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1 Introduction

A call m.ultigraph’of a program is a directed

Multigraph encoding the possible calling relations

between procedures. These graphs are used in in-

terprocedurd program optimization [2, 3, 9, 15]

and for reverse engineering of softw~are systems

[7, 8]. For programs that do not contain pro-

Cedul”e valued variables (referred to hencefollh as

procedure variables) this graph can be constructed

by a single pass over the program collecting the

procedures called at each call site. When pro-

cedure v,ari.ables and indirect calls using values

of such variables are allowed constructing such

a graph is not so simple. In the worst case, the

value of a procedure v,ariable at a call site may

be a reference to any procedure in the program.

For interprocedural optimizations and for under-

standing programs one would like to have more

precise solutions.

The importance of precisely constructing an

analogue of call graph (referred to as the Ot}l order

control flow analysis or OCFA) in the context of

higher order languages such as Scheme and ML

has been eloquently elaborated by Shivers [18]. A

precise call graph enables data flow optimizations

*
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that in tum enables efficient implementations of

programs in these languages. The precision of

a program’s call graph affects the precision of

interprocedural analysis in Foman compilers as

well [5].

This paper describes a new polynomial time

algolithm for constmcting such a call graph that

is precise within the limitations ofj?ow insensitive

interjxocedural analysis. The key aspect of our

solution is our model of the problem as a constant

propagation problem over the domain - powerset

of all procedure constants with set union as the

meet operator. We call this the problem of prop-

agating sets of procedure-values and show that

this problem, unlike constant propagation prob-

lem, belongs to the class of distributive flow anal-

ysis problems [12]; it is therefore decidable.

Our algolithm performs interprocedural flow

analysis [10] to constmct the graph. We de-

velop an interprocedurd procedure vahles prop-

agation algolithm by amfilgamating Wegman and

Zadeck’s constant propa@ion algorithm [20] and

Horwitz, Reps, and Binkley’s interprocedural for-

ward slicing algolithm [11]. Interprocedural

analyses themselves depend on call muhigraph.

Our algolithm resolves the conflict by iteratively

propagating procedure-values over a system de-

pendence graph representation of a program [11]

and constmcting the call graph, till a fixed point is

reached. We give a formal definition of the term

precise call graph and prove that the call graph

constructed by our al.golithm is precise. Our al-

golithm computes precise call graphs for a larger
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procedure P(X, Y);

proc var X, Y;

x := Y;

end;

procedure Q(),

procedure R(); .

procedure S(Z);

proc var Z;

14: *20;
end;

procedure maino;

proc var A, B;

proc ref P, Q, R, S;
(-~. P(A, Q);
*1: *A();

C2 : P(B, R);

C3: S(B);

C4 : P(A, P);

12: *A(A, S);

13: *A(Q);

end;

Figure 1 A program with procedure wriables and indirect calls.

class of programs than the works in[4,5, 17, 18,

19, 21].

The rest of the paper is organized as follows.

Section 2 establishes the terminology and formu-

Iates the problem. Section3 discusses theprevi-

ous works on this problem and elaborates upon

oLlr Contribution. Section 4 Sumrn,wizes Horwitz

et. al.’s system dependence graph (SDG) and

ou rextensions. For more details about SDGs the

reacleris referred to [11]. Section 5 gives our in-

terprocedural procedure-values propagation algo-

rithm. Section 6 gives the algolithmto construct

the call graph. Section 7 proves that our algo-

rithm computes precise call graph and analyzes

its complexity. It is followed by our conclusions

and the list of references.

2 Problem formulation

We consider programs written in a procedural

language that permits indirect calls through pro-

cedure valued variables. parameters across a pro-

cedure call are assumed to be passed by call by

value-result. Global variables are not permitted.

Only variables are allowed in the actual parameter

list of procedure calls and repetition of variables

in this list is not allowed. These restrictions pro-

hibit aliasing in programs. The language, parame-

ter transfer mechanism, and these restrictions are

all inhelited from Horwitz et. al. [11] since we

use their system dependence graph for represent-

ing programs. These restrictions can be removed

using the methods suggested by them.

if A in {p] , pz} then {

if A == pl then pl(zl,12, . ..).

else if .4 == pz then p2(zl, z2, ...);

} else {
if A == p3 then p3(zl, z2, ...);

else if A == p4 then p4(zl, z2, ...).

else if A == p5 then p5(zl, z2, ... );

else terminate ubnormolly.

)

Figure 2 Code segment used to reify an indirect call

*A(z1, x2, . ..) at site c, where fkf(ct) = {Pi, P2}

The prog~am in Figure 1 will be used as a

running example. , The statements starting with

an * are indirect call statements. Further, it is

assumed that a special procedure main exists that

initiates the execution.

Definition: (Domain constraint). A procedure

variable in a program can only be defined us-

ing assignment statements that either have a pro-

cedure reference or a procedure variable on the

right hand side. V

This constraint prohibits one to assign nu-

meric expressions that evaluate to the physical

memory address of a function as one may do in

programming languages such as C.

Definition: (Completeness constraint). Only pro-

cedures contained in a program may be called

from a call site inside the program. V

In the absence of this constraint a procedure

may call another procedure external to the pro-

gram which may then call some procedure within

the program. Such a call will go undetected.

Definition: Let P = {pl, pj, . . . . pn}, 72>0 be the

set of procedures in a program (including main).

We associate a unique identifier to all statements

of a program. Let C = {cl, c2, . ...c~}. n2 > 0, be

the set of (identifiers of the) indirect call vertices

in the program. Let P be the power set of P. V

Definition: The problem of constructing a call

graph is essentially the same as creating a map-

ping Lf : C + P, that maps each indirect call site

to a set of procedure references constituting the

procedures that may be called from that site. For

c, this set is denoted by lkf(cz). V
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Definition: A call graph is dynamically precise if

for every call site Ci, AI(cZ ) contains only those

procedures that can be called from Cz for some

initial state a. V

This definition is not useful since it relies

on dynamic characteristics of the program. We

would like a definition that depe~ds on a pro-

gram’s static characteristics. The obvious defini-

tion based on paths in the flowgraph also does

not suffice since due to presence of indirect calls

the paths are not known statically. We solve the

problem by transforming the program P to PM

to P~ such that PM is free of indirect procedure

calls and Pfi has no procedure calls at all. The

three programs are equivalent under declarative

semantics.

Note that Pfi is introduced only to define

the notion of statically precise call graph. It

is only manipulated mathematically to establish

properties of our algolithm.

Definition: Let PM denote the program due to

expanding indirect call statements in program P
with respect to a mapping fll as follows. If Cz

contains *A(z1, x2, . ..) and IVf(cz) = {pi, pz}

then the call in c~ is replaced by the code segment

in Figure 2. All other statements of P are copied

as is to PM. V

Definition: P~ is the potentially infinite single

procedure due to exhaustive inlining of procedure

calls inside procedure main of program PJf. V

The outer if introduced by expanding a c1 in

PM does not contribute to its meaning but serves

to create different paths for procedures contained

in kf(ci ) and those not contained in it. The

statements in the then side of an outer i~statement

in PM (not P~ ) are said to lie on the true branch

and those on the else side in the false branch.

Definition: An ill-path in the flowgraph of PJ~
is a path in it that does not contain any statement

that is an instance of some statement in the false

branch of PM. (Refer to [1] for definitions of

flowgraph and path). V

Definition: A mapping J14 is conservative iff it

has the property:

if 3 a statement s 1 in P~ such that

&

b.

c.

d.

S1 contains VI := pj,

in the flow graph of PJf there is an M-

path from .sl to C: (an instance in P~ of

the outer ij statement in PM that corre-

sponds to cZ),

a sequence of’ identity’ assignments copy

the value ofs 1 into

c:, and

there is an Jkf-path

the flowgraph to S1

then I]i E lf(cz).

Q

The condition says that

the variable used in

from start vertex of

if the program exe-

cution takes a path such that some statement SI

propagates procedure reference pj to C: then the

call graph should state that j)j may be called from

c~. But reification of indirect call sites may intro-

duce paths in the program that may not really

happen. The condition “there is an M-path from

the start vertex to s 1” removes such paths from

consideration.

When the definition is applied from procedure

main onwards, we claim that it will require all

procedures that are called from a call site to

be included in the call graph. The mapping is

conservative since Jf(cj ) may contain procedures

whose values can not be propagated to C3 through

any path starting from main.

Definition: A mapping Ad is optimistic iff it

satisfies the property resulting from swapping the

antecedent and the consequent of the definition

of conservative. V

This is the inverse of the definition for con-

servative. It says that 114(c~) should not contain

a procedure reference if there is no path through

which its value can be propagated to CZ.

Definition: A mapping is stdcally precise if it

is both conservative and optimistic.

We show that the call graph computed

algolithm is precise in the above sense.

by our
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3 Comparison with previous works

The call multi.graph constmction problem has

previously been studied by Ryder [17], Burke

[4]+, and Callahan et. al. [5], Spillman [19] and

Weihl [21]. Our work may be compared with

these on a) constraints imposed on the usage of

procedure variables and b) the precision of the

resulting call Multigraph.

The work of Burke, Ryder, and Callahan are

specific to Fo~lran in which a) procedure valued

variables are only allowed as procedure parame-

ters and b) assignments to formal procedure pa-

rameters is not allowed, they can only receive pro-

cedure values from actual parameters. Amongst

them, Burke’s and Callahan et. al.’s algorithms

work for recursive Fortran programs where as Ry-

der’s algolithm does not. Further, Callahan et.

al.’s and Ryder’s algorithms return more precise

call graphs than Burke’s.

The program in Figure 1 uses procedure vari-

ables in a way not permissible in Fortran, hence

Burke, Callahan et. al., and Ryder’s [4, 5, 17]

algorithms can not constmct its call graph. Our

algolithm is therefore applicable for a larger class

of languages than these works. If, however, our

algolithm is applied to the same class of language

as Callahan et. al.’s and Ryder’s work, respec-

tively, it is our con:jectuve that results returned

will identical.

Spillman [19] and Weihl [21] work with a

procedural language that permits label valued

variables and aliasing. Due to the presence of

label variables they do not even have the flow

graph of a program. As a result they can not as-

sume any ordering in a program’s statements. The

results of the analysis are vely imprecise. The call

graph constmcted by our algolithm and that due

to Weihl’s are given in Table 1 (towards the end

of the paper). The reader may notice the differ-

ence in the results.

* The chapter concerning constmchon of call Multigraph in [4] lms
been omitted from its jounxd version published in ACM TOPLAS (July,
1990).

4 System dependence graph

Horwitz et. al.’s SDG encodes the data, con-

trol, and call dependence relations between state-

ments~ of a program in a simple procedural lan-

guage stated in Section 2 [11]. The next para-

graph outlines the wuious types of vertices and

edges in an SDG as defined by Horwitz et. al.

For a more detailed description the reader is re-

fereed to [11].

The SDG consists of a collection of procedure

dependence graph (PDG) (a variation of program

dependence graph [14, 16]). There is one PDG

per procedure in the program encoding the control

and data dependence relations within the proce-

dure. The various types of vertices in a PDG are:

for statements – assignment, ifi while, jinaluse,

for procedure call – call site, actual-in, actual-

out, and for procedure ently - entry, .fo~mal-in,

formal-out. The edges connecting vertices within

a PDG are control and jlow edges. The edges be-

tween vertices of different PDGs are: call edge

– from a call-site to an entry vertex; parameter-

in edge – from an actual-in to an <formal-in ver-

tex; parameter-out edge – from formal-out vertex

to actual-out vertex; and summary edge from an

actual-in to an actual-out vertex.

Our extension.. We extend Horwitz et. al.’s def-

inition of SDG to contain indirect call vertices

to represent an indirect call. Each indirect call

vertex has its pairs of actual-in and actual-out

vertices that have flow edges connecting them

to the vertices within the PDG. Since the pro-

cedures called from an indirect call statement are

not known its vertices ,are not connected to ver-

tices of any procedure ently and there are no sum-

m,my edges between the actual-in and actual-out

vertices.

Our algolithm to construct call graph is iter-

ative. As procedures that may be called from an

indirect call site ,are detected the SDG is modi-

fied to represent this knowledge. For each pro-

s It also has another dependence called the clef-order dependence
which is not relevant for our work. This dependence is thel-efore ignol-ed
in this paper.
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Figure 3 SDG of program in Figure 1.

Legend for vertices: rectangular boxes - entry ovals - direct and indirect calls; dotted oval - other statements; @X

- not a true vertex, shows usage of reference to procedure X; A_i or A_o - parameter vertex (actual or formal

depending on geometric proximity with entry or call vertex), _i denotes _in and _o denotes _ouL dotted polygon -

PDG of each procedure. Legend for edges: shaded arrows - parameter-in and parameter-out edges; solid arrows -

data dependence edges. To avoid clutter the control, indirect-control, and call edges are not shown.

cedure that may be called from an indirect call

site we introduce a virtual call-site and connect

it by an indirect control edge emanating from the

comesponding indirect call site. The virtual call-

sites too have actual-in and actual-out vellices

and they may be connected by summ,wy edges.

Flow dependence edges entering or exiting the

actual parameter vertices of a virtual call site ~a.re

copied from those of the indirect call site. These

vertices are also connected by parameter-in and

parameter-out edges to the formal vertices of the

comesponding procedure.

It may be reemphasized that the virtual call

site vertices ,are created by our algolithm. In the

initial SDG only (direct) call sites ,are connected

to the entry vertices of the corresponding proce-

dures. This SDG can be created using Horwitz et.

al.’s algolithm. Figure 3 gives the initial SDG of

the program in Figure 1.

5 Propagating procedure
values using SDG

The goal of constant propagation is to “dis-

cover values that are constant on all possible exe-

cutions of a program and to propagate these con-

stants as far as through the program as possible”

[6]. The constant propagation algorithms of [6,

13, 20] use a jlat lattice and the following meet

sules:
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global G /* an SDG */;

procedure PropagateProceciureValues; {

I* Put ‘root’ nodes in Worklist *I

Wolkltst := d

put nodes in G containing p:=c into WoTkltst, where p is a procedure variable and CE P;

unmark all nodes

I* Propugate constants to calling procedures *I

propagateUsingSelectiveEdges(Worklist, [flow, summary, parameter-in));

let Worklist be the set of all nmrkeci nodes;

I* Propagate constants to called procedures *I

propagateUsingSelectiveEciges(IT’orkl~ d, [flow, summary, parameter-out]);

}

procedure propagateUsingSelectiveEdges(Worklist, EdgeTypes); {

P p~opagate constants ji-otn vertices in Worklist by traversing only edges of’ type in Edge Types *I

while WoTkl%st # d do {

select and remove an element v from W or lclzst

for every vertex Ml such that v - w is an edge whose type is one of EdgeType Y do {

if w. Value # w. Va17Le U u. VcJue

w. Value := w. Value U v. Value;

put w in Wo~klZst;

}

}

}

I* Initializations to be done before Pt-opugateProcedureValues is called *I

procedure Initialize {

for every node s in G do {

if s is an indirect call site: s. Value .= ~;

if s assigns a procedure variable to a procedure variable: s. Value := @;

if s assigns a procedure reference c to a procedure variable: s. Va/ue := c

}

}

Figure 4 Algorithm for propagating procedure values using SDG.

aAb=Tifa#b

uAa=a

aAT=T

aAl=a

If the j?at lattice is replaced by the po]ver

set of all values in a given domain and the meet

operator by set union these algorithms may not

terminate for infinite domains such as integers

or real numbers. However, if the domain is

finite (as is the set of all procedures in a given

program) the algorithms will terminate [12] and

return the set of all values a variable at a given

site in the program may take. To differentiate with

the constant propagation problem we call this the

problem of propagating procedure values.

The domain constraint of Section 2 stated in

Kam and Unman’s [12] terminology implies that

the function space for this problem consists of

only the identity function. It is therefore a dis-

tributive flow ,analysis problem and, unlike tra-

ditional constant propagation, can be computed

precisely. The reader may note that since the call

Multigraph problem is formulated in terms of the

flow graph of I$j its computability may be anal-

ysed using Kam and Unman’s framework. Our
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procedure ConstructCrdlGraph; {

construct PDGs for all procedures

Initialize; (See Figure 4)

repeat

Construct the SDG using Value of procedure variables at indirect call-sites

PropagateProcedureConstants (see Figure 4)

until Value of no indirect call-site changes

I* create call graph M) is given *I

VC, ~ C : A4(ct) = ct. Va/ue.

1}

Figure 5 Algorithm for constructing call graph

algolithm however does not use flow graph.

Figure 4 gives an algolithm to propagate

sets of values of domain 7 for our extension

of Horwitz et. al.’s system dependence graph

[1 1]. The procedure Initialize should be called

before PropagateProcedureValues is called. It

has been kept outside because in the next sec-

tion PropagateProcedureValues is called in a loop

where the initializations need only be performed

once. Examples enumerating the working of the

algorithm are also presented in the next section.

Horwitz et. al. have noted that indiscriminate

traversal of an SDG’S edges can create a depen-

dence path between vertices of two procedures

even when none exists. This happens because a

procedure entry vellex may be connected to mul-

tiple call sites. A traversal may use pammeter-in

edge coming out of one call site and p,arameter-

out vertex returning to another call site to create

the incomect linkage. Horwitz et. al. termed this

the calling context problem and developed a two

pass traversal to solve it for their interprocedu-

ral forward slicing algolithm [11]. The first pass

of their algolithm uses only control, flow, sum-

maty, and parameter-out edges for traversing the

graph. Similarly, the second pass uses only con-

trol, flow, summiuy, call, and parameter-in edges.

Since we need only data dependence we drop the

control and call edges from the two passes; which

explains the choice of p~ammeters to propagate-

UsingSelectiveEdges in Figure 4.

The Worklist to maintain vexlices to be pro-

cessed and the condition when vertices may be

added to it is retztined from Wegman and Zadeck’s

[20] algorithm. Due to the domain constraint, an

assignment statement (of interest to us) can only

have one vatiable on the right hand side. This re-

moves the need to introduce join nodes, as done

by Wegman and Zadeck.

We have not used Callah,an et. al.’s inter-

procedural constant propagation algolithm [6] for

our problem because it gives results less precise

than our algorithm. This is because Callahan et.

al.’s summaty information is computed by ignor-

ing the existence of other call sites. Our algo-

lithm has access to the PDG of the procedure and

hence there is no approximation. Our algorithm

can however not be used to propagate constants

when the domain constraint is removed.

6 Constructing call graph

The algorithm for finding the set of proce-

dures called from (an indirect call-site is given in

Figure 5. The algorithm is iterative. The Value

field of an indirect call-site gives the set of pro-

cedures known to be called from that site. Before

the first iteration this is initialized to the empty

set. The SDG is updated at each iteration to add

virtual call sites con-esponding to the Value of

the indirect call sites. The procedure values are

then propagated over the SDG potentially chang-

ing the Value of some indirect call site. The SDG

279



..... @R

!.,, m / L--=-=+. J ./”

J..””’\,,,, “’” ,, ‘“’ ., 13 (J%_)
~~~~“\, ;...
k

Y_o ‘; <
Q_i

x:= Y,,; /’ ~ ‘./’

Figure 6 Parfial SIX after first iteration.

Legend: shaded ovals - indirect call-sites; thicker solid at-rows - new flow edges added after

this iteration. shaded arrows - new parameter in/out edges; Not shown: edge from indirect call-site to virtual
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is updated a,gain and the process iterated until the

Value of all the indirect call-sites stabilize.

We now apply the algorithm to the program

in Figure 1 whose initial SDG is given in Figure

3. In this SDG the PDGs for procedures Q and

R and all the control and clef-order edges have

been ignored. The nodes of the indirect call

sites have been labelled 11, 12, 13, and 14. The

program requies four iterations of the repeat loop

to propagate all the procedure constants. Figures

6 to 8 give the new SDG due to Value after the

end of each iteration. The virtual call-sites created

as more Value of indirect call-sites get known care

shown in shaded ovals. They are labelled Vl,

V2, V3, V4, and V5. Table 1 gives the Value

for these nodes initially and after each iteration.

For the sake of comparison, it also contains the

values generated using Weihl’s algolithm [21].

The other call graph construction algorithms do

not process programs in our language and hence

their results for this program can not be compared

against ours.

At the end of the first iteration, the proce-

dure references Q, R, and P from call statements

Cl, C2, and C4 are propagated to the indirect

call-sites 11, 14, and 12, respectively (see Figure

6). Notice that 14 an indirect site in procedure S

is connected to call site C2 of Main through an-

other call site C3 (also in Main.). Similar propa-

gation of constants across procedures through call

sites in the same procedure is not permissible by

Callahan et. al.’s interpocedural constant prop-

agation algorithm [6]. Virtual call sites VI, V2,

and V3 are introduced in the SDG to reflect the
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Figure 7 Partial SDG after second iteration

new knowledge.

The second iteration (see Figure 7) propagates

procedure reference S from the virtual call-site V2

(related to 12) to another indirect call-site 13. A

new vil~ual call-site V4 is introduced.

The third iteration propagates a procedure

reference Q from the virtual call-site V4 (related

to 13) to indirect call-site 14. A new virtual call

site V5 is introduced. In the fourth iteration no

more values ,are propagated. Hence there is no

change in the SDG and the algolithm terminates.

7 Correctness and complexity
analysis

The algorithm of Figure 5 is guaranteed to

terminate because a) the program is assumed to

be complete, b)

cedw-es, and c)

there are finite number of pl-o-

the maximum number of times

the value of a vellex can change is / P / (the

maximum length in the lattice (’P, ~)).

We now prove that the call graph created by

our algorithm is statically precise. The proof is

based on two conjectures a) the SDG adequately

represents a program’s dependencies and b) the

SDG traversal algorithm only traverses data de-

pendence paths. The interprocedm-al slicing algo-

rithm of Horwitz et. al. [11] is based on these

conjectures.

Our algorithm may be viewed as creating a

sequence of call graphs A&., Ml,. ... Mr where

~Ji(cj) = Cj. V’(71U~, VC1 C ~

before the ithiteration.

The gist of the proof is as follows. J40 is

optimistic because ~cj, &f. (cj ) = ~. We prove

that if ikfi is optimistic then so is Ali+l. Finally,

M., the call graph on termination of the algolithm

is conservative because there ,are no procedure
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Figure 8 Partial SDG after third iteration

values that may reach an indirect call site Cj and

are not already in Jf(cj). Hence ~ is Precise.

Since the precise call graph is defined in terms

of P& and Al-paths, while our algolithm uses

system dependence graph, we first draw a relation

between the two. This requires introducing some

more notations.

Definitiorx T (PM) is the program created by

removing from PM the else part of all the if

statements introduced after replacing the indirect

call sites.

Notice the relation between l’fi and ~(~~)m.

All the paths in T(PM )@ are A/f-paths and all the

M-paths of Pfi are also contained in T(piw)m.

Definition: Let GM denote the SDG for P with

virtual call sites for the call Multigraph defined

by Jf.

Definition: Lett G& be the potentially infinite

graph created by replacing a call-site and the

actual parameter vertices by the corresponding

entry and formal-parameter vertices.

Conjecture 1: Gfi is kornowhic to the PDG Of

T(PJf)m.

From this conjecture one may say that if in

P~ the value of a variable defined at a statement

z reaches a statement y then there will be a data

dependence edge in Gfi from vertex correspond-

ing to ~ to that corresponding to y.

Conjecture 2: When traversing an SDG using

Horwitz et. al.’s interprocedural forward slicing

algolithm, if a vertex v is found to be in the slice

of a vertex w then in Gfi there exist Vertices V’
and w’, instances of vertices v and w, respec-

tively, such that there is a path from v’ to w’.

Since we only use a subset of the type of

edges used in each pass of Horwitz et. 1a .$s

forward slicing algolithm it can be infemed that

if there is a path in our system dependence graph
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that path is also traversed by Horwitz et. al.’s

~algorithm (with appropriate slicing criterion).

From the above conjectures we can infer the

following. Every path (sequence of edges) of GJI

traversed by our algolithrn comesponds to a set of

paths in G~ which only represent flow of data

along some paths in r ( PfiI ) m and therefore along

M-paths of Pflf. By definition, in the flow graph

comesponding to ~ (PJI )m there is a path from

the start vertex to all the vel~ices. Hence, evely

vertex of G~l used in our algorithm to create the

initial ll~ork~ist is reachable from the start vertex

over an M-path in the corresponding flowgraph.

Lemma: If Mi is optimistic then M,,+ I is opti-

mistic.

Proofi For all c~ ~ C if there exists a procedural

value pj in &li (c~) then it also exists in M,+l (c~ ).

If the four conditions for the optimality of M are

tme in P8, then they <are also tme in Pti, +,.

We therefore only need to concern about the

condition when there exists pj in Jl~+l (c~ ) and

not in lk~~(cJ.

For a procedure value to be added to the Value

field of any ve~lex in the i + lt~’ iteration there

must exist an assignment statement that assigns

the value to a variable and there must exist a path

in CJflt along which the value reaches that vertex.

These paths also exist in Gfit+l. Since all paths

in a G~I are M-paths and since the domain con-

straint allows only identity assignments to proce-

dure variables the four conditions in the definition

of optimistic constraint are satisfied. Hence, if Jll

is optimistic then so is Illt+l. V

Theorem: The call graph M = M. created by

algorithm of Figure 5 is statically precise.

Proofi Follow from above Lemma and that ter-

mination implies Illm is conservative. V

Complexity analysis. Let there be N vertices

(including parameter vertices) that define proce-

dure variables. Since maximum times the value

of a vertex can be changed is I P 1, the SDG may

at worst be created N. I P / times. The computa-

tion of SDG can be done in polynomial time [11]

Table 1 Values of indirect-call sites initiatly and at the

end of each iteration. The last column shows

the mapping due to Weihl’s method.

h
Call-

site

11

12

13

14

[teration Iteration

1 2

Q I Q

P I P

14 s

R R

Iteration

3&4

Q

P

s

R,Q

Weihl’s

method

P,Q,R,S

P,Q,R,S

P,Q,R,S

R,Q

hence the construction of a call graph may also

be done in polynomial time.

Notice, that in each iteration new vertices and

edges are added to the SDG, they are never re-

moved. Intermediate information extracted by the

SDG construction algolithm can be saved so that

successive iterations may only perform incremen-

tal work to update the SDG. The complexity of

the resulting algorithm then adds (not multiplies)

a polynomial to the worst case complexity of Hor-

witz et. al.’s algolithm. More details are beyond

the scope of this paper.

8 Conclusions

We revisit the problem of constructing call

Multigraph of a program that contains indirect

calls to procedures using procedure variables.

The problem has previously been looked at by

Spillman [19], Ryder [17], Weihl [21], Burke [4],

and Cidlahan et. al. [5]. Shivers [18] solves an

equivalent problem in the domain of functional

languages and terms it zeroth order control flow

analysis (OCFA).

We present a polynomial time algolithm that

gives statically precise call rnuhigraph for a larger

class of procedural language than those dealt by

Ryder, Burke, Callahan et. al., Spillman, and

Weihl’s. Our algolithm is significant because the

precision of interprocedural data flow analyses

pelformed by optimizing compilers depend on the

precision of the call graphs they compute. Call

graphs are also used for reverse engineering of

software systems and provide cross reference for
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program understanding. The precision in comput-

ing such a graph can also significantly help these

activities.
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