has an edge from node n1 to node n2 if n2 depends on n1. Figure 4-13 shows the 

dependence graph for the node main () in the Figure 4-4. We use dependence graph depth 

(DG-Depth) of a node, which is initially set to ‘0’ for all the nodes, for placing the nodes 

into reorderable sets. The children of a node are processed in the control flow order. For 

every child node C of N, the partitioning algorithm finds the node C’, having the 

maximum DG-Depth ‘m’, such that either C depends on C’ or C’ depends on C. The 

child node C is placed in the reorderable set numbered m+1 and the DG-Depth of C is set 

to m+1. This assures that after the nodes are partitioned, the dependence order of the 

reorderable sets is preserved. 
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Consider the Node main () in Figure 4-4. It has {A=0, B=3, If (A>B), F=A+C, 

G=A+B} as its children. The dependence graph for this set of children is shown in Figure 

4-13. The edge from the node A=0 to the node If (A>B) corresponds to the dependence 

relation from node A=0 to the node If (A>B); i.e., there exists a path from the node A=0 

to the node If (A>B) in the control flow graph of P and a value defined by the node A=0 

is used by at least one node in the sub-tree starting with the node If (A>B). Similarly, the 

edge from the node If (A>B) to the node F = A+C corresponds to a dependence relation 

from If (A>B) to F=A+C. 

A=0 B=3 If (A>B) F=A+C G=A+BA=0 B=3 If (A>B) F=A+C G=A+B

 

Figure 4-13: Data dependence graph for the children of “root” in Figure 4-4 
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(a) Processing the node [A=0]

(b) Processing the node [B=3]
Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1) 

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1) 

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]
Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1) 

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]
Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1) 

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]
Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1) 

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B
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Depth :

Depth :

Depth :

Depth :

Depth :
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(b) Processing the node [B=3]
Set the DG-Depth of [B=3] to 1 (max (0, 0) + 1) 

0 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

Set the DG-Depth of [A=0] to 1 (max (0, 0, 0) + 1) 

1 0 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(c) Processing the node [If (A>B)]
Set the DG-Depth of [If (A>B)] to 2 (max (1, 1, 0) + 1) 

1 1 0 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(d) Processing the node [F=A+C]
Set the DG-Depth of [F=A+C] to 3 (max (2, 1) + 1) 

1 1 2 0 0

A=0 B=3 If (A>B) F=A+C G=A+B

(e) Processing the node [G=A+B]
Set the DG-Depth of [G=A+B] to 2 (max (1, 1) + 1) 

1 1 2 3 0

A=0 B=3 If (A>B) F=A+C G=A+B

(f) Dependence graph depths after partitioning

1 1 2 3 2

A=0 B=3 If (A>B) F=A+C G=A+B
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Figure 4-14: Working of partitioning algorithm 
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The working of the partitioning algorithm is shown in Figure 4-14. The child 

nodes are processed in the control flow order. At each step, we pick a node and find the 

reorderable set to which it belongs. Initially, all the child nodes are given a DG-Depth of 

‘0’. Figure 4-14(a) shows the processing of the child node A=0. The incoming/outgoing 

edges of the node A=0 are directed from/to the nodes having a DG-Depths as ‘0’. Hence, 

the node A=0 is placed in the reorderable set numbered ‘1’. The DG-Depth of the node 

A=0 is set to ‘1’. In Figure 4-14(d), the algorithm processes the child node F=A+C. The 

DG-Depths of the nodes that have a dependence relation with F=A+C are {2, 1}. The 

maximum value in this set is 2. Hence F=A+C is placed in the reorderable set numbered 

3. The DG-Depth of the node F=A+C is set to ‘3’. 

After partitioning, the reorderable sets will be as follows.  

� Reorderable set–1:  {A=0, B=3};  

� Reorderable set–2:  {If (A>B), G=A+B};  

� Reorderable set–3:  {E=A+C}.  

Figure 4-14(f) shows the partitioned dependence graph. 

The partitioning algorithm described above gives the same reorderable sets 

independent of statement reordering expression reshaping and variable renaming 

transformations. The next step in getting the ZERO form for a program is to impose an 

order on the nodes in the reorderable sets. Since we get the same reorderable sets even in 

the presence of statement reordering, expression reshaping, and variable renaming, the 

same order will be imposed for all the metamorphic variants of a virus. In the next 

section, we describe the ordering strategies that we have used for creating the ZERO 

form. 
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4.4 Ordering strategies 

The ordering strategies we have used for getting the ZERO form require a string 

representation of the statements in the program. In this section, we describe the procedure 

for constructing string from the program statements. The basic idea behind using string 

representation for program statements is to impose an ordering on the statements in the 

same reorderable sets by comparing their string representations. Since morphing 

transformations can rename variables, we cannot use variable names in the string 

representation of the statements. In order to get the string representation of a statement, 

for each of the variables in the statement, we use the PT depths of the reaching 

definitions [9] of that variable as a string to represent that variable. This is based on the 

observation that the PT depths of the statements remain the same even if the metamorphic 

transformation for statement reordering is applied.  

Another problem that needs to be addressed when constructing the string 

representation of statements is expression reshaping. We give a reshaping strategy for 

constructing string representation for expressions with commutative operators. Figure 

4-15 illustrates the method for getting a string form for an expression. The Abstract 

Syntax Tree representation of the expression given in Figure 4-15(a) has to be 

restructured so that the expression reshaping transformation doesn’t affect the string 

representation of the expression. For achieving this, we construct a tree (which can have 

more than two children) from AST of the expression. This tree representation constructed 

from the AST in Figure 4-15(a) is shown in Figure 4-15(b). Using this restructured tree 

for constructing the string form ensures that the expression reshaping done to the 

commutative and associative operators is zeroed out.  
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Once we get the restructured ASTs, we create a string representation for the 

expression represented by the AST. We use the algorithm shown in Figure 4-16 for 

creating string representations of expressions. Figure 4-18 shows an example of string 

representations for two expressions. This figure uses the string “I” to represent the 

variables in the program. 
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Figure 4-15: Restructuring AST to handle expression reshaping 
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After creating the string representations for the expressions in the statements, we 

apply the algorithm shown in Figure 4-17 to get the string representations for the nodes in 

program tree. 

Algorithm Create-Expression-String-Form (expression)

If (expression is leaf) 

If (expression represents a variable)

String-Representation of expression = “I”.

Else

String-Representation of expression = constant value in expression

End If

Else

S = String representation of the operator in expression

For each child C of PT-Node

Create-Expression-String-Form (C)

End For

If (PT-Node represents a commutative operator)

L = Sorted list of string representations of the children of PT-Node 

Else

L = List of string representations of the children of PT-Node.

End If

S’ = String formed by appending strings in L.

String-Represetation of expression = String formed by appending S and S’

End If

End Create-Expression-String-Form
 

Figure 4-16: Algorithm for creating string representation of expressions 
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We name the string representation obtained by using this procedure as SR1. To 

impose an order on the statements present in the same reorderable set, we compare the 

SR1s of the statements in the reorderable sets. The statements in the same reorderable 

sets may have the same SR1. For instance, the statements A=B+20 and C=20+D  have 

the same SR1s. In that case, we will not be able to impose an order on the statements 

appearing in the reorderable sets using SR1. To minimize such cases, we modify the 

partitioning algorithm. Instead of partitioning the statements, we partition the dependence 

chains. A dependence chain is defined as follows. Two nodes n1 and n2 will be part of 

the same dependence chain if and only if n1 has only one dependent n2, and n2 is 

dependent on only one node n1. Figure 4-22 (b) shows the dependence chains formed for 

Algorithm Create-String-Form (PT-Node)

If (PT-Node is leaf)

Create-Expression-String-Form(expression in PT-Node)

SR1 of PT-Node = String-Representation of expression in PT-Node.

Else

S = String representation of the expression in PT-Node

For each child C of PT-Node

Create-String-Form (C)

End For

L = Sorted list of SR1s of the children of PT-Node

S’ = String formed by appending strings in L.

SR1 of PT-Node = String formed by appending S and S’

End If

End Create-String-Form
 

Figure 4-17: Algorithm for creating SR1 



 34

the dependence graph shown in Figure 4-22 (a). The partitioning algorithm is modified to 

partition these dependence chains. The algorithm for partitioning the dependence chains 

into reorderable sets is similar to the one that partitions the PT nodes into reorderable 

sets. Each dependence chain is treated as a PT node. To create a dependence graph for the 

dependence chains, we use the following definition of dependence relation between the 

dependence chains. A dependence chain c1 is said to be dependent on a dependence 

chain c2 if and only if a PT node in c1 is dependent on a PT node in c2. The use of 

dependence chains instead of individual program statements improves the probability of 

imposing an order using the string representation of the dependence chains. This is 

because the string representations of two dependence chains differ if they have at least 

one statement with a different string representation in the dependence chains. 

For the statements that cannot be ordered using SR1, we create a string from the 

total number of uses and definitions of the variables used and defined in the statement. 

We call this string representation SR2. Figure 4-19 shows an example of SR2. SR2 is 

used to impose an ordering on the statements that could not be ordered by SR1. If we still 

fail to get an ordering for the statements in the reorderable sets, we create a string from of 

data dependence predecessors of the statements that are to be ordered by sorting the SR1s 

of predecessors and appending them to get a string called SR3. Figure 4-20 shows an 

example of SR4. If we fail to impose an order using SR3, we create a string from the data 

successors of the statements to be ordered by sorting the SR1s of the successors and 

concatenating the sorted strings to get SR4. Figure 4-21 shows an example of SR4. 
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A = B  + 200

=

A +

B 200

+200I

=I+200I

D = B - 200

=

D -

B 200

-I200

=I-I200

A = B  + 200

=

A +

B 200

+200I

=I+200I

D = B - 200

=

D -

B 200

-I200

=I-I200

 

Figure 4-18: String representation of an AST - example 

A = C+10 U{1, 3} – D{2, 4}

B = D+10 U{2, 3} – D{2, 4}

A = C+10 U{1, 3} – D{2, 4}

B = D+10 U{2, 3} – D{2, 4}

 

Figure 4-19: SR2 - example 

A = C+10 B = D+10

C = 100 D = 10 D = A + C / 2

A = C+10 B = D+10

C = 100 D = 10 D = A + C / 2

 

Figure 4-20: SR3 - example 
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A = C+10 B = D+10

X = A / 2 Y = A * 2 Z = B + 2

A = C+10 B = D+10

X = A / 2 Y = A * 2 Z = B + 2

 

Figure 4-21: SR4 - example 
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Figure 4-22: Dependence chains – example 
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4.5 Limitations 

Virus detection in general is an undecidable problem. We cannot devise a method 

that can detect all possible viruses. Our method is also bounded by this theoretical limit. 

For instance, the dead code removal technique may not remove all possible dead code in 

a program as this technique sometimes cannot decide whether a particular code fragment 

is dead code or not.  

The transformation to fix an order on the statements may not always get an 

ordering on all the program statements. Some instances for which an ordering is not 

possible are shown in Figure 4-23. But, most of the time, we observed that the statements 

for which an ordering cannot be imposed are either initialization statements or function 

calls with the same number of arguments.  

Our expression reshaping approach only considers reshaping done to the 

commutative and associative operations. We do not take into account the reshaping done 

to the distributive operators. 

• Initialization code 
a=0
b=0

• Function calls with same arguments
a(x, y)
b(c, d)

 

Figure 4-23: Instances for which orderings are not possible 



 

 

5 Related work 

 The Bloodhound technology of Symantec Inc., uses heuristics for detecting 

malicious code [19]. Bloodhound uses two types of heuristic scanners: static and 

dynamic. The static heuristic scanner maintains a signature database. The signatures are 

associated with program code representing different functional behaviors. The dynamic 

heuristic scanner uses CPU emulation to gather information about the interrupt calls the 

program is making. Based on this information it can identify the functional behavior of 

the program. Once different functional behaviors are identified using the static and 

dynamic heuristic scanners, they are fed to an expert system, which judges whether the 

program is malicious or not. Static heuristics fail to detect morphed variants of the 

viruses as morphed variants have different signatures. Dynamic heuristics consider only 

one possible execution of a program. A virus can avoid being detected by a dynamic 

scanner by introducing arbitrary loops. 

Lo et al.’s MCF [15] uses program slicing and flow analysis for detecting computer 

viruses, worms, Trojan-horses, and time/logic bombs. MCF identifies telltale signs that 

differentiate between malicious and benign programs. MCF slices a program with respect 

to these telltale signs to get a smaller program segment representing the malicious 

behavior. This smaller program segment is manually analyzed for the existence of virus 

behavior.  

Szappanos [13] uses code normalization techniques to detect polymorphic viruses. 

Normalization techniques remove junk code & white spaces, and comments in programs 

before they generate virus signature.  To deal with variable renaming, Szappanos 

suggests two methods – first, renaming variables by the order they appear in the program 
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and second, renaming all the variables in a program with a same name. Former approach 

fails if the virus reorders its statements, and the later approach abstracts a lot of 

information and may lead to incorrect results. As our approach fixes the order of the 

statements in a program, the first approach suggested by Szappanos for renaming the 

variable can be used in combination with our method. 

Our work relates to the work done by Christodorescu et al. [1] for detecting of 

malicious patterns in the executables. They use abstraction patterns, patterns representing 

sequences of instructions. These patterns are parameterized in order to match different 

instructions sequences with the same instruction set but different operands. They use this 

mechanism for handling the variable renaming transformation. A pattern may contain 

instructions that can be reordered. To detect variants with renamed variables that have 

reorderable statements, they would need to maintain all possible permutations of the 

reorderable statements in the abstraction patterns. Another problem with abstraction 

patterns is that it becomes difficult for AV companies to distribute virus signatures, as the 

virus may be reconstructed using these patterns. Their approach gives fewer false 

positives but the cost of creating and matching the abstraction patterns is high. They 

detect the virus variants created by performing dead code insertion, variable renaming in 

the absence of statement reordering, and break & join transformations. Our method, in 

addition to the above morphing transformations, can detect the viruses that apply 

statement reordering and expression reshaping transformations.



 

 

6 Implementation & results 

We have implemented a tool, C⊕, for generating the ZERO form for C programs. 

C⊕ uses the Program Dependence Graph (PDG), generated by the CodeSurfer [5], to 

perform the analysis required for imposing an order on the statements of the program. 

CodeSurfer provides an API in Scheme [14] to access the PDG representation of the C 

programs. The use-def and def-use dependence information is calculated using this PDG 

representation. We calculate the def-def dependencies using the CodeSurfer’s defs/kill 

sets of the statements. Figure 6-1 shows the architecture of C⊕.  
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Figure 6-1: C⊕ architecture 
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We performed a series of experiments on different sets of C programs to find 

study how well our approach imposed order on the statement of the program. The C 

programs used in the experiments are listed in Figure 6-2. The Fractal programs [17] 

create fractals using C programming language. The COOK system [22] is used for 

writing build scripts for projects. It is a powerful and easy to use replacement for make 

[18]. Search/Sort programs are the programs that search for data and sort data. We 

calculated reorderable percentages, zeroing percentages, and sizes of reorderable sets for 

these test programs. 

6.1 Reorderable percentage 

We calculated the percentage of program statements that can be reordered by 

using the morphing transformation for reordering statements. We call this reorderable 

percentage. To calculate this reorderable percentage before the application of zeroing 

transformations, we used the following formulae. 

Reorderable nodes in PT={n | n∈PT, ∃n’ ∈ PT and parent (n)=parent (n’) & 

reorderable-set-number (n)=reorderable-set-number (n’)} (i.e. the set of nodes that fall in 

the reorderable set with size greater than one before application of zeroing 

transformations). 

Number Name Description

S1
S2
S3

Fractal ( 6 files)
COOK (5 files)
Search & Sort (5 
files)

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

NumberNumber NameName DescriptionDescription

S1
S2
S3

S1
S2
S3

Fractal ( 6 files)
COOK (5 files)
Search & Sort (5 
files)

Fractal ( 6 files)
COOK (5 files)
Search & Sort (5 
files)

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

Code for creating fractals
COOK’s project files
Programs to search for data and sort data.

 

Figure 6-2: Test programs used in C⊕ 
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Percentage of Reorderable nodes = (total number of reorderable nodes in PT * 

100) / (total number of nodes in the PT). 

After the application of zeroing transformations, reorderable percentage is 

calculated using following formulae. 

Reorderable nodes in PT={n | n∈PT, ∃n’ ∈ PT ∋ parent (n)=parent (n’) & 

equivalence-class-number (n)=equivalence-class-number (n’) & SR (n)=SR (n’)} (i.e. the 

set of nodes that fall in the reorderable set with size greater than one after application of 

zeroing transformations). 

Reorderable percentage = (total number of failure nodes) *100 / (total number of 

nodes in the PT). 

We calculated the reorderable percentages for different string representations. 

With the increase in reorderable percentage for a given program, the number of possible 

permutations for that program increases. Figure 6-3 shows the reorderable percentages 

for our test programs.  SR0 corresponds to the reorderable percentage before the 

application of zeroing transformations. The Fractal programs have higher reorderable 

percentages than COOK system and Search/Sort programs. This is because the Fractal 

programs have image processing code that has similar structure of statements that operate 

on X and Y coordinates. 
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6.2 Reorderable set sizes 

We calculated the sizes of the reorderable sets for the test programs before and 

after the application of zeroing transformations on those programs. 

The number of reorderable sets with larger size before the appicaltion of zeroing 

transformations will be more than the number of reorderable sets with the same size after 

application of zeroing transformations. For example, zeroing transformations break 

reorderable set of size 25 to two reorderable sets of size 15, and 10 respectively. Ideal 

case for zeroing transformations is when the zeroing transformations yield reorderable 

sets of size ‘1’ only. 

 

53.8
62.8

49.7

4

19

5 4

15

4 3
13

4 1

13
4

0

20

40

60

80

100

Cook Fractal search/sort

Test Systems

Ze
ro

in
g 

Pe
rc

en
ta

ge

SR0 SR1 SR2 SR3 SR4
 

Figure 6-3: Reorderable percentages for the test programs 
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Figure 6-4 plots the sizes of reorderable sets against the number of reorderable 

sets with that size for the COOK system before and after application of zeroing 

transformations. Reorderable sets with size ‘1’ are not shown in this figure. The aim of 

zeroing transformations is to reduce the number of reorderable sets with larger size and 

break them into reorderable sets of size ‘1’.  
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Figure 6-5 and Figure 6-6 show the reorderable set sizes before and after applying 

zeroing transformations on Fractal and SEARCH/SORT programs, respectively. The 

Fractal programs have reorderable sets of larger sizes when compared to other programs. 

This is because the Fractal programs have more dependencies between its statements 

when compared to other programs 
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Figure 6-4: COOK - Reorderable set sizes 
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Figure 6-5: FRACTAL - Reorderable set sizes 
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Figure 6-6: SEARCH/SORT – Reorderable set sizes 
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6.3 Number of possible variants 

The total number of possible variants of a program that can be generated using 

statement-reordering transformation is calculated using the procedure given below. 

 P = A node in PT 

C1, C2,…, Cn are children of P. 

E1, E2,…, Eq are Reorderable sets obtained by partitioning C1, C2,…, Cn. 

K1, K2,…, Kq are sizes of reorderable sets E1, E2,…, Eq. 

ρ(P) = Total number of permutation obtained by reordering the nodes in the sub-tree 

starting with P. 
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The total number of possible permutations for the test programs before and after 

applying zeroing transformations is shown in Figure 6-7. 
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Figure 6-7: Number of possible permutations for test programs 



 

 

7 Conclusions and future work 

We have described a method for detecting morphed variants of the viruses. Our 

method maps different variants of a virus obtained by morphing transformations to their 

respective zero forms. This method may be used to augment the current AV technologies 

such as traditional signature scanning approach, and other static and dynamic detection 

schemes. AV technologies can use our method to create zero form for a virus and extract 

zero signatures of that virus. These zero signatures can be distributed to the users as virus 

signatures.  

Our method uses zeroing transformations to map different variants of a virus to 

zero form. The effectiveness of our method is determined by the effectiveness of zeroing 

transformations that map a program to zero form. As our method is a heuristic, we may 

not always map all the variants to a single zero form. But the application of zeroing 

transformations results in a significant decrease in the number of possible variants of a 

program. The experiments we conducted show that, on an average, 55% of the program 

statements were reorderable before the application of zeroing transformations which 

decreased to 6% after the application of zeroing transformation for fixing the statement 

order. 

The morphing transformations we consider are dead code insertion, statement 

reordering, variable renaming, expression reshaping, and break & join transformations.  

In future work, we would like to test our method on actual viruses. We would also 

like to do an investigation on other possible morphing transformations and the zeroing 

transformations to create zero forms in such cases.
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ABSTRACT 

Metamorphic computer viruses programmatically vary their instructions to create 

a different form for each infection. This is done using code evolution techniques, such as 

introducing dead code, reordering statements, reshaping expressions, and changing 

variable names. Current anti-virus technologies use signature, a fixed sequence of bytes 

from a sample of a virus, to detect its copies on a user’s machine. Use of signatures does 

not work very well with metamorphic viruses since two versions of a metamorphic virus 

may have very little in common.  

This thesis presents a method to transform different variants of a metamorphic 

virus to the same form, called the zero form. Current technologies can be improved to 

detect metamorphic viruses by using the zero form of a virus, and not the original 

version, for extracting signature. We developed a tool for generating zero forms for C 

programs. For the test programs we used, we found that 55% of the statements were 

reorderable before applying zeroing transformations for fixing the statement order. After 

applying zeroing transformations for fixing the statement order, only 6% of the 

statements could not be ordered. The average number of possible permutations of the 

program statements obtained by statement reordering transformation reduced from 1043 to 

108 with the application of zeroing transformations for fixing the statement order. 
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