DIME: A direct manipulation environment
for evolutionary development of software

Arun Lakhotia
The Center for Advanced Computer Studies
The University of Southwestern Louisiana
Lafayette, LA 70506, USA
+1 318 4826766
arun@cacs.usl.edu

Abstract

This paper presents an overview of the DIME environ-
ment DI rect Manipulation Environment) being developed
by the author. The paper presents the DIME vision, its
catalogue of evolutionary transformations—program trans-
formations used by programmers during software mainte-
nance—and scenarios of how they may be used by a pro
grammer during software maintenance. The DIME system
will provide for programmers what programmers provide
for other computer users: a simple, intuitive, yet powerful
way to transform data with the click of a mouse. It will
place at the programmer’s finger-tips—figuratively speak-
ing—rigorous, formal transformations for creating, com-
posing, analyzing, and modifying the architecture of a soft-
ware system. Using DIME a programmer will radically
overhaul the architecture of a software system just by point-
and-click and drag-and-drop with the guarantee that the
external behavior of the system is unchanged.

1 Introduction

Software is different from other engineering artifacts in
that anew software system is created by modifying actual
component®f the old systems. Thus, while the mechan-
ical, electrical, and electronic components of a new sub-
marine are created from totally new material—rather than
from scavenging similar components from an old subma-
rine—its software components most likely are scavenge
from an old submarine.

The DIME environment Dlrect Manipulation
Environment), currently under development, will provide
capability to modify software using a mouse-based, direct
manipulation, user interface. The DIME environment
will place at the programmers’ finger-tips—figuratively

The theoretical foundation of DIME consists of a cat-
alogue ofevolutionary transformatiorstransformations
performed by programmers during software evolution.
This catalogue of transformation, compiled by analyzing
the author’s journal containing his record of programming
activities over a span of three years, is quite similar to the
catalogue of restructuring transformations developed ear-

lier by Griswold [12, 14]. The innovation of the DIME

project lies in attaching the evolutionary transformations to
mouse-clicks. This calls for the development of additional
formalism to infer parameters of the transformations from
both the context in which a transformation is applied and
some minimal hints provided by the user.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the DIME vision. Section 3 presents
our catalogue of evolutionary transformations. Section 4
highlights issues in developing the direct manipulation in-
terface. A comparison of DIME with other research efforts
is presented in Section 5. Our concluding remarks, which
include the status of the DIME project, its expected impact,
and some anticipated challenges are presented in Section 6.

2 Vision

The DIME environment will revolutionize the way pro-
grammers develop and manipulate programs. By integrat-

ging the robustness of formal methods with the ease of use

of Internet web browsers, the Macintosh, and the Win-
dows95 desktop, DIME will place sophisticated program
transformations at the programmers’ finger-tips, literally
available at the click of a mouse.

The desktops of Macintosh and Windows95 provide (a)
iconic representation of files and directories, (b) point-and-

speaking—rigorous, formal transformations for creating, Click interface for moving, copying, deleting, renaming,
composing, analyzing, and modifying the architecture of @nd printing files and directories, (c) multiple views to
a software system. Using DIME a programmer will be Present the contents of a directory, (d) point-and-click to
able to radically overhaul the architecture of a software Navigate through directory, and (e) mechanisms to search
system just by point-and-click and drag-and-drop with for files and directories based on various parameters.

the guarantee that the external behavior of the system DIME will provide similar point-and-click access to the
will remain unchanged. components of a software system. The directory, source

code files, functions, variables, statements, types, makevelopment of a catalogue afansformations for evolving
files, etc.—the components of a software system—will be the structureof a program. These are transformations used
represented as icons. A program component or a rela-by programmers in their day-to-day activity to reorganize,
tion between components may be presented in differentrestructure, or re-architect source code without influencing
"views." For instance, a function may either be shown as the external behavior of the program. Such transforma-
an icon or be shown by its name along with some sum- tions may be interspersed with other behavior modifying
mary information, such as its size, date of last change, etc.changes and are performed to alter the design of a system.
It could also be shown as its complete code. A call re- These transformations are also used when overhauling the
lation may be shown as a directed graph or as a nestedarchitecture of a software system.

tree structure. In the rest of this section we summarize our catalogue of
A programmer will perform commonly used complex transformations for structural evolution. The transforma-
operations by just pointing-and-clicking. For instance, tions in this catalogue were identified by analyzing about
renaming a function will be akin to renaming a file. Below 40,000 lines journal of the author's programming activi-
the icon of a function will be its name. To rename the ties over the past three years. The programming activities
function one will click on its name and type in the new recorded were undertaken in the development of three sys-
name. The environment will automatically rename the tems, most notably the WolfPack That our transforma-
function in all calls to the same function, based on scopetions are representative of operations actually performed
rules. by programmers is supported by the fact that, in prin-
Similarly, other mouse-based operations—such as seciple, they are the similar to the restructuring transfor-
lect, cut/paste, drag/drop—uwill lead to meaningful manip- mations presented earlier by Griswold [12, 14]. We use
ulations of programs. One could extract a reusable piecethe wordtransformationbroadly as a “mathematical map-
of code hidden within a big function by selecting the rele- ping.” While most of the transformations actually mod-
vant code fragment, dragging it, and dropping it on a file. ify @ program’s structure, some of them—in particular,
The system will automatically identify the parameters to wedge—only provides some insight into a program’s struc-
the new function and introduce a call to the new function. ture without modifying it.
Similarly, one could make a global variable into a local Transformation: Fold. The fold transformation creates
variable by dragging the variable and dropping it into the a function for a given set of statements and replaces the
declaration section of a function. statements by a call to this function.

Just as web browsers provide mechanisms to move The fold transformation, also sometimes callachbda
through documents by following links and traversal his- |ifting, was first developed by Burstall and Darling-
tory for navigation through the web, so will DIME pro- ton in the context of functional programming [6] and
vide mechanisms for navigation through a software sys- subsequently studied for logic programs [30]. Gris-
tem. Using architecture modelling technologies [16, 20], wold’s extract-function transformation extends it
DIME will present to the programmer an abstract view to structured—single-entry, single-exit—imperative pro-
of the system. The programmer will navigate through the grams. We have extended this transformation to arbitrary
system by clicking on objects and relationships. Thus, aimperative programs [21].
programmer may navigate through a program following gpce 4 sequence of statements that can be folded has
task interaction paths, or function call paths, or data flow poo identified, folding them into a function poses some

paths, to name a few. other challenges. One must not only decide which vari-
The integration of the coarse-grain architecture analy- gples would be parameters to the functions and which vari-

sis techniques and fine-grain formal methods will arm the aples would be its local variables—equivalent to determin-

programmer with a very powerful mechanism to radically ing which variables are universally quantified and which

overhaul the architecture of a software system. For in- gre existentially quantified—but also determine whether a

stance, a programmer may first use the coarse-grain analyparameter is passed by value or by reference.

sis to identity tightly-coupled components [13] and then Transformation: Unfold. The unfold transformation re-

use fine-grain analy§|s to de'-couple those Componeptsplaces a function call by the statements in the body of the
Similarly, coarse-grain analysis may be used to identify called function

repeated patterns of code [3] which may be replaced by This transformation is analogous to the unfold trans-

appropriate function calls using fine-grain analysis. > -9 - i)
formation in functional and logic programs [6, 30], with

. . the difference that in the imperative domain this transfor-
3 Evolutionary transformations

The main theoretical challenge of this project is the de- * Visit http://iwww.cacs.usl.edu/arun/Wolf/

1 Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;
var pay: float; var profit: float;
process: boolean);

2 vari: integer;total_sale, total_pay: float;

3 begin

4 i:=0;

5 while i < days do begin

6 =i+

7 readin(sale[i])

8 end;

9 if process = True then begin

10 total_sale:=0;

11 total_pay:=0;

12 fori:=1to days do begin

13 total_sale := total_sale + salefi];

14 total_pay := total_pay + 0.1 * sale][i];
15 if sale[i] > 1000 then

16 total_pay := total_pay + 50;

17 end;

18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

Figurel Sample non-cohesive codelhis function uses the same input to compute different outputs. Its computation also depend on
a flag passed as a parameter. This function id a representative of codiateitbavedcomputations [27]. In the following
figures this function is restructured into a collection of functions with an object-based architecture. Functions, representing
methods, computing different outputs are extracted using meaning preserving transformations: Wedge, Split, and Fold.

mation must account for the various types of parameter- move transformation is used to move invariant computa-
passing conventions. tion out of a loop and to reorder computations so as to
Transformation: Inline. The inline transformation un- reduce the need for temporary variables [1, 23].

folds a function at all the places from where it is called. Transformation: PushUp The pushup transformation

Griswold’s var-to-expr and binding-to-expr pushes a statement from a function to its call-sites. The
transformations correspond to our inline and unfold trans- Statement may be moved either to the point before the
formations, respectively [14]. function is called, or the point after the completion of the

Transformation: Split The split transformation splits a call.

single-entry, single-exit region into two regions, one con- To ensure that the external behavior remains unchanged,
taining all the computations relevant to a set of statementsthe parameters of the affected function may have to be
S and the other containing all the remaining computations.changed, such as when a computation involving a local
The transformation introduces new variables or renamesvariable is pushed up.

variables and composes the two new regions such that thefransformation: PushDown The pushdown transforma-
overall computation remains unchanged. When it is not tion pushes a statement from the call-site into the body of
feasible to split a region in such a way, the transformation a called function. In so doing, all the sites from where this
leaves the region unchanged. function is called may also be affected.

The split and fold transformations provide a method Just like the pushup transformation, this transformation
for extracting mterleaveo_l computations [27] Into separate may influence the parameters of the called function in order
functions without changing the external behavior of the to ensure that the external behavior of the system remains
system [21]. This transformation uses program slicing [31] unchanged.
to identify computations that are related.

Transformation: Move The move transformation moves Transformation: Rename The rename transformation
a statement over the statements before or after it in thechanges the name of a program component, such as a
control flow, but within the same function. function, a variable, a type, or a file. It changes the name

The move transformation is analogous to Griswold’s at the definition of that component and also at all the places
move-expr transformation. In optimizing compilers, a where that component is referenced.

1 Procedure Sale_Pay_Profit (days: integer;
cost: float; var sale: int_array;

1 Procedure Sale_Pay_Profit (days: integer;
var pay: float; var profit: float; _ray_ (day: g

cost: float; var sale: int_array;
process: boolean); var pay: float; var profit: float;

process: boolean);

5 whilei <days do begin @

4 i:=0;
sbc iloi ;
. 5 whilei < days do begin

7 readln(sale[i]); o v ¢ Wedge
6 i=i+1;
7 readin(sale[i]);

Seed
(@) (b)

Figure2 Selection of code to be extracted into a function(1.1) The user selects the seed. (1.2a) The system highlights the two
SDCs of the seed. Each SDC defines a single-entry, single-exit region in which to bound the slice. The user selects one
SDC. (1.2b) The system identifies the statements influencing the seed within the region defined by the SDC. In this step, the
user selects theeadln statement as the seed with the intent to separate the user interface from the computation.

The rename transformation is analogous to Griswold’s analogous to theectorfy-bindings andlistify-
rename-variable transformation [14]. bindings transformations of Griswold [14].

Transformation: Reorder The reorder transformation Transformation: Ungroup The ungroup transformation
changes the order of the parameters of a function. Thedecomposes a structure and creates a variable for each
reordering is applied to the function definition and the of its fields. The ungroup transformation may be used
call-sites. to decompose a structure when it does not represent a
Transformation: Rescope The rescope transformation cohesive grouping.

changes the scope of a variable, for instance, it changes

a global variable into a parameter. The rescope transfor-

mation may influence the parameters of a function both 4 Accessing evolutionary transformations

when a global variable is converted into a parameter or ausing the mouse

local variable; or when a parameter or a local variable is

converted to a global variable. o The DIME project’s major innovation is in providing
The reorder and rescope transformation in Griswold's access to rigorous, formal transformations at the click of
catalogue may be performed by using hmve-expr a mouse. Thus, an important component of the project is

transformation. His catalogue does not have explicit trans-how to associate the transformations with mouse-clicks.

formation fo.r this operation.] The mouse-based operations of Macintosh and Win-
Transformation: Group. The group transformation col- gows95 desktops may be classified into two categories as
lects a set of variables into a structure (record). follows:

The group transformation would be most valuable in
migrating FORTRAN IV programs to FORTRAN 9X or ¢ Selection: Select an object; add to selection; unselect
to other procedural languages. The transformation would an object
also be valuable for re-architecting C and C++ programs,s Action: Move, Cut, Paste, Drag-Drop, User-defined
especially those written by domain-experts who are not operation
trained computer scientists. The group transformation is

Procedure Read_Input(days: integer; Procedure Sale_Pay_Profit (days: integer;
var sale: int_array): int_array; cost: float; var sale: int_array;
var i integer; var pay: float; var profit: float;
begin process: boolean);
i:=0; var i: integer;
while i < days do total_sale, total_pay: float;
begin begin
=i+l Read_Input(days, sale);
readin(sale[i]) if process = true thenpegin
end; total_sale := 0;
end: total_pay := 0;
for i:= 1 to days do
begin
3. total_sale :=total_sale + sale[j];

total_pay := total_pay + 0.1 * sale[j];
if sale[j] > 1000 then

C : : D> total_pay := total_pay + 50;
New function Py Py
end;
pay := total_pay / days + 100;
5.1 2 profit := 0.9 * total_sale - cost;
end;
end;

Figure3 Completion of function extraction, and input for subsequent stepg1.3) The code selected in Figure 2 is extracted and
converted into a function. The selected code is replaced by a call to this function. Since the selected code did not interleave
with any other code the decision about where to place the call was straightforward. User selected for steps 2, 3, 4, and 5
and the SDC selected for these seeds are shown. The next figure contains the result of these steps.

Procedure Sale_Pay_Profit (days: integer; ~ Function Compute_Pay(days: integer; Function Compute_Avg_Pay
cost: float; var sale: int_array; sale: int_array): float; (days: integer; sale: int_array): float;
var pay: float; var profit: var total_pay: float; var total_pay: integer;
float; j: integer; pay: float; @
process: boolean); begin begin
begin total_pay := 0; total_pay := Compute_Pay(days, sale);
Read_Input(days, sale); for j := 1 to days do pay := total_pay / days + 100;
if process = True then begin begin return (pay);
pay := Compute_Avg_Pay(days, sale); total_pay := total_pay + 0.1 * sale[j]; end;
profit := Compute_Profit(cost, sale); if sale[j] > 1000 then
end; total_pay := total_pay + 50; Function Compute_Profit
end; end; (cost: float; sale: int_array): float;
return (total_pay); var total_sale, profit: roat;@
Procedure Read_Input(days:integer; end; begin
var sale: int_array); total_sale := Compute_Sale(days, sale);
var i: integer; @ Function Compute_Sale(days: integer; profit := 0.9 * total_sale - cost;
begin sale: int_array): float; return (profit);
i==0; var total_sale: float; end;
while i < days do begin j: integer; @
i=i+1; begin
readIn(saleli]); total_sale := 0;
end; for j := 1 to days do
end: begin .
total_sale := total_sale + sale[j];
end;
return (total_sale);

Figure4 Final result of restructuring program in Figure 1. The annotationd to 5 indicate the restructuring steps, with respect
to previous figures, in which the function was created. To create functions in Zt@pd3 required
separating interleaved computations. This was achieved by duplicating some code segment.

Both types of operations are performed using either mouse- The need to access transformations using the mouse in-
clicks or menu selection. The action operations operate ontroduces a need for additional formalism that is not needed
objects which are identified using the objects in ¢herent in other uses of formal transformations. To be easy to use,
selection. DIME should not require the user to specify all the pa-

rameters to a transformation completely. Instead, it shouldfrom specifications [10, 24], for evolution of specifications
infer the parameters based on som&sor seedgprovided [11, 18, 19], and for specification-directed evolution of
by the user. Additional formalism is needed to identify programs [9, 22]. All these works require the specification
these parameters automatically. The next transformation,of a program to be explicitly represented, usually in some
an example of such formalism, has been designed explic-formal language. The transformations we propose may
itly for the purpose of identifying parameters for split and be classified astructural evolution transformation. Our
fold [21]. transformations operate directly on the program. Since

Transformation: Wedge The Wedge transformation these transformations do not mOdlfy the behavior of a
bounds the slice in a single-entry, single-exit region called Program, they treat the program as its own specification.
a single definite contro{SDC) (See [8, 21] for details). The focus of the structural transformation is the structure

Figures 1 through 4 show the above transformations in- ©f & pProgram.
teractively extracting interleaved computations. The orig- ~ Structural evolution transformations have previously
inal function, given in Figure 1, has a very low cohesion been studied by Griswold and Notkin [12, 14], Bull [5],
[28]. In subsequent steps this function is restructured usingDatta [7], and the REDO project [4]. Griswold and Notkin
a sequence of Wedge, Split, and Fold transformations. Atstudied these transformations for Scheme, an imperative,
each step, the computations related to a set of seed state¢€t structured, language. Bull, Datta, and the REDO
ments are extracted and converted into a function. Theproject have developed general frameworks to describe
final program has aobject-basedarchitecture in that the ~ such transformations. These frameworks are quite sim-
computation for each data is hidden in a single function. ilar to Software Refinery (now called Reasoning5 Code
A restructuring step in Figures 1 through 4 consists of Basé Management System, CBMS [B5]They provide
the following activities: capability for expressing reengineering transformations.
Jain has formalized a method of constructing complex
logic programs by annotating the control flow of simpler
programs [17]. He proposes a software environment for
constructing and maintaining logic programs using a cata-
a. The system highlights the SDCs of the seed logue of simple programs and a list of “behavior preserv-
statements. The user picks an SDC. ing” transformations. These transformations preséme
b. The system selects the computation to be ex-a program computes but alterhat it computes. In con-
tracted by applying the wedge transformation on trast, we preservehata program computes but may alter

1. The user selects a set of seed statements.
2. With the help of the system, the user selects the com-
putation to be extracted in a function:

the seed and the SDC. how it is computed.
3. The system replaces the selected code by a call to this Since we operate on the structure of a program, our
new function. work is related to research in syntax-directed editors [26,

) 29]. The structural operations provided by such editors,
The seed statements need not be contiguous code. Ifyhije aware of a program’s structure, are not sensitive to

the selected code is mterleaved with any other code, theits semantics. Therein lies the difference. Even though our
system may have to duplicate some code. In such a caseyynsformations are oriented towards a program’s structure,

the system generates the parameters of the new fU_”CtiOQhey are actuallgemantics directedecause they are aware
and places the function call such that external behavior of y¢ {ha semantics of the program’s structure.

the function is not chan to th lication of
e function is not changed due to the duplication of code Interest in syntax-directed editors has resurfaced due to

If th tem cannot rantee that the external behavior ;
1€ system cannot guarantee that the exte be 0the WWW phenomenon. The Netscape Composer editor

will remain unchanged, the system does not create the new) : .
Is an example of a syntax-directed editor. Programming

function call.
) . . environments, such as Visual Basic, Visual C++, the Java
Figures 2 (a) and (b) show the details of performing the Development Kit, and Symantec Cafe, also provide rudi-

above activities once. The user selectsréalinstatement mentary syntax-directed editing using the mouse. Though
as the seed and the procedure entry as the SDC. The resujf,oq {o0ls give an appearance of drag-and-drop editing,
of the wedge transformation is shown in Figure 2(b). This g iiar to what we propose, the operations they provide
example has been taken from Deprez [8]. Details abouty, ot have any semantic content.

the intermediate steps and the formal definition of the Simonyi's effort in Intentional Programming (IP) at the

transformations may be found in his thesis. Microsoft Research is directed towards developing a new
5 Related works paradigm of programming [2]. Instead of encoding actions

o] in the rigid syntax of a programming languages, as one
There has been significant amount of work in the use of

program transformations for the development of program ™ Visit http://www.reasoning.com

currently does, a programmer wiincode intentionin a The DIME project is investigating a compromise be-
syntax-free structure. The structure is syntax-free in that it tween providing no automated support and fully automated
may not correspond to any external ASCII representation.support. In the approach being pursued, we split the test for
A program in the IP paradigm is a hierarchy of intentions. the feasibility of a transformation—that the transformation
The higher-level intentions are defined in terms of other will not change meaning—into two parts: local and global.
low level intentions. The lowest level of intentions map to The system will actually verify whether a transformation
the notion of statements in traditional languages. In the IPis feasible using local information—typically information
paradigm, since the intentions are explicitly modelled, they within a procedure or a function. It will not verify, but
also provide a trace of a programmer’s design decisions.only develop the constraints that should be satisfied glob-
To move existing code to the IP paradigm will require ally, i.e., using information outside the function, in order
identifying and encoding its hierarchy of intentions, a task for the transformation to be feasible. The unsolved, but
that would require significant effort. may be simplified, global constraints will be presented to

Our structural evolution transformations correspond to the programmer to verify.
transforming intentions in the IP paradigm. Our evolu- K |
tionary model may therefore provide a bridge between the 7 ACKnow edgments

current paradigm and the IP paradigm. Using our trans- The idea of using a direct manipulation user interface
formations legacy code may be moved to the IP paradigmfor program restructuring was triggered by Bruce Lewis of
incrementally. Army MICOM. The author thanks Jean-Christophe Deprez
and Sharat Jenigiri for their contribution in the develop-
ment of the concepts presented. This work was partially
supported by a contract from the Department of Defense
and a grant from the Department of Army, US Army Re-

The DIME environment will aid in reengineering the , :
desi f existi ‘ d also i tracti bl search Office. The contents of the paper do not necessarily
€sign of existing systems and aiso In extracting reusablé neo . the position or the policy of the funding agencies,

component_s from_existing systems. DIME’s _architectural and no official endorsement should be inferred.

transformations will enable programmerssurgically op-

erateon legacy systems and reengineer them into object-8 References

oriented architectures. For example, using DIME’s drag-

and-drop transformations a programmer would first sepa-

rate the kernel of a software system from its (user) inter- [1]

face. Then using similar transformations she may collect

the code segments operating on the same data stru_cture W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor,

Then the programmer may throw away the old user inter- D. Richter, and C. Simonyi. Transformation in inten-

face and package the kernel as a reusable component. tional programming. http://www.research.microsoft.com/ip/-
The DIME environment is currently under development. overview/TrafolnIP.ps, Sept. 1997.

Besides the work presented in this paper, we have so faf3] B. S. Baker. On finding duplication and near-duplication

developed the algorithms necessary for performing some in large software systems. IRroceedings of the Second
of the transformations [8, 21]. Working Conference on Reverse Engineering (WCRE'95),
Torontq pages 86-95, Los Alamitos, CA, July 1995. IEEE
Computer Society Press.

6 Conclusions

A. V. Aho, R. Sethi, and J. D. UllmarCompilers: Principles,
Techniques, and Toolé\ddison-Wesley, 1986.

There are several challenges in the path of executing

the vision presented in this paper. The most formidable 4] J. Bowen, P. Breuer, and K. Lano. A compendium of formal

challenge is in developin.g algorithms fo.r performing con- techniques for software maintenandEE/BCS Software
trol and data flow analysis of programs in reasonable time gngineering Journal8(5), September 1993.

E_md with reasonable .pl’eCISIon. This is further made' dif- 5] T. Bull. Software maintenance by program transformation
ficult by the need to incrementally update the analysis as' * j, 5 wide spectrum languagePhD thesis, School of
the program is modified. Faced with these issues, Gris- Engineering and Computer Science, University of Durham,
wold and Notkin developed a formalism for incrementally Durham, UK, 1994,

updating the analyses [14] and developed an architecturals] R. M. Burstall and J. Darlington. A transformation system
design that reduced the cost of keeping the various analyses for developing recursive programs. ACM 24(1):44—67,
consistent [15]. Yet, they have concluded that the analysis Jan. 1977.

cost for a large system is prohibitively expensive. They [7] A. Datta. Automated Adaptation of ProgramPhD thesis,
are now developing a tool that help a programmeplan- Wright State University, 1992.

ning the restructuring task, but that does not perform the [8] J.-C. Deprez. A context-sensitive formal transformation for
restructuring itself [13]. restructuring programs. Master's thesis, The Center for

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Automatic program modificationEEE Trans. Softw. Eng.

Advanced Computer Studies, University of Southwestern [18]

Louisiana, Lafayette, Louisiana, Dec. 1997.

N. Dershowitz and Z. Manna. The evolution of programs: (1]

3(6):377-385, Nov. 1977.

M. S. Feather. A survey and classification of some program [20]
transformation approaches and techniques. In L. G. L. T.
Meertens, editorProgram Specification and Transforma-

tion, pages 165-195. North-Holland, 1987. 21]

M. S. Feather. Detecting interference when merging speci-
fication evolutions. IrProceedings, 5th International Work-

shop on Software Specification and Design, Pittsburgh, [22]
Pennsylvaniapages 169-176. Computer Society Press of

the IEEE, 1989.

W. G. Griswold.Program Restructuring as an Aid to Soft-
ware MaintenancePhD thesis, University of Washington,
July 1991.

W. G. Griswold, M. I. Chen, R. W. Bowdidge, and J. D.
Morgenthaler. Tool support for planning the restructuring
of data abstraction in large systems. Bmoceedings of
the ACM SIGSOFT’'96 Symposium on the Foundations of
Software Engineering (FSE-4), San Francisco,, @ages
33-45, Oct. 1996.

(23]

[24]
[25]

[26]

W. G. Griswold and D. Notkin. Automated assistance [27]
for program restructuringACM Transactions on Software
Engineering 2(3):228-269, July 1993.

W. G. Griswold and D. Notkin. Architectural tradeoffs
for a meaning-preserving program restructuring tt6EE
Trans. Softw. Eng.21(4):275-287, Apr. 1995. 29]

D. R. Harris, A. S. Yeh, and H. R. Reubenstein. Extracting
architectural features from source codetomated Software
Engineering 3:109-138, 1996.

(28]

[30]

A. Jain.Program Maps for Relating Structurally Enhanced
Logic Programs PhD thesis, Case Western Reserver Uni-
versity, Department of Computer Engineering and Science, [31]
1995.

L. Johnson and M. S. Feather. Building an evolution
transformation library. IfProceedings of 12th International
Conference on Software Engineerimpgges 238-248, 1990.
W. L. Johnson and M. S. Feather. Using evolution transfor-
mations to construct specifications. Automating Software
Design pages 65-92. AAAI Press, 1991.

A. Lakhotia. A unified framework for software subsystem
classification techniquedournal of Systems and Software
36:211-231, Mar. 1997.

A. Lakhotia and J.-C. Deprez. Restructuring programs by
tucking statements into functiondournal of Information
and Software technologyage to appear, 1999.

R. Mili, M. Frappier, J. Desharnais, and A. Mili. A calculus
of program modifications ACM Software Engineering
Notes 22(3):157-168, May 1997.

S. S. Muchnick Advanced Compiler Design & Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, CA.,
1997.

H. Partsch and R. Steinbruggen. Program transformation
systemsComputing Surveyd5(3):199-236, 1983.

Reasoning Systems, Inc., Palo Alto, CRefine User's
Guide 1992.
T. Reps.Generating Language Based Environmem#T
Press, 1983.

S. Rugaber, K. Stirewalt, and L. Wills. Understanding
interleaved codeAutomated Software Engineerin@(1-
2):47-76, June 1996.

W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured designlBM Systems Journall3(2):115-139,
1974,

G. Szwillus and L. Neal.Structure-based editors and
environmentsAcademic Press, 1996.

H. Tamaki and T. Sato. Unfold/fold transformations of
logic programs. InProceedings of Second International
Conference on Logic Programming, (Swedgrgges 127—
138, 1984.

F. Tip. A survey of program slicing techniquek.Program.
Lang, 3:121-181, 1995.

