
J Comput Virol (2005)
DOI 10.1007/s11416-005-0002-9

ORIGINAL PAPE R

Md. Enamul Karim · Andrew Walenstein
Arun Lakhotia · Laxmi Parida

Malware phylogeny generation using permutations of code

Received: 1 July 2005 / Accepted: 1 July 2005 / Published online: 2005
© Springer-Verlag 2003

Abstract Malicious programs, such as viruses and worms,
are frequently related to previous programs through evolu-
tionary relationships. Discovering those relationships and
constructing a phylogeny model is expected to be helpful
for analyzing new malware and for establishing a princi-
pled naming scheme. Matching permutations of code may
help build better models in cases where malware evolution
does not keep things in the same order. We describe methods
for constructing phylogeny models that uses features called
n-perms to match possibly permuted codes. An experiment
was performed to compare the relative effectiveness of vector
similarity measures using n-perms and n-grams when com-
paring permuted variants of programs. The similarity mea-
sures using n-perms maintained a greater separation between
the similarity scores of permuted families of specimens ver-
sus unrelated specimens. A subsequent study using a tree
generated through n-perms suggests that phylogeny mod-
els based on n-perms may help forensic analysts investigate
new specimens, and assist in reconciling malware naming
inconsistencies.

Keywords

1 Introduction

Systematically reusing code has been an elusive target for
software development practice since the term “software engi-
neering” was first coined, yet in certain respects reuse may

Version of this paper was published in the EICAR 2005 Conference:
Best Paper Proceedins

Md. E. Karim (B) · A. Walenstein · A. Lakhotia
Center for Advanced Computer Studies, University of Louisiana at
Lafayette, Lafayette, USA
E-mail: mek@cacs.louisiana.edu
E-mail: walenste@ieee.org
E-mail: arun@cacs.louisiana.edu

L. Parida
IBM T. J. Watson Research Center, York town, USA
E-mail: parida@us.ibm.com

be an everyday practice for malware authors. The term “mal-
ware” is in common use as the generic name for malicious
codes of all sorts, including viruses, trojans, worms, and spy-
ware. Malware authors use generators, incorporate libraries,
and borrow code from others. There exists a robust network
for exchange, and some malware authors take time to read
and understand prior approaches (Arief and Besnard 2003).
Malware also frequently evolves due to rapid modify-and-
release cycles, creating numerous strains of a common form.
The result of this reuse is a tangled network of derivation
relationships between malicious programs.

In biology, such a network is called a “phylogeny”; an
important problem in bioinformatics is automatically gener-
ating meaningful phylogeny models based on information in
nucleotide, protein, or gene sequences (Gusfield 1997). Gen-
erating malware phylogeny models using techniques similar
to those used in bioinformatics may assist forensic malware
analysts. The models could provide clues for the analyst, par-
ticularly in terms of understanding how new specimens relate
to those previously seen. Phylogeny models could also serve
as a principled basis for naming malware. Despite a 1991
agreement on an overall naming scheme and several papers
proposing new schemes, malware naming continues to be a
problem in practice (Bontchev 2004; Raiu 2002).

The question remains, though, as to how useful phylog-
eny models can be built from studying the bodies of malicious
programs. The method used to generate the models should be
able to account for the types of changes that actually occur in
malware evolution. The focus of this paper is building phy-
logeny models taking into account the fact that programs may
be evolved through code rearrangements, including instruc-
tion or block reordering. Such reorderings might be a result
of malware author changing the behavior and organization
of the code, or they might be a result of metamorphic pro-
grams modifying their own code (Ször and Ferrie 2001). We,
therefore, aim to examine the suitability of methods that can
reconstruct derivation relationships in the presence of such
perturbations.

Specifically, two feature extraction techniques are exam-
ined: n-grams and fixed-length permutations we call

This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.3
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [2400 2400] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Compression Type: JPEG
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Perceptual
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: ISO Coated
Device-Dependent Data:
 Preserve Overprint Settings: No
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: No

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: No
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: Yes
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: Yes
 Log DSC Warnings: No
 Resize Page and Center Artwork for EPS Files: Yes
 Preserve EPS Information From DSC: Yes
 Preserve OPI Comments: No
 Preserve Document Information From DSC: Yes

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 512000 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages false
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings false
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (ISO Coated)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 512000
 /SubsetFonts false
 /DefaultRenderingIntent /Perceptual
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo false
 /ColorImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ASCII85EncodePages false
 /LockDistillerParams true
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [2400 2400]
>> setpagedevice

2 Md. E. Karim, A. Walenstein, A. Lakhotia, L. Parida

“n-perms”. These are being investigated because they can
find matches of similar segments in programs, and with such
matches it is possible to generate models of likely derivation
relationships through the analysis of similarity scores. An
experiment was performed to gauge their relative abilities in
this regard. The experiment involved comparing the relative
similarity scores for artificially constructed permuted worms
and unrelated worms. n-Perms maintained a greater separa-
tion between those scores for a range of values of n. A study
was then performed to determine how well the names gener-
ated by various anti-virus scanners aligned with the trees we
generated. The results suggest ways of using such phylogeny
models in specimen identification and in reconciling naming
inconsistencies.

Malware classification and phylogeny models are de-
scribed in Sect. 2, and past approaches are reviewed. The
approaches we consider for permutation-based cases are de-
scribed in Sect. 3, including an analysis of their expected
merits. The experiment and study are described in Sects. 4
and 5, respectively, which also include a discussion of the
results.

2 Malware classification and phylogeny models

Phylogenetic systematics is the study of how organisms relate
and can be ordered; a phylogeny is the evolutionary history
or relationships between organisms. Molecular phylogenet-
ics takes the approach of studying organism relationships
by inferring derivation relationships from the information
contained in the organisms themselves. The goal has been
described as “to infer process from pattern” (National Center
for Biotechnology Information 2005).

Software, too, has its own analogous field to molecular
phylogenetics in which software artifacts are examined and
compared in an effort to reconstruct their evolution history
(see, e.g., Godfrey and Tu 2001). Creating phylogeny mod-
els of malware is a specialized area within this field. Gen-
erally speaking, the approach taken is to analyze programs
or program components for commonalities and differences,
and then from these to infer derivation relationships or other
aspects of evolution. It is important to note that, in forensic
malware analysis, a phylogeny model need not correspond to
the “true” phylogeny in order to be useful. For instance, inci-
dental similarities not related through code derivation may
still be helpful in analysis. For this reason we shall take care
to avoid conflating the terms “phylogeny” and “phylogeny
model”.

For context, we shall review both classification and phy-
logeny model generation for malware since the problem of
generating phylogeny models shares common ground with
classification in terms of needing ways to compare programs.
Whether by design or by accident, the published malware
comparison methods we are aware of, have taken approaches
that reduce reliance on sequencing information. We review
sequence comparisons for malware analysis and then sepa-
rate applications of alternative methods into binary classifi-
cation and phylogeny generation.

2.1 Sequence comparison and alignment

Methods to compare or align sequences and strings are impor-
tant tools for molecular phylogenetics. Techniques such as
suffix trees, edit distance models, and multiple alignment
algorithms are staples for comparing genetic information
(Gusfield 1997). These sorts of techniques have been applied
to benign computer programs as well, including program
texts at the source level (Baker 1992), machine level (Beszédes
et al. 2003), and in-between (Baker and Manber 1998). Com-
mercial anti-virus (AV) scanners are also known to use some
types of sequence matching in order to classify programs into
fine-grained categories (Marko 2002) (Win32.Evol.A,
Win32.Netsky.B, etc.). The exact techniques used are
not known to us, but we do not believe they are substantially
similar to suffix trees, edit distances, and the like. Although
those methods are popular in bioinformatics, they appear not
to be widely used for the purpose of classification or phylog-
eny model generation for malware.

On the one hand, sequence-based methods may work well
for phylogeny model generation when sufficient numbers of
sequences are preserved during evolution. Consider, for in-
stance, the two worms named I-Worm.Lohack.{a,b}
(the notation X.{y,z} is a shorthand for the sequence X.y,
X.z) which we obtained fromVX heavens (2005), the widely
available malware collection. Both worms are 40,960 bytes
long and differ on only some 700 bytes (less than 2%). While
these two particular programs share large blocks of common
bytes, it cannot be assumed that all related malware will.
Nonetheless, if, in practice, related malware families main-
tain sufficient numbers of common sequences then phylog-
eny models generated based on the sequence commonalities,
may be satisfactory.

On the other hand, many sequence-based methods may
not work well for malware if it has evolved through sig-
nificant code shuffling and interleaving. Signature-based AV
scanners have been known to identify malware by search-
ing for particular sequences (Marko 2002). This fact is likely
to motivate malware authors to destroy easily identifiable
sequences between releases so that they can avoid detection.
The ability of AV scanners to detect these sequences is likely
to have prompted the emergence of polymorphic and meta-
morphic malware (Ször and Ferrie 2001). Some polymor-
phic and metamorphic malware—such as Win32.ZPerm
(Jordan 2002) and WM/Shuffle.A (Bontchev and Tocheva
2002) —permute their code during replication. Recognizing
the self-constructed derivatives will be difficult if these per-
mutations are not accounted for. We feel it is reasonable to
expect that permutation and reordering will continue to be
one of the methods in the malware author’s toolbox.

2.2 Binary classification

A common technique in text processing is to use n-grams as
features for search, comparison, and machine learning. An n-
gram is simply a string of n characters occurring in sequence.

Malware phylogeny generation using permutations of code 3

In using n-grams for malware analysis, the programs are bro-
ken down into sequences of n characters which, depending
upon the granularity desired and definitions used, could be
raw bytes, assembly statements, source lexemes, lines, and
so on. As n decreases towards 1, the significance of sequence
information is reduced.

Perhaps the earliest application of n-grams for malware
analysis was by the research group at IBM, who investigated
methods for automatically recognizing boot sector viruses
(Kephart 1994; Kephart et al. 1995; Kephart andArnold 1994;
Tesauro et al. 1996) using artificial neural networks, as well as
extracting signatures for Win32 viruses (Arnold and Tesauro
2000). As features they used byte n-grams with n in the range
of 1 – 8, depending upon the particular method or applica-
tion they used. Kolter and Maloof (2004) used a pilot study
to determine a suitable value of n, and settled on using byte
4-grams. Values of n ranging from 1 to 10 were used by
Abou-Assaleh et al. (2004), who used a technique for reduc-
ing the number of features if they grew past some bound. It
is not clear at this point under what conditions the various
possible values of n work best. Kephart and Arnold Kephart
and Arnold (1994) used a range of n to build recognition
terms of different lengths, which suggests that they found
a fixed n to be insufficient. However Abou-Assaleh et al.
(2004) recounted that in some applications trigrams are able
to capture some larger sequence information implicit in the
trigrams.

In addition to n-grams, other features have been used to
generate heuristic classifiers. Schultz et al. (2001) compared
the performance of Naive Bayes classifiers applied to several
different malware features, including the list of dynamically
linked libraries referenced by the executable, embedded text
strings, and 8-byte chunks. Note that the chunks used by
Schultz et al. (2001) were not overlapping and thus cannot
be counted as an application of n-grams.

This collection of past research has demonstrated promis-
ing abilities for automatically generating heuristic classifiers
that can perform the binary classification decision of sepa-
rating malicious programs from benign ones. However, the
record does not indicate how well these techniques would
do at finer-grained classifications needed for specimen iden-
tification (i.e., naming). While (Kolter and Maloof 2004)
reported an accurate classification, we have concerns as to
whether their experiences will generalize if packed or en-
crypted versions of both malicious and benign programs are
used in training or test data. A packer such as the UPX packer
(Oberhumer and Molnár 2005) will compress valid execu-
tables into a compressed segment and a short segment con-
taining standard unpacking code. Both benign and malicious
executables will have similar unpacking codes, but will dif-
fer on the compressed portions. The compressed portions
will have high entropy and, in fact, tend towards resembling
random data. Any n-gram matches of bytes from such sec-
tions are likely to be accidental. Thus any comparisons or
classification decisions made on the basis of n-gram matches
are likely to be based primarily on matches to the decom-
pressing segment, which will be common to both benign and

malicious code, and will fail to properly distinguish between
the two classes.

2.3 Malware phylogeny model generation

Approaches for generating phylogeny models can be differ-
entiated according to (a) the way that program features are
selected, (b) the feature comparison methods or measures
employed, (c) the type or structure of the models generated,
and (d) the algorithms used to generate the models. At the
time of writing, the existing results appear in three publica-
tions from Goldberg et al. (1998), Erdélyi and Carrera (2004),
and Wehner (2005).

Regarding features and comparison methods,
Goldberg et al. used sequences of 20 bytes and used Boolean
occurrence matching in their methods for comparing speci-
mens. They used suffix trees to construct 20-gram occurrence
counts. Goldberg et al. present several phylogeny model gen-
eration methods; they reasoned that 20-byte sequences are
large enough that each distinct sequence will have been “in-
vented” exactly once, so in one of their generation methods
it is assumed that if any sequence is found in more than one
program it is safe to infer that one was derived from the other.
Erdélyi et al. used statically-extracted call graphs as fea-
tures, and applied a heuristic graph comparison algorithm to
measure distances between specimens. The argument made
in favor of this method is that it compares specimens, to a
degree, on the basis of behavior rather than, say, data or raw
bytes. As a result, this technique may even be suitable for
comparing certain metamorphic forms of malware, assum-
ing the calling structures can be extracted well enough. Weh-
ner uses a distance measure called normalized compression
distance (NCD) which she approximated using the bzip2
compressor, a block compressor utilizing Burrows-Wheeler
block sorting and Huffman coding.

In terms of model structure and generation algorithm,
both Wehner and Erdélyi et al. used unspecified clusterers
to generate purely hierarchical X-trees. We can expect that
such tree outputs will at least occasionally produce results of
questionable value in cases where multiple inheritance rela-
tionships are present. Goldberg et al. (1998) in contrast, ex-
tract directed acyclic graphs which they called “phyloDAGs”.
PhyloDAGs can represent multiple inheritance relationships
which, from our finding of source code comments in released
malware, we know to exist.

3 Permutation-based methods for feature extraction

The focus of this paper is on generating phylogeny models for
malware that may have evolved, in part, through permutations
of code. These permutations could include instruction reor-
dering, block reordering, or subroutine reordering. In such
situations the reordering can make sequence-sensitive tech-
niques produce undesirable results if they report similarity
scores that are too low for reordered variants or descendants.

4 Md. E. Karim, A. Walenstein, A. Lakhotia, L. Parida

P1 = ABCDefghIJKL and P2 = JIKLefghACBD

Fig. 1 Pair of sequences related by swap modifications

For instance, consider the two programs P1 and P2 of
Fig. 1, in which P2 is derived from P1 by swap edits. In the fig-
ure, distinct letters signify distinct characters from whatever
alphabet is being used. P2 differs from P1 by a block swap
(1-4 swap 9-12) and by two character swaps (2 swap 3 and
9 swap 10 on P1). The block swaps are highlighted using
underlines and the character swaps using overlines. If each
of these characters is a source line, the standard diff tool
from the GNU TextUtils package finds only the efgh sub-
string in common. This is because its differencing algorithm
is based on LCS and an edit model that does not consider
block moves or swaps. There do exist string edit distance
models that account for block moves (Tichy 1984). While
these may indeed be highly suitable for malware analysis,
they are beyond the scope of this paper.

In this section, we consider two different feature types—
n-grams and n-perms—as the bases for comparing programs
for the purpose of building phylogeny models. Both of them
permit permuted sequence matching based on document com-
parison techniques employing feature occurrence vector sim-
ilarity measures. Such techniques match common features
regardless of their positions within the original documents.
From the similarity scores, evolutionary relations can be in-
ferred. The feature extraction methods are outlined, their ex-
pected strengths and weaknesses are discussed, and methods
are outlined for using them in phylogeny model generation.

3.1 n-Grams

n-Grams, already been introduced above, are widely used in
a variety of applications. With bigrams (n = 2), the two pro-
grams from Fig. 1 have four features in common covering
six of 12 characters. Thus several matches occur which may
be meaningful for evolution reconstruction.

n-Grams might be suboptimal for matching permuted se-
quences in cases where n does not correspond to the size of
the important sequential features. For instance, for n = 4 the
only feature in common between P1 and P2 is the string efgh,
meaning the two permuted subsequences are missing. An-
other shortcoming of n-grams could potentially be encoun-
tered when n is too small to account for the significance of
large sequences. For instance, consider a case when the se-
quence aaaaaaabbbbbbbb is an extraordinarily rare sequence
shared by two programs, but the bigrams aa, bb and ab are
frequent, and match multiple times. With bigrams, the sig-
nificance of the rare but shared sequence may be lost. Small
n-grams may also find misleading matches between unre-
lated programs simply because the likelihood of an inciden-
tal match is expected to increase as n decreases toward 1.
Goldberg et al. Goldberg et al. (1998) justified one of their
uses of 20-grams, in fact, because of the assumed rarity (and
hence significance) of long sequences found to be shared.

Nevertheless, there is a computational advantage to selecting
small values of n, since as n grows, the numbers of potential
features grow rapidly. For this reason, many applications of
n-grams choose either bigrams or trigrams (n = 3), or apply
various feature pruning heuristics.

3.2 n-Perms

We define a variation on n-grams called “n-perms”. For any
sequence of n characters that can be taken to be an n-gram,
an n-perm represents every possible permutation of that se-
quence. Thus n-perms are identical to n-grams except that
the order of characters within the n-perm are irrelevant for
matching purposes. For example, in abcab there are three
3-grams, abc, bca and cab, each with one occurrence. How-
ever, it has only one 3-perm: abc, with three occurrences.
The key idea behind n-perms is that they add another level
of sequence invariance to the feature vector approach. If ap-
plied to P1 and P2 of Fig. 1, each of the three permuted blocks
are matched with 4-perms, covering the full string; only one
4-gram matches, covering just four of 12 characters. With
2-perms there are six matches covering 10 of 12 characters,
whereas 2-grams generate only four matches, covering six of
12 characters.

We expect n-perms to be more tolerant of character-level
reorderings (i.e., within a span less than n) than n-grams. In
addition, for a given string, the number of possible features is
expected to be less for n-perms than for n-grams since some
of the sequences distinguished by n-grams will compare as
indistinct for n-perms. These differences between n-perms
and n-grams may prove advantageous in terms of reducing
the number of features that need to be considered, and in
terms of increasing match quality for permuted code. How-
ever, n-perms may also be more “noisy” for a given n than
n-grams since unrelated permutations may match. The noise
might be controlled by choosing larger values of n, however
block moves of smaller sizes may no longer be caught (no
5-perms match for P1 and P2 of Fig. 1, for example), and the
number of features can be expected to rise. As with n-grams,
we expect that the optimal selection of n may be dependent
on the input. In the most general case, no single value of n

will catch all permuted commonalities since they may occur
at multiple granularities.

3.3 Phylogeny generation using vector similarity

Both n-grams and n-perms can be used as features to match
on, and can be utilized to create similarity measures based
on vectors of feature occurrences. These vectors, which may
be weighted or scaled, are taken to represent the programs,
one vector per program. Such feature vector-based methods
do not match based on the locations of the features within
the programs, and so can detect permutations as being close
matches.

In order to compare the relative merits of the extrac-
tion methods, we implemented families of phylogeny model

Malware phylogeny generation using permutations of code 5

generators based on these techniques. There are unending
number of ways of constructing distance or similarity mea-
sures for these feature vectors (Zobel and Moffat 1998), and
each could be potentially applied to any of these extraction
methods. There are also any number of different heuristics
that could be tried for pruning the input space. To keep our
investigation tractable, we performed no feature pruning and
stuck to using common similarity measures and clustering
methods. Each member of the family is implemented as a
loosely-coupled collection of programs that execute in a pipe-
line architecture as follows:

tokenizer �⇒
feature occur-
rence matrix
extractor

�⇒
similarity metric
calculator

�⇒ clusterer

Supplying the appropriate tokenizer allows different alpha-
bets to be used, including bytes, words, lines, etc. Because
our tokenizer is perhaps the only unusual component, it is
described last.

Feature occurrence matrix extractor. We created two pro-
grams —one each for n-grams and n-perms—which take n

as a parameter, extract features, and then construct a feature
occurrence count matrix such that each entry of i, j records
the number of times feature i occurs in program j .

Similarity metric calculator. This takes as input a feature
occurrence matrix and constructs a symmetric similarity ma-
trix in which entry i, j records the calculated similarity be-
tween programs i and j . We tried several similarity metrics
in pilot studies before settling on one that appeared to work
well. It implements TFxIDF weighting and cosine similarity
(see, e.g., Zobel et al. Zobel and Moffat (1998)), a combina-
tion we shall refer to as TFxIDF/cosine. TFxIDF weighs the
features such that features common to many programs are
scaled down in importance, and features common within any
given program are scaled up in importance. The weighted
matrix is constructed by calculating tfi,j log(N/dfi), where
tfi,j is the count of the number of times feature i occurs in the
j th program, and dfi is the count of the number of programs
that feature i occurs in.

Clusterer. We used CLUTO (Karypis 2003) to perform clus-
tering. We selected its agglomerative clustering functionality
to build dendograms, and used the UPGMA clustering cri-
terion function, which is commonly used in biological phy-
logeny model generation. Although the resulting phylogeny
models cannot capture multiple inheritances, it is a well-
known technique and was a suitable baseline from which
to start our explorations.

Tokenizer. We built a filter that transforms input programs
into sequences of assembly opcodes, which can then be fed
as input to the feature extractor. This filter was implemented
after observing that many members within a family of worms
would vary according to data offsets or data strings, or by

.0
8

1

.1
1

1

.4
7

5

I−Worm.Bagle.a

I−Worm.Bagle.al

I−Worm.Bagle.al−petite

I−Worm.Bagle.a−upx

I−Worm.Bagle.i

I−Worm.Bagle.i−upx

I−Worm.Bagle.j

I−Worm.Bagle.j−petite

I−Worm.Skudex

I−Worm.Skudex.b

I−Worm.Skudex.b−upx

I−Worm.Skudex−petite

Fig. 2 Phylogeny model showing clustering tendency of packed exec-
utables

inclusion of junk bytes. We wished to select features which
were closely related to program behavior, yet were relatively
immune to minor changes in offset or data. Similar moti-
vations drove Kolter and Maloof (2004) to try classifying
programs based, in part, on the dynamic link libraries ref-
erenced by the programs. In our experience, transforming
the input to abstracted assembly also helpfully reduced the
size of the input considerably, making the similarity between
computations and clustering substantially cheaper.

One drawback of using opcode sequences is that the pro-
grams need to be unpacked or unencrypted, and we must
be able to disassemble them. This can be a hardship since
many malicious programs are intentionally written to make
this difficult. Nevertheless, we considered it to be critical to
use unpacked code for the reasons outlined in Sect. 2.2. Fig-
ure 2 illustrates the point of using specimens with root names
“Bagle” and “Skudex” from the VX Heavens VX heavens
(2005) collection, which shows results using both unpacked
versions and versions packed by ourselves. The figure was
created using bigrams over bytes. The packed versions were
created using one of the UPX (Oberhumer and Molnár 2005)
packer or the Petite1 packer. The packed versions have a
“-upx” or “-petite” suffix to distinguish them. The packed ver-
sions all either cluster together or are in subtrees completely
different from their unpacked versions. Moreover, many of
the packed samples are arranged according to the packer type,
suggesting that the clustering for the packed versions is based
primarily on the unpacker segment. To illustrate this point,
the similarity of the two Petite-packed Bagles was mea-
sured at .475, while the average similarity of the four packed
Bagles as a whole was only .081.

While Fig. 2 was created using byte bigrams to illustrate a
point, in the studies we report below, we use only the opcode
sequences as input. In our pilot studies, we frequently found

1 Petite 2.3, obtained from http://un4seen.com/

petite/ on 4 March, 2005.

6 Md. E. Karim, A. Walenstein, A. Lakhotia, L. Parida

that both bytes and opcode sequences produced similar look-
ing trees, but a closer investigation revealed that bytes were
less reliable for this purpose.

4 Experiment

An experiment was conducted to explore the relative strengths
and weaknesses of the n-gram and n-perm approaches. The
hypothesis tested is that n-perms will outperform n-grams in
terms of being able to find similarities in programs that differ
due to permutation operations. To test this, similarity scores
for both permuted and unrelated specimens were collected
and compared for several subsets of a test sample.

4.1 Design

A two-phased approach was used, with the first phase being
used to select parameters for the second phase.

The first phase tests whether n-perms generate better
similarity scores than n-grams for two classes of malware
specimen pairs: (1) specimens related by permutation muta-
tions, and (2) unrelated specimens. Those in the first class
are called permuted pairs (P) and those in the second are
called unrelated pairs (U). The specific hypothesis was that
regardless of the value of n, (1) n-perms would generate
higher similarity scores than n-grams for P pairs, and (2)
that n-perms would generate a wider gap in similarity scores
between P pairs and U pairs. We employed three measures
to test this: Diff, Gap (max,gram), and Gap (max,perm), de-
fined as follows. Let Sim(P, n, perm) and Sim(U, n, perm)

be the averaged n-perm based similarity scores for pairs in
P and U , respectively, for a given n. These are calculated
for a sample of m programs by constructing the similarity
matrix for the whole sample and then averaging the similar-
ity scores of selected pairs of specimens from the sample:
those for unrelated pairs (U) and pairs related by permu-
tation mutations (P). The analogous definitions for n-grams
are assumed. Then, for a given n, Diff(n) = Sim(P, n, perm)

−Sim(P, n, gram) and Gap(n, perm) = Sim(P, n, perm)−

Sim(U, n, perm). Gap(max,perm) is the maximum of the
Gap(i, perm) scores. Gap(n, gram) and Gap(max,gram) are
defined analogously. Then the null hypothesis is encoded
as (∃n.Diff(n) ≤ 0) ∨ Gap(max,perm) ≤ Gap(max,gram).
We would reject the null hypothesis if (∀n.Diff(n) > 0) ∧

Gap(max,perm) > Gap(max,gram). The independent vari-
able is n and the dependent variables are Diff and Gap.

The second phase tests whether the separation holds
regardless of the number of unrelated specimens in the sam-
ple set. To make the test as fair as possible, the results from the
first phase are consulted to determine the values of n and m

for which the Gap value is greatest for n-grams and m-perms,
respectively. This gives us the values for which the similarity
functions can reasonably be assumed to operate optimally for
the sample set. The independent variable is the sample set size
s, and the dependent variable is the Diff(s) The null hypoth-

esis is ∃s.Diff(s) < 0. We reject it if no better gaps are found
for n-grams, i.e., if ∀s.Gap(s, perm) ≥ Gap(s, gram).

4.2 Subject dataset and protocol

Nine benign Windows executables were collected from either
the Windows XP System or System32 folders from one of our
test machines. 141 Windows-based worms were collected,
of which were collected from infected mail arriving at our
departmental mail server, and the rest from the VX Heavens
archive. We selected only those worms we could successfully
unpack and disassemble using IDA Pro.2 Packed versions of
three of the benign programs and 14 of the malicious pro-
grams were added by packing them with theUPX (Oberhumer
and Molnár 2005)3. We discarded all executables and kept
only the disassemblies of all 167 specimens.

Three of the disassembled, malicious specimens were se-
lected for hand editing. These were named I-Worm.Ba-

gle. {i,j,s}. Each of these were permuted many times in
an ad hoc manner such that the original semantics were pre-
served. The permutations involved reordering instructions,
rearranging basic blocks, and changing the order of appear-
ance of subroutines. The intent was to mimic certain types
of permutations that can occur in malware (Bontchev and
Tocheva 2002). Including the three permuted variations, the
entire sample had 170 specimens in it.

From this collection, six subsets were constructed for use
as different samples in the second part of the experiment .
These were constructed by creating a base set and then adding
members to it for subsequent sets. The incremental additions
are as follows:

Increment added to subsample

Subsample Size Content

6 6 Three hand-modified variations and their
original specimens

12 6 Three pairs of dissimilar malware specimens
21 9 Benign executables
38 17 Packed executables, three of them benign
76 38 Worms

170 94 Additional worms

The intent of these selections is to provide increasingly
crowded input space so that we could examine the sensitivity
of the similarity scores to the presence of both related and
unrelated malware specimens. The sample sizes were chosen
to reduce the number of samples that would be required if
sampling of the subset size was done in a linear fashion. The
quantities approximate a logarithmic division (each sample
size being roughly double the previous sample). Since only
three P pairs (programs related by permutation mutations)
were available, we chose three U pairs (pairs of unrelated pro-
grams) to use in the experiment. These were selected from the

2 IDA Pro, version 4.6.0.785, from DataRescue, Inc., datares-
cue.com.

3 Ultimate Packer for eXecutables, version 1.25, obtained from
upx.sourceforge.net on 3 Mar, 2005.

Malware phylogeny generation using permutations of code 7

full set and are included in all but one subsample. They were
< Klez.a, Bagle.a >, < Hermes.a, Netsky.x >, and <

Mydoom.g, Recory.b > (all names prefixed with I-Worm.).
We employed the apparatus described in Sect. 3.3 to tok-

enize the programs into opcode sequences, construct feature
matrices, and then calculate similarities. For the first phase,
we chose the sample subset with 77 specimens in it, and used
values of n = 2, 3, 4, 5, 7, 10, 15, 30, 60, 100 which, again,
approximates a logarithmic scale in sampling n.

4.3 Results

Fig. 3 a and b, respectively, show the results of the two phases
using the sample data. The maximum gaps from the first
phase occur at n = 5 (.8513) for n-grams and n = 10 (.9138)
for n-perms. At no value of n is the averaged similarity score
for the permuted variants smaller for n-perms than it is for
n-grams. According to our criteria, we reject both the null
hypotheses.

4.4 Discussion

This limited experiment does not allow firm conclusions to be
drawn about how welln-perms will fare in general for phylog-
eny model generation, as the sample sets are limited, and the
experiment did not test the resulting models. Unfortunately,
we did not have access to expert-generated phylogenies of
malware specimens with verified names. It might be difficult
to find one of these with the appropriate permuted specimens.
Without such a testbed, this investigation into the similarity
score gap was performed as a second alternative. The results
suggest that n-perms will be able to catch instances of per-
muted operations within malware without disastrously gen-
erating many false positives. The top two curves of Fig. 3a
suggest that as the value of n rises, n-grams quickly deterio-
rate in their ability to find similarities in permuted malware,
whereas n-perm similarity decreases much more slowly on
our data. The bottom two curves of Fig. 3a also suggest that
for smaller values of n both n-grams and n-perms may yield
higher false positives, n-perms being worse. We note, how-
ever, that these values and trends are likely to be specific to the
properties of opcode sequences found in malware—perhaps
particularly to Windows/Win32 malware.

Manual inspection of the resulting phylogenies showed
the 5-gram and 10-perm phylogenies to be comparable, al-
though the similarity scores for the hand-permuted examples
were lower for 5-grams. The rise in similarity values for the
distinct pairs at sample size 38 for Fig. 3b may be notewor-
thy. This subsample differs from the prior one by containing
several packed executables. The probable cause of this deflec-
tion is the fact that the added specimens are unlikely to have
many features in common with the unpacked specimens so
that the IDF values (computed as log(N/dfi)) will rise the dfi
values drop. This gives further reason to use only unpacked
specimens for phylogeny model generation, as the packed

specimens are unlikely to match meaningfully and may add
false positives.

5 Study of naming and classification

We conducted a study to explore how generated phylogeny
models might assist forensic analysts in understanding and
naming malware specimens. We were aware that for any
given specimen different AV scanners may produce distinct
names (Bontchev 2004). Could the phylogenies help sort out
and reconcile the different namings? We also wondered if
the generated phylogenies could help the analyst when con-
fronted with an apparently new and unrecognized malicious
program.

5.1 Materials

We simulated the condition where new malicious programs
are obtained and compared an existing database. We selected
three specimens of worms that were recently captured on
our departmental mail server—an indication that these were
still circulating in the wild. From the ClamAV filter log, we
knew these were likely to be variants of the “Bagle” worm
because the mail filter identified them as being Worm.Ba-
gle.{AG, AU,Gen-zippwd}. The Gen-zipped suffix
indicates a generic match, meaning that the specific variant
was not identified, or was unknown to the AV scanner. These
three specimens were unpacked and renamed as Speci-
men-A,B,C so as to simulate the case where an unrecog-
nized specimen arrive.Specimen-C could not be unpacked
using any unpacker we had available to us, so we used an
interactive debugger to step through the worm until it un-
packed itself into memory and then “dumped” the memory
image as an executable. While these transformed versions are
not in a form that would be expected to circulate in the wild,
we wished to determine whether the phylogeny tree genera-
tion method could still help the analyst with new specimens
after an initial unpack or decrypt.

We then selected a sample of worms from the VX Heav-
ens VX heavens (2005) collection to use as a base collection.
To keep the study focused, we selected only the 41 available
specimens labeled with the names of the Windows worms
Bagle,Klez, andMydoom.We removed specimens that we
could not unpack or which appeared to be redundant, partic-
ularly the ones that resulted in identical abstracted assembly.
This left us with a sample size of 15. We could not deter-
mine with certainty on what basis the VX Heavens collector
named files but, however it was done, we adopted that nam-
ing scheme. We generated the abstracted assembly as before,
by disassembling the specimens and removing all but the
opcodes.

We generated a phylogeny model for the sample of 18
specimens (15 reference plus the three “unknown” speci-
mens) using 10-perms. We also scanned the collection with
three AV scanners with updated signatures and made notes

8 Md. E. Karim, A. Walenstein, A. Lakhotia, L. Parida

(a) (b)

Fig. 3 Averaged similarity scores varying by n and sample size

of how they were identified. The scanners were Norton An-
tiVirus, McAfee VirusScan, and ClamAV for Linux. These
are hereafter called simply “Norton”, “McAfee”, and “Cla-
mAV”.

The initial scan revealed that Specimen-C was iden-
tified by the name “Elkern” by both Norton and McAfee.
At this point, we wondered if the original “generic” match
by ClamAV might have been a misclassification. To inves-
tigate this mystery we added the specimen called Win32.

Elkern.a from the VX Heavens collection to the sample
and re-generated the phylogeny model on the 19
specimens.

The results appear in Fig. 4. The labels of the non-leaf tree
nodes record the average similarities between two branches.
The cross reference to the names extracted from the AV scan-
ners appears to the right of the generated tree. The “main”
clusters are highlighted using alternating shading; all of these
clusters have within-cluster average similarity scores greater
than .200, and the parent clusters all have average similar-
ity scores less than .200. The asterisks beside the names
in the first column are a reminder that these are not VX
Heavens names, but rather the specimens that are to be treated
as if they were new and unidentified. The entry “not de-
tected” indicates the AV scanner did not determine the spec-
imen to be malicious. Note that these scanner results are
on the unpacked versions and can be different from the re-
sults generated for the original packed versions as they are
typically found in the wild. For example, ClamAV reports the
packed I-Worm.Mydoom.u as Worm.Mydoom.W

and our decompressed version as Worm.Mydoom.

Gen-unp.

5.2 Discussion

5.2.1 On classifying unidentified malware

All three of the unidentified specimens fall into the large sub-
tree containing all theVX Heavens-identifiedBagleworms.
Specimen-A,B rate as highly similar, and the closest re-
lated specimen from the sample is the one named I-Worm.
Bagle.s. We are confident that Specimen-B is a speci-
men of what Symantec callsW32.Beagle.AU@mm because
we have verified the specimen embeds the same 145 strings
for the websites listed by Symantec4 as being the worm’s
contact sites. These sites are likely hosts that were compro-
mised at the time of release and are likely to change be-
tween releases. Through similar investigation we determined
Specimen-A is likely to be a W32.Beagle.AZ@mm and
Specimen-C is likely to be a W32.Beagle.l@mm.

Based on this information, the small study indicates that
gross classification into families may be possible. Given the
match of Specimen-{A,B}, some samples may be posi-
tively identified, although we would not be surprised if the
AV companies already have reasonable methods for matching
incoming samples to the closest known ones in their databas-
es. We are less sure as to how meaningful it is that Spec-
imen-{A,B} are clustered closely with the specimen named
I-Worm.Bagle.s, and Specimen-C with I-Worm.

Bagle.al. At the very least, this indicates to the analyst

4 securityresponse.symantec.com/avcen-

ter/venc/ data/w32.beagle.au@mm.html, last checked
2005.04.05.

Malware phylogeny generation using permutations of code 9
.0

0
3

.6
0
7

.0
4
2

.1
1
4

.1
9
4

.3
0
3

.6
3
0

.9
7
1

.6
4
7

.7
4
5

.9
0
5

.6
7
7

.3
2
0

.9
1
8

.9
8
1

.5
9
6

.2
0
1

.5
6
3

I−Worm.Bagle.a

I−Worm.Bagle.al

I−Worm.Bagle.i

I−Worm.Bagle.j

I−Worm.Bagle.s

I−Worm.Klez.a

I−Worm.Klez.e

I−Worm.Klez.f

I−Worm.Klez.i

I−Worm.Mydoom.g

I−Worm.Mydoom.q

I−Worm.Mydoom.u

Specimen−A *

Specimen−B *

Specimen−C *

Win32.Alcaul.c

Win32.Alcaul.e

Win32.Alcaul.f

Win32.Elkern.a

W95.Flee

W32.Beagle.gen

W32.Beagle.J@mm

W32.Beagle.A@mm

W32.Beagle.U@mm

W32.Beagle.gen

W32.Beagle.AO@mm

W32.Klez.E@mm

W32.Klez.gen@mm

W32.Klez.H@mm

W32.Klez.A@mm

W32.Mydoom.G@mm

W32.Mydoom.gen@mm

Norton

W32.ElKern.gen

W32.Elkern.4926

not detected

W32.Deimos.1255

W95.Nerhook.intd

not detected

W32.NgVck.D2

W32.NgVck.D1

W32.Alcaul.E

Worm.Bagle.K−unp

Worm.Bagle.Gen−dll

Worm.Bagle.Gen−dll

Worm.Bagle.Gen−dll

Worm.Bagle.AI

Worm.Bagle.Gen−dll

Worm.Klez.E

Worm.Klez.E

Worm.Klez.H

Worm.Klez.E

Worm.Klez.E

Worm.Mydoom.Gen−unp

Worm.Mydoom.Gen−unp

Worm.Mydoom.S−unp

ClamAV

Trojan.Spamtool.Small.F

Trojan.Spamtool.Small.F

VX Heavens

Bagle.k@mm

Bagle.j@mm

Bagle.a@mm

Bagle.gen.b@mm

Bagle.gen@mm

Bagle.dll.dr

Klez.e@mm

Klez.f@mm

Klez.i@mm

Klez.worm.gen

Mydoom.gen@mm

Mydoom.gen@mm

Mydoom.gen@mm

McAfee

W32.ElKern.cav.a

W32.Elkern.cav.c

not detected

Feeling.1195intd

Deimos

Feeling.824intd

Fig. 4 Phylogeny model and anti-virus (AV) scanner naming cross-reference

that they are likely to be different, and may suggest that two
species from different lineages are circulating.

5.2.2 On name reconciliation

We examined the cross-referenced names for cases where the
tree would suggest the AV scanner naming is inconsistent.
We looked for two classes of inconsistencies. For simplic-
ity we will call these “within-cluster” and “between-cluster”
inconsistencies. Within-cluster inconsistencies occur when
specimens within a coherent subtree are named with differ-
ent root names. Between-cluster inconsistencies occur when
the same root name is used in multiple, well-separated sub-
trees. In Fig. 4, the within-cluster inconsistencies are high-
lighted using bold face. The between-cluster inconsistencies
are highlighted using italic bold face.

We examined these inconsistencies because we felt they
might reveal naming problems. If a scanner generates two
different names for entities within the same cluster, then the
suspicion arises that the phylogeny model is clustering to-
gether unrelated specimens, the naming scheme established
by the AV community is confusing, or that the AV scanner
is inconsistent or incorrect in its identification and naming.
Between-cluster inconsistencies may indicate that aliasing
may be occurring because a single name is being used to
identify specimens that are not substantially similar.

Investigating the inconsistencies, we saw the clustering of
Win32.Elkern.a with I-Worm.Klez.a was a within-
cluster inconsistency. While following this up, it became
apparent that this clustering was likely due to the fact that

I-Worm.Klez.a is known to drop the Elkern virus and
they may have parallel and intertwined derivation relation-
ships. This is new and useful knowledge for us to understand
the malware relationships.Trojan.Spamtool.Small.F
may have a similar reason of multi-pronged malicious at-
tack in its apparently inconsistent naming, since the (terse)
description from the ClamAV database update log5 appears
to suggest the specimen is related to Bagle’s operations.

TwoElkern variants detected by both Norton and McA-
fee created between-cluster inconsistencies. One of them,
corresponding toSpecimen-C, may actually belong toBa-
gle family.

Another inconsistency appears in theAlcaul trees.While
ClamAV reports theI-Worm.Alcaul.{c,f} cluster con-
sistently, both Norton and McAfee report different names.
ClamAV’s name may indicate why these two specimens may
be related; W32.NgVck is the name of a virus construc-
tion kit. This kit may have been used to create both speci-
mens. Also note that I-Worm.Alcaul.e and I-Worm.

Alcaul.f are recognized by McAfee as Feeling vari-
ants, which created between-cluster inconsistency. All these
suggest that perhaps the naming scheme could be improved
and automated through an accepted phylogeny model.

5 From “clamav-virusdb update (daily: 765)” at
lurker.clamav.net/message/20050317.084759.

1176d20a.en.html, Last retrieved 29 March, 2005.

10 Md. E. Karim, A. Walenstein, A. Lakhotia, L. Parida

6 Conclusion

Although our results must be considered preliminary, we
found that n-perms produce higher similarity scores for per-
muted programs and produce comparable phylogeny models.
n-Perms appear to do a better job in differentiating related and
unrelated similarities in sample sets with permuted variants,
suggesting it is a better choice for constructing phylogeny
models in the presence of malware that has evolved through
permutations. Our study results suggest that phylogeny mod-
els generated using this technique may be able to help rec-
oncile naming inconsistencies and assist in the investigation
of new malicious programs.

The results suggest avenues for further investigation. In
the present work, we used exact matching of n-perms: two
n-perms must have exactly the same set of elements to match.
We focused on exact matching because our motivation was
tracing malware evolution in the presence of code reorder-
ing. However, apart from code reordering, other evolution
steps including instruction substitution, insertion, and dele-
tion could be present. We wonder whether approximate
n-perm matching could track evolution in the presence of
insertions, deletions, and instruction substitutions. Another
possible line of investigation is in combining the results of
n-perm and n-gram matching. We noted that in Fig. 3(a),
as n grows, the similarity scores for n-perms and n-grams
become increasingly mismatched for our handcrafted per-
muted variants. This implies that it might be possible to use
this similarity score difference to specifically search for or
classify permutation variants. For example, if n-perms are
used initially to find a family of related specimens, n-gram
similarity scores might help identify the ones likely to be
related through permutations.

Finally, an intriguing question remains as to whether a
threshold can be specified as a useful heuristic for determin-
ing whether a new name or a variant name should be assigned
to a new specimen. Finding a suitable heuristic threshold
would be a useful contribution for both phylogeny model
generation, and for assisting in the debates on naming.

Acknowledgements

The authors would like to thank Michael Venable and Rachit
Mathur for help in preparing the malicious code samples we
used.

References

Abou-Assaleh T, Cercone N, Kes̆elj V, Sweidan R (2004) Detection
of new malicious code using n-grams signatures. In: Second annual
conference on privacy, security and trust. Fredericton, NB, Canada,
pp 193–196

Arief B, Besnard D (2003) Technical and human issues in computer-
based systems security. Tech. Rep. CS-TR-790, School of Comput-
ing Science, University of Newcastle-upon-Tyme

Arnold W, Tesauro G (2000) Automatically generated Win32 heuris-
tic virus detection. In: Proceedings of the 2000 international virus
bulletin conference

Baker BS (1992) A program for identifying duplicated code. Comput
Sci Stat 24:49–57

Baker BS, Manber U (1998) Deducing similarities in java sources from
bytecodes. In: Proceedings of the USENIX annual technical confer-
ence (no 98)

Beszédes, Á, Ferenc R, Gyimóthy T (2003) Survey of code-size reduc-
tion methods. ACM Comput Surve 35:pp 223–267

Bontchev V, Tocheva K (2002) Macro and script virus polymorphism.
In: Proceedings of the twelfth international virus bulletin conference,
Virus Bulletin, Ltd., New Orleans, LA pp 406–438

Bontchev V (2004) Anti-virus spamming and the virus-naming mess:
Part 2. Virus Bull pp 13–15

Erdélyi G, Carrera E (2004) Digital genome mapping: ad-
vanced binary malware analysis. In: Proceedings of
15th virus bulletin international conference (VB 2004),
Chicago, IL, pp. 187–197

Goldberg LA, Goldberg PW, Phillips CA, Sorkin GB (1998) Construct-
ing computer virus phylogenies. J Algorithms 26:188–208

Godfrey M, Tu Q (2001) Growth, evolution, and structural change in
open source software. In: Proceedings of the 4th international work-
shop on principles of software evolution,Vienna,AustriaACM Press,
pp 103–106

Gusfield D (1997) Algorithms on strings, trees, and sequences: com-
puter science and computational biology. Cambridge University
Press, Cambridge, UK

Jordan M (2002) Dealing with metamorphism. Virus Bulletin pp 4–6
Karypis G (2003) CLUTO: A clustering toolkit, release 2.1.1, Tech.

Rep. #02-017, Department of Computer Science, University of Min-
nesota, Minneapolis, MN 55455, November 2003

Kephart JO (1994) A biologically inspired immune system for comput-
ers. In: Brooks RA, Maes P, (eds.), Artificial Life IV: Proceedings
of the fourth international workshop on synthesis and simulation of
living systems MIT Press, Cambridge, MA, pp 130–139

Kephart JO, Sorkin GB, Arnold WC, Chess DM, Tesauro GJ, White SR
(1995) Biologically inspired defenses against computer viruses. In:
Proceedings of the 14th international joint conference on artificial
intelligence (IJCAI’95), Morgan Kaufman, Montreal, PQ, pp 985–
996

Kephart JO, Arnold WC (1994) Automatic extraction of computer virus
signatures. In: Ford R (ed.) Proceedings of the 4th Virus Bulletin
International Conference Virus Bulletin Ltd., Abingdon, England,
pp 179–194

Kolter JZ, Maloof MA (2004) Learning to detect malicious executables
in the wild. In: Kim W, Kohavi R, Gehrke J, DuMouchel W, (eds.),
Proceedings of the TenthACM SIGKDD international conference on
knowledge discovery and data mining, ACM, Seattle, WA, pp 470–
478

Marko R (2002) Heuristics: Retrospective and future. In: Proceedings
of the twelfth international virus bulletin conference, Virus Bulletin,
Ltd., New Orleans, LA pp 107–124

National Center for Biotechnology Information (2004) Just
the facts: A basic introduction to the science underlying
NCBI resources, http://www.ncbi.nlm.nih.gov/

About/primer/phylo .html, Last retrieved 20 March, 2005
Oberhumer MFXJ, Molnár L (2005) The Ultimate Packer for eXecu-

tables – homepage. http://upx.sourceforge.net, Last re-
trieved 20 March, 2005

Raiu C (2002) A virus by any other name: Virus naming practices.
Security focus, http://www.securityfocus.com/in-

focus/1587, Last accessed March 5, 2005
Schultz MG, Eskin E, Zadok E, Stolfo SJ (2001) Data mining methods

for detection of new malicious executables. In: Proceedings of the
2001 IEEE symposium on security and privacy, Oakland, CA, IEEE
Computer Society Press, pp 38–49

Ször P, Ferrie P (2001) Hunting for metamorphic. In: Proceedings of
the 12th virus bulletin international conference pp 123–144

Malware phylogeny generation using permutations of code 11

Tesauro G, Kephart JO, Sorkin GB (1996) Neural networks for com-
puter virus recognition. IEEE Expert 11(4):5–6

Tichy WF (1984) The string-to-string correction problem with block
moves. ACM Trans Comput Syst 2(4):309–321

VX heavens (2005) Available from vx.netlux.org (and mirrors),
Last retrieved 5 March

Wehner S (2005) Analyzing worms using compression.
http://homepages.cwi.nl/∼wehner/worms/, Last
accessed March 5, 2005

Zobel J, Moffat A (1998) Exploring the similarity space. SIGIR Forum
32(1):18–34

