
Analysis of Adversarial Code:
Problem, Challenges, Results

Arun Lakhotia
Center for Advanced Computer Studies

University of Louisiana at Lafayette
www.cacs.louisiana.edu/labs/SRL

Black Hat Federal 2006
Sheraton Crystal City, Washington DC

January 23-26, 2006

2

Adversarial Code Analysis

• ACA at UL Lafayette
– Ongoing research for over 3 years

– Evolved from analyzing and writing virus detectors

– Impacted by failures in using traditional analysis

– Aim: fundamental advances in hardening analysis
• focus: key (real) problems in malware analysis

• develop and adapt theoretical approaches

• build and test prototypes

3

Our ACA Approach

• Short term
– Harden individual steps

– Use solid theory

• Long term
– Holistic infrastructure improvement

4

Malware Detection Process

ANALYSIS IN LAB

ON DESKTOP
Signature

Scanner
Disinfect
System

File/Message

Removal Instructions

Clean
System

Match

Sample
Filter Analyze

Extract Signature +
Removal Instructions Verify

5

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

6

Program Analysis:
The Old Frontier

• Half a century of program analysis
– Compilers, optimizers, checkers, refactoring tools
– Analyze, visualize, transform

• Problem Space
– Program optimization
– Profiling, testing, debugging
– Understanding, Comprehension
– Reengineering

• Purpose
– Help programmers help themselves

7

certify /
reject

disassemble

Typical Analysis Pipeline

extract
procedures

extract control
& data flow

verify
property

PROGRAM DATABASE

8

Program Analysis:
The New Frontier

• Analysis of malicious programs
– Viruses, worms, Trojans, spyware, adware

• Problems
– What does the malware do?
– What attack tools and methods are employed?
– How did it arrive on this computer?
– Which other computers did it go to?
– Who wrote the malware?

• Purpose
– Help security analysts defend computing resources

9

certify /
reject

disassemble

Malware Analysis Pipeline

extract
procedures

extract control
& data flow

verify
property

DATABASEVIRUS

10

Implications of Undecidability
Precise solution

‘Safe’ solution

Analysis problems are undecidable

Precise solutions cannot be computed

Solutions are approximated

Play ‘safe’: over approximate or
under approximate

Catch: ‘Safe’ solutions leave
hideouts for malware

Hideout for malware

11

certify /
reject

disassemble

Problem: Analyses Not Hardened

extract
procedures

extract control
& data flow

verify
property

DATABASE

D I S A B L E D !

12

Malware Analysis Pipeline

disassemble extract
procedures

extract control
& data flow

verify
property

certify /
reject

DATABASE

13

decode machine instructions (byte seq)

disassemble extract
procedures

extract control
& data flow

verify
property

401063: 5d pop %ebp
401064: c3 ret
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: eb 05 jmp 0x401072
40106d: e8 ee ff ff ff call 0x401060
401072: e8 e9 ff ff ff call 0x401060
401077: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
40107e: 81 7d fc e7 03 00 00 cmpl $0x3e7,0xfffffffc(%ebp)

ORIG BYTES ASSEMBLY

401063: 5d pop %ebp
401064: c3 ret
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: eb 05 jmp 0x401072
40106d: c7 ee ff ff ff e8 mov $0xe8ffffff,%esi
401073: e9 ff ff ff c7 jmp 0xc8401077
401078: 45 inc %ebp
401079: fc cld

malicious func

jump over junkbad disassembly
(no jump target)

14

401063: 5d pop %ebp
401064: c3 ret
401065 <_malicious>:
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: ff 35 78 10 40 00 pushl 401078 <_malicious+0x13>
401071: ff 35 60 10 40 00 pushl 401060 <_sendLotsOfEmail>
401077: c3 ret
401078: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)

trace call structure (control flow)

disassemble extract
procedures

extract control
& data flow

verify
property

401063: 5d pop %ebp
401064: c3 ret
401065 <_malicious>:
401065: 55 push %ebp
401066: 89 e5 mov %esp,%ebp
401068: 83 ec 08 sub $0x8,%esp
40106b: eb 05 jmp 401072 <_malicious+0xd>
40106d: e8 ee ff ff ff call 401060 <_sendLotsOfEmail>
401072: e8 e9 ff ff ff call 401060 <_sendLotsOfEmail>
401077: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)

L0: call F L0: push L1
L1:  push F
 L1: ret

instr. substitution

no call found

15

40106b: ff 35 78 10 40 00 pushl 401078 <_malicious+0x13>
401071: ff 35 60 10 40 00 pushl 401060 <_sendLotsOfEmail>
401077: c3 ret
401078: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)

verify security or match pattern/signature

• Transformations destroy signature/pattern
match
– eg metamorphic viruses: self-transforming
– Instruction substitution, nop insertion, etc.

disassemble extract
procedures

push x push x
push y  push z
ret pop
 push y

ret

extract control
& data flow

verify
property

16

Attacks on Signature Analysis

• Polymorphic malware
– Code is encrypted
– Carries a decryptor
– Decryptor transformed before propagation

• Metamorphic malware
– Whole code transformed before propagation
– So far threat mostly ‘in-the-zoo’ so far
– Off-the-shelf metamorphic engines available, improving

• Packed malware
– Rapidly release variants packed by different packers
– Overwhelm the security analysts

17

Current AV Infrastructure

• Human intensive
– Analysts specialize on specific attacks

• In leading companies, person(s) dedicated to deal with
packers

– Knowledge resident in specialists

• High workload
– Spyware – may have few HUNDRED programs

– About 5-8 email samples per analyst per day

18

Current AV Infrastructure

• Depend on tools not designed for the trade
– Disassemblers, debuggers, program monitors

– No methodical way to organize knowledge
• Rely on Google

• The Bright Side
– Significant advances in dynamic analysis

– Metamorphic viruses detected by emulation
• Has its own set of issues

19

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

20

Manual Analysis Process

Configure Environment Static Analysis

Dynamic Analysis
 Process Activity
 Network Activity

21

Configure Environment

• Requirements
– Prevent contamination of

production systems
– Quickly undo damage
– Allow interaction among multiple

systems

• Goals
– Prep files and operating systems

for infection
– Initialize analysis tools

COMMON TOOLS

VMWare

MS Virtual PC

22

Static Analysis

• Goals
– Quickly identify key program

features
• does it send mail?

• … open an IRC channel?

• … kill processes?

– Quickly identify possible
malicious intent

COMMON TOOLS

Strings

BinText

IDA Pro

23

Dynamic Analysis

• Goals
– Identify process activity

• are processes created/killed?

– Identify hard disk actvity
– Identify network activity
– Identify registry changes

• Used when deeper
understanding is required

COMMON TOOLS

Process Explorer

FileMon

RegMon

RegShot

ProcDump

IDA Pro

OllyDbg

24

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

25

A Shift in Research Focus

Question
How to make program analysis battle-ready?

26

Revisit Assumptions

• Assumption #1:
– Programmers and analysis tools have

common goal

27

Revisit Assumptions

• Reality
– Programmer (writer of code under scrutiny)

and tools are adversaries

28

Revisit Assumptions

• Assumption #2:
– Malware authors have the benefit of

surprise

29

Revisit Assumptions

• Reality
– High degree of reuse and plagiarism

• Jaschan (2004), author of Sasser, copied from Lovesan

• Others immediately picked up on his ideas.

0

2,000

4,000

6,000

8,000

10,000

12,000

Jan-June 2003 July-Dec 2003 Jan-June 2004 July-Dec 2004 Jan-June 2005

Total viruses and worms*

Total families*

*Source: Symantec Internet Threat Report, January – June 2005

30

Revisit Assumptions

• Reality (cont.)
– No big bang; malware also evolves

• Beagle versions from A, B, .., AA, to ED
• Each version introduced small change

– Inventions discussed in Blackhat forums
• Format string attack; attack on Oracle

– Vulnerability and exploits often first found by
security analysts

• Implication
– Utilize knowledge outside of code under scrutiny

31

Revisit Assumptions

• Assumption #3
– Undecidability a hindrance

32

Revisit Assumptions

• Reality
– Analysis tools can live with ‘statistical’ equivalence

• Need statistical ‘safety’, not theoretical safety

– Undecidability is a two-edged sword
• Self-transforming code must analyze itself
• Must deal with undecidability too

– Metamorphic virus W32.Evol does not use any disassembly attack

• Not easy to exploit
– Trend has moved to packed malware

– Complete obfuscation is impossible [Barak et al. 2001]

• Implication
– Develop targeted deobfuscators

33

Vision for an Analysis Infrastructure

• Day in the life of an analyst
– Arrive at work
– Analyze a sample

• Sample pre-analyzed, relation with other malware
annotated

• Review, verify annotations
• Move on to next sample, if satisfied with findings
• Analyze un-annotated parts

– Use an integrated environment with dynamic/static tools
– Apply various deobfuscators to discover hidden meaning

• Add annotations of finding into the knowledge base
– Move on to the next sample

34

Core Capabilities Needed

• Hardened static analysis
– All phases should be:

• semantic driven

• interleaved

• utilize knowledge base

– New questions, new algorithms
• Can a variable have a certain value on some path?

• What if traditional procedural units do not exist?

• Probabilistic analysis

35

Core Capabilities Needed

• Integrated security analysis environments
– Integrate dynamic and static analysis

– Knowledge base

– Comparison of code fragments
• Catch evolutionary relation between families, and within

family

– Deobfuscators, targeted
• Undo call obfuscations, key to determining behavior

• Undo transformations

36

Portfolio of Results

Create
malware
phylogeny

Deobfuscate
Calls

Reverse self
transformations

37

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

38

Overall Identification Problem

W32.Beagle.J@mm

W32/Bagle.j@mm

W32.Klez.I@mm

W32/Klez.i@MM

W32/NetSky.B

W32.Beagle.AO@mm

W32.Beagle.U@mm

W32.Beagle.A@mm

W32.Klez.F@mm

W32/Bagle.a@mm

W32.Klez.E@mm.enc

W32/Klez.f@MM

W32/Bagle.ao@mm

W32/Bagle.u@mm

W32/Klez.e@MM

W32.NetSky.D

W32.NetSky.B

W32.NetSky.A

W32/Bugbear.17916intd

W32/NetSky.A

??

39

W32.Beagle.AO@mm

W32.Beagle.U@mm

W32.Beagle.A@mm

W32.Beagle.J@mm

W32.Klez.I@mm

W32.Klez.F@mm

W32/Bagle.a@mm

W32/Bagle.j@mm

W32.Klez.E@mm.enc

W32/Klez.i@MM

W32/Klez.f@MM

W32/Bagle.aq@mm

W32/Bagle.u@mm

W32/Klez.e@MM

W32.NetSky.D

W32.NetSky.B

W32.NetSky.A

W32/Bugbear.17916intd

W32/NetSky.B

W32/NetSky.A

How to Name and Classify?
Symantec McAfee

??

??

40

Generating Phylogeny Model

• Use cluster analysis

• Key need
– A similarity measure

• N-grams based measure not-effective
– Cannot account for permutations

• Developed N-perm similarity measure
– Influenced by bio-informatics

phylogeny: evolutionary relationships
between organisms

Beagle.U

Beagle.AO

Beagle.A

Beagle.D

Klez.I

Klez.F

Klez.E

NetSky.D

NetSky.B

NetSky.A

??

41

l2D2: push ecx
push 4
pop ecx
push ecx

l2D7: rol edx, 8
mov dl, al
and dl, 3Fh
shr eax, 6
loop l2D7
pop ecx
call s319
xchg eax, edx
stosd
xchg eax, edx
inc [ebp+v4]
cmp [ebp+v4], 12h
jnz short l305

l144: push ecx
push 4
pop ecx
push ecx

l149: mov dl, al
and dl, 3Fh
rol edx, 8
shr ebx, 6
loop l149
pop ecx
call s52F
xchg ebx, edx
stosd
xchg ebx, edx
inc [ebp+v4]
cmp [ebp+v4], 12h
jnz short l18

l2D2: push ecx
push 4
pop ecx
push ecx

l2D7: rol edx, 8
mov dl, al
and dl, 3Fh
shr eax, 6
loop l2D7
pop ecx
call s319
xchg eax, edx
stosd
xchg eax, edx
inc [ebp+v4]
cmp [ebp+v4], 12h
jnz short l305

l144: push ecx
push 4
pop ecx
push ecx

l149: mov dl, al
and dl, 3Fh
rol edx, 8
shr ebx, 6
loop l149
pop ecx
call s52F
xchg ebx, edx
stosd
xchg ebx, edx
inc [ebp+v4]
cmp [ebp+v4], 12h
jnz short l18

Example: Permuted Netsky worm
push
push
pop
push
rol
mov
and
shr
loop
pop
call
xchg
stosd
xchg
inc
cmp
jnz

push
push
pop
push
mov
and
rol
shr
loop
pop
call
xchg
stosd
xchg
inc
cmp
jnz

42

P
P
O
P
R
M
A
S
L
O
C
X
S
X
I
C
J

P
P
O
P
M
A
R
S
L
O
C
X
S
X
I
C
J

Permutation Example
P P O P R M A S L O C X S X I C J

P P O P S L O C X S X I C JRM A

Virus 1

Virus 2

43

Permutation Example
P P O P R M A S L O C X S X I C J

P P O P I C JO C X S XM A R S L

P P O P I C JO C X S XM A R S L

P P O P I C JO C X S XM A R S LP O P

Virus 1

Virus 2

Virus 3

44

Compare: 4-grams

11110000003

0001110002

000000111111

LPOPSLPORSLPARSL
OPM

A
POP

M
MAS

L
RMA

S
PRM

A
OPR

M
POP

R

1 1

1

PMAR MARS

0 0

0

0 0

0

 P O P R M A S L

 P O P M A R S L

1

2

3 M A R S L P O P

PMAR MARS

45

4-perms

111100010003

000111011002

000000111111

LPOPSLPORSLPARSL
OPM

A
POP

M
MAS

L
RMA

S
PRM

A
OPR

M
POP

R

 P O P R M A S L

 P O P M A R S L

1

2

3 M A R S L P O P

46

Evaluation

• Question
– Are the models useful for classifying new

malware?

• Process
– 170 known malware

• From VXHeavens archive

– Three unknown worms (A, B, C)
• Captured by AV scanner on mail gateway

– Place unknown samples using n-grams and n-
perms

47

Results

• N-perm classification better in:
– Clustering distinct malware classes

– Classifying unknown clusters with
close relatives

– Identifying naming conflicts

48

10-perm Phylogeny

MyDooms

Klez/Elkerns

Beagles

49

Summary of VILO

• Impact
– It is feasible to utilize historic knowledge

– Can even be used on the desktop
• Detect new malware

– Improve forensics

50

Summary of VILO

• Open issues
– Scaling for O(104-105) data set

– Visualization for exploring large space of
relations

– Online/incremental classification

51

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

52

Call Obfuscations
NORMAL CALL

L0: call L5
L1: …
L2: …
L3: …
L4: …
L5: <proc>
L6: …

OBFUSCATED CALL

L0a: push L1
L0b: push L5
L0c: ret
L1: …
L2: …
L3: …
L4: …
L5: <proc>
L6: …

53

Problem

• Determine unconventional control
transfers statically
– Implicit calls

• Determine “bogus” returns statically
– Return address modification

54

Approach

• Abstract Interpretation
– Operations are interpreted to operate over

an abstract domain (rather than on real
data)

– Real-world properties are translated into
abstract properties of interest

55

Example

• Interested in sign of integers

Entry
x = -5
y = x * x
z = y - x

x = {+, -}; y = {+, -}; z = {+, -}
x = {-}; y = {+, -}; z = {+, -}
x = {-}; y = {+}; z = {+, -}
x = {-}; y = {+}; z = {+}

All variables initialized to {+, -}
x = neg
y = neg × neg = pos
z = pos – neg = pos

56

Concrete Values Abstract Values
(Properties of Interest)

Source: David Schmidt, http://www.cis.ksu.edu/santos/schmidt/Escuela03/

Example Domain

57

Our Domain

• Concrete domain
– Runtime stack

• tracks actual program data

• Abstract domain
– Abstract Stack Graph (ASG)

• tracks all stack-manipulation (push, pop, call,
etc.)

58

Abstract Stack
• Holds addresses of instructions pushing

data onto stack
– not the data

– not the instruction

L1: push eax

L2: push ebx

L3: pop esi

L4: push edx

eax

ACTUAL STACK

L1

ABSTRACT STACK

ebx L2edx L4

SAMPLE PROGRAM

59

Abstract Stack Graph

Address Instruction

 L0: push ebp

 L1: push eax

 L2: beqz L5

 L3: push ebx

 L4: jmp L1

 L5: pop edx

L3

L0

L1

Abstract Stack Graph

L1

L0 L0

L1

L3

L1L1 top of
stack

Abstract Stack

L0L5

L2 L1

L5
L4

L3

60

Uses of ASG

• Detect obfuscations
– call obfuscations (e.g., push-push-ret)

– obfuscation of parameters to a call

– obfuscated return

– manipulation of return address

• Match call / return instructions
– return instruction need not follow entry

point

61

Prototype

62

Prototype

63

Summary of DOC

• Impact
– Detected all call obfuscations in W32.Evol

– Initial step towards semantic disassembler

64

Summary of DOC

• Open issues
– Indirect stack operations

• through memory and other registers

– Attacks on abstract interpretation
• Explode size of state

• Hide in over approximation

65

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

66

Metamorphic malware

Anti-Virus
Signatures

Form - B

Virus

Form - C

T T

VirusVirus

Form - A Form - B

QUESTION: If T is non-deterministic, is detection by
signature possible?

67

mov [ebp - 3], eax
push ecx
mov ecx,ebp
add ecx,33
push esi
mov esi,ecx
sub esi,34
mov [esi-2],eax
pop esi
pop ecx

push ecx
mov ecx, ebp
push eax
mov eax, 33
add ecx, eax
pop eax

push esi
mov esi, ecx
push edx
mov edx, 34
sub esi, edx
pop edx
mov [esi - 2],
eax
pop esi
pop ecx

push ecx
mov ecx, [ebp + 10]
mov ecx, ebp
push eax
add eax, 2342
mov eax, 33
add ecx, eax
pop eax
mov eax, esi
push eax
mov esi, ecx
push edx
xor edx, 778f
mov edx, 34
sub esi, edx
pop edx
mov [esi-2], eax
pop esi
pop ecx

(a) (b) (c)
(d) (e)

push ecx
mov ecx,ebp
add ecx,33
mov [ecx-36],eax
pop ecx

Example

68

Goal

• Reduce variants to unique “normal”
form

• Detect all variants using a single
signature

69

Approach

• Extract transformations used by malware
• Model mutation engine as term rewriting system (T)
• Construct a Normalizer (N) for T

– Use length-reducing,
– Lexicographic ordering to re-orient,
– And yield finite length-reducing rewriting system.

• Apply reverse transforms to unmorph the malware
– Staged Priority without completion (WC)
– Staged Priority with manual completion
– Simply use the automatically completed set

• Knuth-Bendix completion procedure

70

Approach

One virus Multiple forms ZERO form ZERO signature

Anti-Virus
ZERO Signature

ZERO Form

N N N

Virus

Form - A

Virus

Form - B

Virus

Form - CT T

Even if T is non-
deterministic, detection
by signature is
possible!!!

Virus

71

Reverse transformations

– Revert only ‘increasing’ transformations

push eax
mov eax, reg2
mov [reg1], eax
pop eax

mov [reg1], reg2

Forward

Reverse

push eax
mov eax, reg2
mov [reg1], eax
pop eax

mov [reg1], reg2

72

Evaluation
• Case study

– Unmorph W32.Evol

• Process
– Created 72 variants over six generations

• Chose 26 variants for reversal

– Extracted rules used by W32.Evol
• 55 rules (with non-ground terms)

– Reverted rules and added completion rules

73

Evaluation (cont)

• Results
– With manual completion of rules

• All 26 variants reverted to a single, unique
normal form

– Without completion (WC)
• Normal forms of all 26 variants showed more

than 98% similarity

• Can be exploited to extract a single signature to
match all

74

Results: Without Completion

24811902147298053316Rule Counts

1121979666327426430342469Execution time (ms)

98.3298.9099.2799.54100.0100.0% in common

3724161000
Lines not in
common

220421912183217721672167
Avg. size of normal
form

220421952189218421672167
Max. size of
normal form

845569745788452432572182
Avg. size of
original

65432EveGeneration

75

mov [ebp - 3], eax

push ecx
mov ecx,ebp
add ecx,33
push esi
mov esi,ecx
sub esi,34
mov [esi-2],eax
pop esi
pop ecx

push ecx
mov ecx, ebp
push eax
mov eax, 33
add ecx, eax
pop eax

push esi
mov esi, ecx
push edx

mov edx, 34
sub esi, edx
pop edx
mov [esi - 2], eax
pop esi
pop ecx

push ecx
mov ecx, [ebp + 10]
mov ecx, ebp
push eax
add eax, 2342
mov eax, 33
add ecx, eax
pop eax
mov eax, esi
push eax
mov esi, ecx
push edx
xor edx, 778f
mov edx, 34
sub esi, edx
pop edx
mov [esi-2], eax
pop esi
pop ecx

(a) (b) (c) (d) (e)

push ecx
mov ecx,ebp
add ecx,33
mov [ecx-36],eax
pop ecx

Example - Reversed

76

Summary of UMPH

• Impact
– Better than we expected

– Can raise the bar very high for malware
authors

77

Summary – Open Issues

• How to extract/gather transformation rules?
– Studying samples ‘in-the-zoo’
– Creating own equivalent transformations

• How to deal with semantic non-preserving
transformations?
– Malware may introduce dead/irrelevant code
– Reversing the rules may be problematic

• W32.Evol had such a rule
• We gave least priority to its reverse rule

• How to complete the rules?
– Knuth-Bendix procedure is not guaranteed to terminate
– Use rule set specific knowledge

• We added only TWO rules for completion

78

Talk Contents

Motivation
Analysis Tools
Overall ACA Approach
Results

VILO: malware phylogeny generation
DOC: detecting obfuscated calls
UMPH: reversing metamorphic transforms

Future and Conclusions

79

ACA in the Future
• Beginnings of movement in academic

research
– Seeing a few papers on relevant topics

• disassembly, de-obfuscation, phylogeny

• largely ignored by academic community

– Some appreciation of ACA vision
• feeding back to prior stages

• history-directed analysis

80

ACA in the Future

• Our focus: work with industry
– refine vision, keep focus on important

issues
• believe we can drive important research this

way

• VILO, DOC, and UMPH building blocks

Credits
Software Research Lab

Center for Advanced Computer Studies
University of Louisiana at Lafayette

Arun Lakhotia
Director

Andrew Walenstein
Research Scientist

Michael Venable
Software Engineer and Alumni

Ph.D. Students
Mohamed Chouchane

 Md Enamul Karim

M.S. Student
Rachit Mathur

Alumni
Nitin Jyoti, Avertlabs
Aditya Kapoor, McAfee
Erik Uday Kumar, Authentium
Moinuddin Mohammed, Microsoft
Prashant Pathak, Symantec
Prabhat Singh, Symantec

Funded by:
Louisiana Governor’s IT Initiative

82

References
• A. Lakhotia, E. U. Kumar, and M. Venable, “A Method for Detecting Obfuscated Calls in Malicious

Binaries,” IEEE Transactions on Software Engineering, 2005 (in print).
• M. Karim, A. Walenstein, A. Lakhotia, and L. Parida, "Malware Phylogeny Generation using

Permutations of Code," European Research Journal of Computer Virology, 2005 (in print).
• M. Venable, M. R. Chouchane, Md. E. Karim, and A. Lakhotia, "Analyzing Memory Accesses in

Obfuscated x86 Executables," K. Julisch and C. Kruegel (Eds.): Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA) 2005, LNCS 3548, Springer-Verlag Berlin
Heidelberg, pp. 1 – 18, 2005

• A. Lakhotia, M. E. Karim, A. Walenstein, and L. Parida, "Malware Phylogeny using Maximal Pi-
Patterns", EICAR 2005 Conference: Best Papers Proceedings, Malta, pp. 156-174, April-May, 2005.

• A. Lakhotia and M. Mohammed, “Imposing Order on Program Statements and its implication to AV
Scanners,” in Proceedings of 11th IEEE Working Conference on Reverse Engineering, Delft, The
Netherlands, November 2004, pp. 161-171.

• U. K. Eric, A. Kapoor, and A. Lakhotia, "DOC- Answering the Hidden 'Calls' of Virus," Virus Bulletin,
April 2005.

• A. Lakhotia, A. Kapoor, and E. U. Kumar, “Are Metamorphic Viruses Really Invincible?” Virus Bulletin,
December 2004 and January 2005.

• M. Venable, P. Pathak, and A. Lakhotia, “Getting into Beagle’s Backdoor,” Virus Bulletin, July 2004, pp.
9-13.

• A. Lakhotia and P. K. Singh, Challenges in getting 'Formal' with viruses, Virus Bulletin, September
2003.

