
DIME: A direct manipulation environment
for evolutionary development of software

Arun Lakhotia
The Center for Advanced Computer Studies
The University of Southwestern Louisiana

Lafayette, LA 70506, USA
+1 318 482–6766
arun@cacs.usl.edu

Abstract

This paper presents an overview of the DIME environ-
ment (DI rect ManipulationEnvironment) being developed
by the author. The paper presents the DIME vision, its
catalogue of evolutionary transformations—program trans-
formations used by programmers during software mainte-
nance—and scenarios of how they may be used by a pro-
grammer during software maintenance. The DIME system
will provide for programmers what programmers provide
for other computer users: a simple, intuitive, yet powerful
way to transform data with the click of a mouse. It will
place at the programmer’s finger-tips—figuratively speak-
ing—rigorous, formal transformations for creating, com-
posing, analyzing, and modifying the architecture of a soft-
ware system. Using DIME a programmer will radically
overhaul the architecture of a software system just by point-
and-click and drag-and-drop with the guarantee that the
external behavior of the system is unchanged.

1 Introduction

Software is different from other engineering artifacts in
that anew software system is created by modifying actual
componentsof the old systems. Thus, while the mechan-
ical, electrical, and electronic components of a new sub-
marine are created from totally new material—rather than
from scavenging similar components from an old subma-
rine—its software components most likely are scavenged
from an old submarine.

The DIME environment (DI rect Manipulation
Environment), currently under development, will provide
capability to modify software using a mouse-based, direct
manipulation, user interface. The DIME environment
will place at the programmers’ finger-tips—figuratively
speaking—rigorous, formal transformations for creating,
composing, analyzing, and modifying the architecture of
a software system. Using DIME a programmer will be
able to radically overhaul the architecture of a software
system just by point-and-click and drag-and-drop with
the guarantee that the external behavior of the system
will remain unchanged.

The theoretical foundation of DIME consists of a cat-
alogue of evolutionary transformations—transformations
performed by programmers during software evolution.
This catalogue of transformation, compiled by analyzing
the author’s journal containing his record of programming
activities over a span of three years, is quite similar to the
catalogue of restructuring transformations developed ear-
lier by Griswold [12, 14]. The innovation of the DIME
project lies in attaching the evolutionary transformations to
mouse-clicks. This calls for the development of additional
formalism to infer parameters of the transformations from
both the context in which a transformation is applied and
some minimal hints provided by the user.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the DIME vision. Section 3 presents
our catalogue of evolutionary transformations. Section 4
highlights issues in developing the direct manipulation in-
terface. A comparison of DIME with other research efforts
is presented in Section 5. Our concluding remarks, which
include the status of the DIME project, its expected impact,
and some anticipated challenges are presented in Section 6.

2 Vision

The DIME environment will revolutionize the way pro-
grammers develop and manipulate programs. By integrat-
ing the robustness of formal methods with the ease of use
of Internet web browsers, the Macintosh, and the Win-
dows95 desktop, DIME will place sophisticated program
transformations at the programmers’ finger-tips, literally
available at the click of a mouse.

The desktops of Macintosh and Windows95 provide (a)
iconic representation of files and directories, (b) point-and-
click interface for moving, copying, deleting, renaming,
and printing files and directories, (c) multiple views to
present the contents of a directory, (d) point-and-click to
navigate through directory, and (e) mechanisms to search
for files and directories based on various parameters.

DIME will provide similar point-and-click access to the
components of a software system. The directory, source

code files, functions, variables, statements, types, make-
files, etc.—the components of a software system—will be
represented as icons. A program component or a rela-
tion between components may be presented in different
"views." For instance, a function may either be shown as
an icon or be shown by its name along with some sum-
mary information, such as its size, date of last change, etc.
It could also be shown as its complete code. A call re-
lation may be shown as a directed graph or as a nested
tree structure.

A programmer will perform commonly used complex
operations by just pointing-and-clicking. For instance,
renaming a function will be akin to renaming a file. Below
the icon of a function will be its name. To rename the
function one will click on its name and type in the new
name. The environment will automatically rename the
function in all calls to the same function, based on scope
rules.

Similarly, other mouse-based operations—such as se-
lect, cut/paste, drag/drop—will lead to meaningful manip-
ulations of programs. One could extract a reusable piece
of code hidden within a big function by selecting the rele-
vant code fragment, dragging it, and dropping it on a file.
The system will automatically identify the parameters to
the new function and introduce a call to the new function.
Similarly, one could make a global variable into a local
variable by dragging the variable and dropping it into the
declaration section of a function.

Just as web browsers provide mechanisms to move
through documents by following links and traversal his-
tory for navigation through the web, so will DIME pro-
vide mechanisms for navigation through a software sys-
tem. Using architecture modelling technologies [16, 20],
DIME will present to the programmer an abstract view
of the system. The programmer will navigate through the
system by clicking on objects and relationships. Thus, a
programmer may navigate through a program following
task interaction paths, or function call paths, or data flow
paths, to name a few.

The integration of the coarse-grain architecture analy-
sis techniques and fine-grain formal methods will arm the
programmer with a very powerful mechanism to radically
overhaul the architecture of a software system. For in-
stance, a programmer may first use the coarse-grain analy-
sis to identify tightly-coupled components [13] and then
use fine-grain analysis to de-couple those components.
Similarly, coarse-grain analysis may be used to identify
repeated patterns of code [3] which may be replaced by
appropriate function calls using fine-grain analysis.

3 Evolutionary transformations

The main theoretical challenge of this project is the de-

velopment of a catalogue oftransformations for evolving
the structureof a program. These are transformations used
by programmers in their day-to-day activity to reorganize,
restructure, or re-architect source code without influencing
the external behavior of the program. Such transforma-
tions may be interspersed with other behavior modifying
changes and are performed to alter the design of a system.
These transformations are also used when overhauling the
architecture of a software system.

In the rest of this section we summarize our catalogue of
transformations for structural evolution. The transforma-
tions in this catalogue were identified by analyzing about
40,000 lines journal of the author’s programming activi-
ties over the past three years. The programming activities
recorded were undertaken in the development of three sys-
tems, most notably the WolfPack*. That our transforma-
tions are representative of operations actually performed
by programmers is supported by the fact that, in prin-
ciple, they are the similar to the restructuring transfor-
mations presented earlier by Griswold [12, 14]. We use
the wordtransformationbroadly as a “mathematical map-
ping.” While most of the transformations actually mod-
ify a program’s structure, some of them—in particular,
wedge—only provides some insight into a program’s struc-
ture without modifying it.

Transformation: Fold. The fold transformation creates
a function for a given set of statements and replaces the
statements by a call to this function.

The fold transformation, also sometimes calledlambda
lifting, was first developed by Burstall and Darling-
ton in the context of functional programming [6] and
subsequently studied for logic programs [30]. Gris-
wold’s extract-function transformation extends it
to structured—single-entry, single-exit—imperative pro-
grams. We have extended this transformation to arbitrary
imperative programs [21].

Once a sequence of statements that can be folded has
been identified, folding them into a function poses some
other challenges. One must not only decide which vari-
ables would be parameters to the functions and which vari-
ables would be its local variables—equivalent to determin-
ing which variables are universally quantified and which
are existentially quantified—but also determine whether a
parameter is passed by value or by reference.

Transformation: Unfold. The unfold transformation re-
places a function call by the statements in the body of the
called function.

This transformation is analogous to the unfold trans-
formation in functional and logic programs [6, 30], with
the difference that in the imperative domain this transfor-

* Visit http://www.cacs.usl.edu/˜arun/Wolf/

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;
 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin
4 i:=0;
5 while i < days do begin
6 i := i + 1;
7 readln(sale[i])
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

Figure1 Sample non-cohesive code.This function uses the same input to compute different outputs. Its computation also depend on
a flag passed as a parameter. This function id a representative of code withinterleavedcomputations [27]. In the following
figures this function is restructured into a collection of functions with an object-based architecture. Functions, representing
methods, computing different outputs are extracted using meaning preserving transformations: Wedge, Split, and Fold.

mation must account for the various types of parameter-
passing conventions.

Transformation: Inline. The inline transformation un-
folds a function at all the places from where it is called.

Griswold’s var-to-expr andbinding-to-expr
transformations correspond to our inline and unfold trans-
formations, respectively [14].

Transformation: Split. The split transformation splits a
single-entry, single-exit region into two regions, one con-
taining all the computations relevant to a set of statements
S and the other containing all the remaining computations.
The transformation introduces new variables or renames
variables and composes the two new regions such that the
overall computation remains unchanged. When it is not
feasible to split a region in such a way, the transformation
leaves the region unchanged.

The split and fold transformations provide a method
for extracting interleaved computations [27] into separate
functions without changing the external behavior of the
system [21]. This transformation uses program slicing [31]
to identify computations that are related.

Transformation: Move. The move transformation moves
a statement over the statements before or after it in the
control flow, but within the same function.

The move transformation is analogous to Griswold’s
move-expr transformation. In optimizing compilers, a

move transformation is used to move invariant computa-
tion out of a loop and to reorder computations so as to
reduce the need for temporary variables [1, 23].

Transformation: PushUp. The pushup transformation
pushes a statement from a function to its call-sites. The
statement may be moved either to the point before the
function is called, or the point after the completion of the
call.

To ensure that the external behavior remains unchanged,
the parameters of the affected function may have to be
changed, such as when a computation involving a local
variable is pushed up.

Transformation: PushDown. The pushdown transforma-
tion pushes a statement from the call-site into the body of
a called function. In so doing, all the sites from where this
function is called may also be affected.

Just like the pushup transformation, this transformation
may influence the parameters of the called function in order
to ensure that the external behavior of the system remains
unchanged.

Transformation: Rename. The rename transformation
changes the name of a program component, such as a
function, a variable, a type, or a file. It changes the name
at the definition of that component and also at all the places
where that component is referenced.

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;

 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin

4 i := 0;
5 while i < days do begin

6 i := i + 1;
7 readln(sale[i]);
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

1.2a

1.1

SDC

Seed

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;

 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin
4 i:=0;

5 while i < days do begin
6 i := i + 1;
7 readln(sale[i]);
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

1.2b Wedge

(a) (b)

Figure2 Selection of code to be extracted into a function.(1.1) The user selects the seed. (1.2a) The system highlights the two
SDCs of the seed. Each SDC defines a single-entry, single-exit region in which to bound the slice. The user selects one
SDC. (1.2b) The system identifies the statements influencing the seed within the region defined by the SDC. In this step, the
user selects thereadln statement as the seed with the intent to separate the user interface from the computation.

The rename transformation is analogous to Griswold’s
rename-variable transformation [14].

Transformation: Reorder. The reorder transformation
changes the order of the parameters of a function. The
reordering is applied to the function definition and the
call-sites.

Transformation: Rescope. The rescope transformation
changes the scope of a variable, for instance, it changes
a global variable into a parameter. The rescope transfor-
mation may influence the parameters of a function both
when a global variable is converted into a parameter or a
local variable; or when a parameter or a local variable is
converted to a global variable.

The reorder and rescope transformation in Griswold’s
catalogue may be performed by using hismove-expr
transformation. His catalogue does not have explicit trans-
formation for this operation.

Transformation: Group. The group transformation col-
lects a set of variables into a structure (record).

The group transformation would be most valuable in
migrating FORTRAN IV programs to FORTRAN 9X or
to other procedural languages. The transformation would
also be valuable for re-architecting C and C++ programs,
especially those written by domain-experts who are not
trained computer scientists. The group transformation is

analogous to thevectorfy-bindings andlistify-
bindings transformations of Griswold [14].

Transformation: Ungroup. The ungroup transformation
decomposes a structure and creates a variable for each
of its fields. The ungroup transformation may be used
to decompose a structure when it does not represent a
cohesive grouping.

4 Accessing evolutionary transformations
using the mouse

The DIME project’s major innovation is in providing
access to rigorous, formal transformations at the click of
a mouse. Thus, an important component of the project is
how to associate the transformations with mouse-clicks.

The mouse-based operations of Macintosh and Win-
dows95 desktops may be classified into two categories as
follows:

• Selection: Select an object; add to selection; unselect
an object

• Action: Move, Cut, Paste, Drag-Drop, User-defined
operation

 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;
 process: boolean);
 var i: integer;
 total_sale, total_pay: float;
 begin
 Read_Input(days, sale);
 if process = true then begin
 total_sale := 0;
 total_pay := 0;
 for i:= 1 to days do

 begin
3.1 total_sale :=total_sale + sale[j];
 total_pay := total_pay + 0.1 * sale[j];

 if sale[j] > 1000 then
2.1 total_pay := total_pay + 50;

 end;
4.1 pay := total_pay / days + 100;
5.1 profit := 0.9 * total_sale - cost;
 end;

 end;

Procedure Read_Input(days: integer;
 var sale: int_array): int_array;
var i: integer;
begin
 i := 0;
 while i < days do
 begin
 i := i + 1;
 readln(sale[i])
 end;

end;

2.2,3.2,4.2,5.2

1.3New function

Figure3 Completion of function extraction, and input for subsequent steps(1.3) The code selected in Figure 2 is extracted and
converted into a function. The selected code is replaced by a call to this function. Since the selected code did not interleave
with any other code the decision about where to place the call was straightforward. User selected for steps 2, 3, 4, and 5
and the SDC selected for these seeds are shown. The next figure contains the result of these steps.

Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit:

float;
 process: boolean);
begin
 Read_Input(days, sale);
 if process = True then begin
 pay := Compute_Avg_Pay(days, sale);
 profit := Compute_Profit(cost, sale);
 end;
end;

Procedure Read_Input(days:integer;
 var sale: int_array);
var i: integer;
begin
 i:=0;
 while i < days do begin
 i := i + 1;
 readln(sale[i]);
 end;

end;

Function Compute_Pay(days: integer;
 sale: int_array): float;
var total_pay: float;
 j: integer;
begin
 total_pay := 0;
 for j := 1 to days do
 begin
 total_pay := total_pay + 0.1 * sale[j];
 if sale[j] > 1000 then
 total_pay := total_pay + 50;
 end;
 return (total_pay);
end;

Function Compute_Sale(days: integer;
 sale: int_array): float;
var total_sale: float;
 j: integer;
begin
 total_sale := 0;
 for j := 1 to days do
 begin
 total_sale := total_sale + sale[j];
 end;
 return (total_sale);

Function Compute_Avg_Pay
 (days: integer; sale: int_array): float;
var total_pay: integer;
 pay: float;
begin
 total_pay := Compute_Pay(days, sale);
 pay := total_pay / days + 100;
 return (pay);
end;

Function Compute_Profit
 (cost: float; sale: int_array): float;
var total_sale, profit: float;
begin
 total_sale := Compute_Sale(days, sale);
 profit := 0.9 * total_sale - cost;
 return (profit);
end;

1

2

3

4

5

Figure4 Final result of restructuring program in Figure 1. The annotations1 to 5 indicate the restructuring steps, with respect
to previous figures, in which the function was created. To create functions in steps2 and3 required
separating interleaved computations. This was achieved by duplicating some code segment.

Both types of operations are performed using either mouse-
clicks or menu selection. The action operations operate on
objects which are identified using the objects in thecurrent
selection.

The need to access transformations using the mouse in-
troduces a need for additional formalism that is not needed
in other uses of formal transformations. To be easy to use,
DIME should not require the user to specify all the pa-

rameters to a transformation completely. Instead, it should
infer the parameters based on somehintsor seedsprovided
by the user. Additional formalism is needed to identify
these parameters automatically. The next transformation,
an example of such formalism, has been designed explic-
itly for the purpose of identifying parameters for split and
fold [21].

Transformation: Wedge. The wedge transformation
bounds the slice in a single-entry, single-exit region called
a single definite control(SDC) (See [8, 21] for details).

Figures 1 through 4 show the above transformations in-
teractively extracting interleaved computations. The orig-
inal function, given in Figure 1, has a very low cohesion
[28]. In subsequent steps this function is restructured using
a sequence of Wedge, Split, and Fold transformations. At
each step, the computations related to a set of seed state-
ments are extracted and converted into a function. The
final program has anobject-basedarchitecture in that the
computation for each data is hidden in a single function.

A restructuring step in Figures 1 through 4 consists of
the following activities:

1. The user selects a set of seed statements.
2. With the help of the system, the user selects the com-

putation to be extracted in a function:

a. The system highlights the SDCs of the seed
statements. The user picks an SDC.

b. The system selects the computation to be ex-
tracted by applying the wedge transformation on
the seed and the SDC.

3. The system replaces the selected code by a call to this
new function.

The seed statements need not be contiguous code. If
the selected code is interleaved with any other code, the
system may have to duplicate some code. In such a case,
the system generates the parameters of the new function
and places the function call such that external behavior of
the function is not changed due to the duplication of code.
If the system cannot guarantee that the external behavior
will remain unchanged, the system does not create the new
function call.

Figures 2 (a) and (b) show the details of performing the
above activities once. The user selects thereadlnstatement
as the seed and the procedure entry as the SDC. The result
of the wedge transformation is shown in Figure 2(b). This
example has been taken from Deprez [8]. Details about
the intermediate steps and the formal definition of the
transformations may be found in his thesis.

5 Related works

There has been significant amount of work in the use of
program transformations for the development of program

from specifications [10, 24], for evolution of specifications
[11, 18, 19], and for specification-directed evolution of
programs [9, 22] . All these works require the specification
of a program to be explicitly represented, usually in some
formal language. The transformations we propose may
be classified asstructural evolution transformation. Our
transformations operate directly on the program. Since
these transformations do not modify the behavior of a
program, they treat the program as its own specification.
The focus of the structural transformation is the structure
of a program.

Structural evolution transformations have previously
been studied by Griswold and Notkin [12, 14], Bull [5],
Datta [7], and the REDO project [4]. Griswold and Notkin
studied these transformations for Scheme, an imperative,
yet structured, language. Bull, Datta, and the REDO
project have developed general frameworks to describe
such transformations. These frameworks are quite sim-
ilar to Software Refinery (now called Reasoning5 Code
Base Management System, CBMS [25]†). They provide
capability for expressing reengineering transformations.

Jain has formalized a method of constructing complex
logic programs by annotating the control flow of simpler
programs [17]. He proposes a software environment for
constructing and maintaining logic programs using a cata-
logue of simple programs and a list of “behavior preserv-
ing” transformations. These transformations preservehow
a program computes but alterwhat it computes. In con-
trast, we preservewhat a program computes but may alter
how it is computed.

Since we operate on the structure of a program, our
work is related to research in syntax-directed editors [26,
29]. The structural operations provided by such editors,
while aware of a program’s structure, are not sensitive to
its semantics. Therein lies the difference. Even though our
transformations are oriented towards a program’s structure,
they are actuallysemantics directedbecause they are aware
of the semantics of the program’s structure.

Interest in syntax-directed editors has resurfaced due to
the WWW phenomenon. The Netscape Composer editor
is an example of a syntax-directed editor. Programming
environments, such as Visual Basic, Visual C++, the Java
Development Kit, and Symantec Cafe, also provide rudi-
mentary syntax-directed editing using the mouse. Though
these tools give an appearance of drag-and-drop editing,
similar to what we propose, the operations they provide
do not have any semantic content.

Simonyi’s effort in Intentional Programming (IP) at the
Microsoft Research is directed towards developing a new
paradigm of programming [2]. Instead of encoding actions
in the rigid syntax of a programming languages, as one

† Visit http://www.reasoning.com

currently does, a programmer willencode intentionsin a
syntax-free structure. The structure is syntax-free in that it
may not correspond to any external ASCII representation.
A program in the IP paradigm is a hierarchy of intentions.
The higher-level intentions are defined in terms of other
low level intentions. The lowest level of intentions map to
the notion of statements in traditional languages. In the IP
paradigm, since the intentions are explicitly modelled, they
also provide a trace of a programmer’s design decisions.
To move existing code to the IP paradigm will require
identifying and encoding its hierarchy of intentions, a task
that would require significant effort.

Our structural evolution transformations correspond to
transforming intentions in the IP paradigm. Our evolu-
tionary model may therefore provide a bridge between the
current paradigm and the IP paradigm. Using our trans-
formations legacy code may be moved to the IP paradigm
incrementally.

6 Conclusions

The DIME environment will aid in reengineering the
design of existing systems and also in extracting reusable
components from existing systems. DIME’s architectural
transformations will enable programmers tosurgically op-
erateon legacy systems and reengineer them into object-
oriented architectures. For example, using DIME’s drag-
and-drop transformations a programmer would first sepa-
rate the kernel of a software system from its (user) inter-
face. Then using similar transformations she may collect
the code segments operating on the same data structures.
Then the programmer may throw away the old user inter-
face and package the kernel as a reusable component.

The DIME environment is currently under development.
Besides the work presented in this paper, we have so far
developed the algorithms necessary for performing some
of the transformations [8, 21].

There are several challenges in the path of executing
the vision presented in this paper. The most formidable
challenge is in developing algorithms for performing con-
trol and data flow analysis of programs in reasonable time
and with reasonable precision. This is further made dif-
ficult by the need to incrementally update the analysis as
the program is modified. Faced with these issues, Gris-
wold and Notkin developed a formalism for incrementally
updating the analyses [14] and developed an architectural
design that reduced the cost of keeping the various analyses
consistent [15]. Yet, they have concluded that the analysis
cost for a large system is prohibitively expensive. They
are now developing a tool that help a programmer inplan-
ning the restructuring task, but that does not perform the
restructuring itself [13].

The DIME project is investigating a compromise be-
tween providing no automated support and fully automated
support. In the approach being pursued, we split the test for
the feasibility of a transformation—that the transformation
will not change meaning—into two parts: local and global.
The system will actually verify whether a transformation
is feasible using local information—typically information
within a procedure or a function. It will not verify, but
only develop the constraints that should be satisfied glob-
ally, i.e., using information outside the function, in order
for the transformation to be feasible. The unsolved, but
may be simplified, global constraints will be presented to
the programmer to verify.

7 Acknowledgments

The idea of using a direct manipulation user interface
for program restructuring was triggered by Bruce Lewis of
Army MICOM. The author thanks Jean-Christophe Deprez
and Sharat Jenigiri for their contribution in the develop-
ment of the concepts presented. This work was partially
supported by a contract from the Department of Defense
and a grant from the Department of Army, US Army Re-
search Office. The contents of the paper do not necessarily
reflect the position or the policy of the funding agencies,
and no official endorsement should be inferred.

8 References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor,
D. Richter, and C. Simonyi. Transformation in inten-
tional programming. http://www.research.microsoft.com/ip/-
overview/TrafoInIP.ps, Sept. 1997.

[3] B. S. Baker. On finding duplication and near-duplication
in large software systems. InProceedings of the Second
Working Conference on Reverse Engineering (WCRE’95),
Toronto, pages 86–95, Los Alamitos, CA, July 1995. IEEE
Computer Society Press.

[4] J. Bowen, P. Breuer, and K. Lano. A compendium of formal
techniques for software maintenance.IEE/BCS Software
Engineering Journal, 8(5), September 1993.

[5] T. Bull. Software maintenance by program transformation
in a wide spectrum language. PhD thesis, School of
Engineering and Computer Science, University of Durham,
Durham, UK, 1994.

[6] R. M. Burstall and J. Darlington. A transformation system
for developing recursive programs.J. ACM, 24(1):44–67,
Jan. 1977.

[7] A. Datta. Automated Adaptation of Programs. PhD thesis,
Wright State University, 1992.

[8] J.-C. Deprez. A context-sensitive formal transformation for
restructuring programs. Master’s thesis, The Center for

Advanced Computer Studies, University of Southwestern
Louisiana, Lafayette, Louisiana, Dec. 1997.

[9] N. Dershowitz and Z. Manna. The evolution of programs:
Automatic program modification.IEEE Trans. Softw. Eng.,
3(6):377–385, Nov. 1977.

[10] M. S. Feather. A survey and classification of some program
transformation approaches and techniques. In L. G. L. T.
Meertens, editor,Program Specification and Transforma-
tion, pages 165–195. North-Holland, 1987.

[11] M. S. Feather. Detecting interference when merging speci-
fication evolutions. InProceedings, 5th International Work-
shop on Software Specification and Design, Pittsburgh,
Pennsylvania, pages 169–176. Computer Society Press of
the IEEE, 1989.

[12] W. G. Griswold.Program Restructuring as an Aid to Soft-
ware Maintenance. PhD thesis, University of Washington,
July 1991.

[13] W. G. Griswold, M. I. Chen, R. W. Bowdidge, and J. D.
Morgenthaler. Tool support for planning the restructuring
of data abstraction in large systems. InProceedings of
the ACM SIGSOFT’96 Symposium on the Foundations of
Software Engineering (FSE-4), San Francisco, CA, pages
33–45, Oct. 1996.

[14] W. G. Griswold and D. Notkin. Automated assistance
for program restructuring.ACM Transactions on Software
Engineering, 2(3):228–269, July 1993.

[15] W. G. Griswold and D. Notkin. Architectural tradeoffs
for a meaning-preserving program restructuring tool.IEEE
Trans. Softw. Eng., 21(4):275–287, Apr. 1995.

[16] D. R. Harris, A. S. Yeh, and H. R. Reubenstein. Extracting
architectural features from source code.Automated Software
Engineering, 3:109–138, 1996.

[17] A. Jain.Program Maps for Relating Structurally Enhanced
Logic Programs. PhD thesis, Case Western Reserver Uni-
versity, Department of Computer Engineering and Science,
1995.

[18] L. Johnson and M. S. Feather. Building an evolution
transformation library. InProceedings of 12th International
Conference on Software Engineering, pages 238–248, 1990.

[19] W. L. Johnson and M. S. Feather. Using evolution transfor-
mations to construct specifications. InAutomating Software
Design, pages 65–92. AAAI Press, 1991.

[20] A. Lakhotia. A unified framework for software subsystem
classification techniques.Journal of Systems and Software,
36:211–231, Mar. 1997.

[21] A. Lakhotia and J.-C. Deprez. Restructuring programs by
tucking statements into functions.Journal of Information
and Software technology, page to appear, 1999.

[22] R. Mili, M. Frappier, J. Desharnais, and A. Mili. A calculus
of program modifications.ACM Software Engineering
Notes, 22(3):157–168, May 1997.

[23] S. S. Muchnick.Advanced Compiler Design & Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, CA.,
1997.

[24] H. Partsch and R. Steinbruggen. Program transformation
systems.Computing Surveys, 15(3):199–236, 1983.

[25] Reasoning Systems, Inc., Palo Alto, CA.Refine User’s
Guide, 1992.

[26] T. Reps.Generating Language Based Environments. MIT
Press, 1983.

[27] S. Rugaber, K. Stirewalt, and L. Wills. Understanding
interleaved code.Automated Software Engineering, 3(1-
2):47–76, June 1996.

[28] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design.IBM Systems Journal, 13(2):115–139,
1974.

[29] G. Szwillus and L. Neal.Structure-based editors and
environments. Academic Press, 1996.

[30] H. Tamaki and T. Sato. Unfold/fold transformations of
logic programs. InProceedings of Second International
Conference on Logic Programming, (Sweden), pages 127–
138, 1984.

[31] F. Tip. A survey of program slicing techniques.J. Program.
Lang., 3:121–181, 1995.

