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ABSTRACT

Disassemblers generally assume that assembly language in-
structions do not overlap, therefore, an obvious obfuscation
against such disassemblers is to overlap instructions. This
is difficult to implement, however, as the number of instruc-
tions existing in a program which can be overlapped are
typically very few. We propose a modification of instruction
overlapping which instead embeds the hexadecimal represen-
tation of an instruction in the memory offset and immediate
operand of an inserted instruction. We implement a ob-
fuscator which is capable of embedding a limited number
of instructions and find that it is able to hide 23% of an
X86 assembly program’s total instructions on average. This
is significantly higher than results reported by past works
using standard instruction overlapping obfuscations which
were only able to hide 1% of instructions.

1. INTRODUCTION

A fundamental assumption made by many disassemblers is
that the bytes of instructions do not overlap. In other words,
given instructions I and J where J immediately follows I,
it is assumed that the first byte of J is the byte immedi-
ately following the last byte of I. An obvious obfuscation is
to attack this assumption using instruction overlapping [2].
Linn et al. [5] define instructions I and J to be overlapping
if the last k£ bytes of I are the first k£ bytes of J. When a
disassembler attempts to continue disassembly at the byte
following I, which it is has assumed to be the first byte of
J, the disassembler will become “misaligned” and begin to
misinterpret the byte sequences it encounters.

An evaluation of instruction overlapping by Linn et al. [5]
found that there are two difficulties in implementing instruc-
tion overlapping which prevent it from being an effective
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obfuscation:

e It is difficult to locate candidate instructions
for overlapping. In order to overlap instruction [
with J, the last k bytes of I must ezactly match the
first k bytes of J. Linn et al. found that this condition
is not often met.

e Instruction overlapping does not achieve a high
“confusion factor.” The confusion factor is defined
as the percentage of assembly instructions that are
incorrectly disassembled. Confusion factor is thus a
measure of how much the obfuscation “confused” the
disassembler. Linn et al. only achieved a 1% confusion
factor. This is due to the fact that x86 disassembly
tends to quickly “realign” itself, usually within only a
few instructions [5].

To address these two problems, we propose a variation
of instruction overlapping which prevents the correct disas-
sembly of instructions by embedding them within other in-
structions. Given two instructions, I and .J, J is said to be
embedded in I if the last k bytes of I comprise the entirety
of the bytes in J. This definition reduces the instruction
overlapping problem to a “byte insertion” problem. Instruc-
tions can be hidden by inserting bytes in front of them to
transform the instruction J into instruction / and adding a
jump over the added bytes to execute J instead of I.

Our method of embedding instructions utilizes instruc-
tions which can contain a memory offset followed by an
immediate value. By “embedding” the hexadecimal repre-
sentations of instructions within the offset and immediate
value, we are able to embed any instruction less than or
equal to the available size. In 32 bit code, this translates to
instructions of size 8 bytes or less.

2. RELATED WORK

Cohen [2] was the first to discuss ways to protect a pro-
gram from reverse engineering by modifying the program.
He speculated that an “evolving” program increases the com-
plexity of analysis. He suggested several such evolutions or
modifications: replacement of instruction sequences with se-
mantically equivalent sequences, code reordering, junk byte
insertion, and instruction overlapping.



Linn et al. [5] evaluated the efficacy of Cohen’s suggested
obfuscations through a set of experiments. They obfus-
cated a number of benchmark programs and then measured
the confusion factor incurred on a linear sweep, a recursive
traversal, and a commercial disassembler. Confusion factor
is defined as the percentage of instructions that a disassem-
bler incorrectly disassembles. In other words, the confusion
factor is a measure of how often a disassembler becomes
“confused.” The confusion factor incurred from instruction
overlapping was abysmally low; typically less than 1%. The
stated reason for such a low confusion factor was the small
number of opportunities where two instructions could be
overlapped. Our method of instruction embedding remedies
this situation, thus allowing many more instructions to be
embedded.

The previously referenced obfuscation called “junk byte
insertion” is applied by inserting extraneous “junk” bytes
into places where (1) the disassembler is likely to expect
code and (2) control flow never reaches. For example, junk
bytes can be inserted immediately after an unconditional
jump. By inserting bytes which correspond to instructions,
a disassembler can often be made to misinterpret subsequent
byte sequences. Like instruction overlapping, the candidate
locations into which junk bytes can be inserted are limited
by the structure of the program on which the obfuscation
is to be applied. Conversely, our instruction embedding ob-
fuscation is only constrained by limitations on the size of
embeddable instructions.

More recently, Desai et al. [3] presented a metamorphic
virus generator that modifies its control flow graph by using
the types of techniques proposed by Cohen. In a compar-
ison of the generations of a recursive application of their
metamorphic engine, the first generation was generally 70%
similar to the base virus and the ninth generation only 10%
similar.

While Desai et al. attempt to modify the control flow,
Balachandran et al. [1] discuss a method of hiding it. They
accomplish this by placing a copy of each jump instruction in
the data section and then changing the original to a dummy
instruction. At runtime, they dynamically reconstitute these
instructions immediately before they are executed, and re-
obfuscate them afterwards. Instruction embedding is also
capable of hiding the control flow of a program. By embed-
ding the control flow instructions of a program, the control
flow graph of will be modified and the original control flow
hidden.

3. INSTRUCTION EMBEDDING

Instruction embedding is a variation on instruction over-
lapping designed to increase the number of candidate in-
structions. Instruction overlapping is implemented by locat-
ing two instructions which share a common byte sequence,
combining these instructions at the shared bytes, and restor-
ing the original control flow. Instruction embedding, on the
other hand, operates by locating an embeddable instruction,
inserting bytes in front of this instruction to create a new
(embedding) instruction, and prepending a jump to the first
byte of the original (embedded) instruction.

Instruction embedding is illustrated in Figure 1. Figure la
gives the original, unobfuscated X86 assembly snippet. This
code segment initializes eax to the value 1, then loops until
eax is equal to the value 2, incrementing eax each time. In
order to embed the inc instruction, we insert the byte B8 in

front of the inc (byte 40). This transforms our inc instruc-
tion into mov eax, 0x40. In order to preserve the semantics,
we insert a jump immediately before the newly created mov
instruction which directs control flow to the embedded inc
instruction. The obfuscated code segment is given in Figure
1b.

It should be noted that both the type of jump chosen and
its placement directly preceding the embedding instruction
were made to simplify the example and are not specifically
necessary to instruction embedding. The only requirement
is that the embedded instruction is executed and no addi-
tional instructions which alter the semantics of the program
are executed. Other choices may increase the effectiveness of
the obfuscation. For example, using an indirect rather than
a direct jump may provide an additional layer of difficulty
for some disassemblers [6]. Furthermore, placing additional
instructions between the jump and embedding instruction
may aid in preventing signature based detection of instruc-
tion embedding.

Embedding in Operands.

In order for an instruction to be a candidate for embed-
ding in another instruction, only one condition must be met:
The last k bytes of the embedding instruction must consist
of the entirety of the embedded instruction. As seen in the
above example of instruction embedding, an easy way to
meet this condition is to make use of instructions containing
an immediate operand. Since X86 assembly is simply a tex-
tual representation for binary values, we can interpret the
binary as a numerical value and use this value as the immedi-
ate operand. Then, by directing control flow directly to the
immediate operand, the binary representing the numerical
value is interpreted as code rather than data at runtime.

The types of instructions which can be embedded in an
immediate operand are limited by the size of the operand.
If it is a 32-bit immediate value (the largest present in X86
assembly code), then only instructions which use four bytes
or less can be embedded. This, then, excludes other instruc-
tions which contain a 32-bit immediate value. In order to
further increase the number of instructions which can be em-
bedded, we also make use of instructions with the ability to
specify a memory address with an offset immediately before
an immediate operand. For instance, the first operand of
the mov instruction can be a memory address specified by
an offset from an address stored in a register. An example
of this is the instruction mov [eax+0x1234], 0x9876. The
offset is contained within the binary directly before the im-
mediate value, thus enabling us to spread out the bytes of
the embedded instruction between the offset and the imme-
diate operand. This effectively doubles the number of bytes
available for embedding instructions.

Caveats.

A studious reader will have noted by now that instruction
embedding will only be effective against a linear sweep dis-
assembler [4]. Linear sweep disassemblers begin at the first
byte of the first instruction and linearly “sweep” through the
binary interpreting every byte sequence as an instruction,
completely oblivious to the control flow of the program. A
control flow aware disassembler, such as a recursive traversal
disassembler, will not be affected by instruction embedding
as described above. When a recursive traversal disassem-
bler reaches the jump, it will skip over the inserted bytes



Address Assembly Hex

Address Assembly Hex

0x0 moveax,1 B8O01
LOOP:

0x2 inc eax 40

0x3 cmp eax, 2 83 F802

0x6 je EXIT 74 02

0x8 jmp LOOP EB F8
EXIT:

(a) Original

0x0 mov eax, 1 B8 01
LOOP:
0x2 jmp $+3 7C 01

0x4 mov eax, 0x40 B8 40

Figure 1: Example of Instruction Embedding

and disassemble the embedded instruction. To combat this,
we simply replace the unconditional jump with a conditional
one and force the proper branch to be taken; such a condi-
tional jump is said to have an opaque predicate. Since the
recursive traversal disassembler is not aware that only one
path of the branch is ever taken, it will attempt to follow
them both and not know how to handle the conflicting paths.
In our experimentation, the recursive traversal disassembler
we used simply marked everything that followed the condi-
tional jump as data.

4. OBFUSCATOR

To test the feasibility of our method of instruction embed-
ding, we designed and built a proof-of-concept obfuscator.
The obfuscator is implemented using the source transforma-
tion language TXL.! To perform the obfuscations, the as-
sembly code of the input program is first parsed into a parse
tree using a grammar we defined. Substitution rules which
implement the embedding are then applied to the tree and
the modified tree is unparsed into obfuscated X86 assembly
code. The substitution rules convert the instruction to be
embedded to its hexadecimal form and insert this value into
a new instruction as described in Section 3. The substitu-
tion rules are also responsible for prepending the jumps such
that the embedded instruction is executed.

One of the reasons we chose to perform source level ob-
fuscation was that this eliminated the need to update jump
addresses. The obfuscator operates on code pre-linker, so
the linker is still able to correctly determine the jump ad-
dresses, except in two cases: jumps addresses containing an
offset and indirect jumps. It is possible to specify a jump
target by giving an offset from some address (jmp LABEL +
5). If the source transformation affects any instructions be-
tween this type of jump and its target, this jump will be
broken. Indirect jumps, on the other hand, don’t provide
a jump address, but rather a register or memory location
which is expected to contain the target address. While the
problem of resolving these jumps is an interesting research
problem, it is not directly related to instruction embedding.
Thus, for our proof-of-concept obfuscation, we assume these
two types of jumps are not present.

4.1 Embedding Control Flow Instruction

There are four types of control flow instructions: uncon-
ditional jumps, conditional jumps, procedure calls, and re-
turns from procedures. In order to embed the control flow

lyww.txl.ca

0x6 cmp eax, 2 83 F8 02
0x9 je EXIT 74 02
Oxb  jmp LOOP EB FB
EXIT:
(b) Embedded
push eax
jmp LABEL Il:lOV eax, LABEL
jmp eax
LABEL: LABEL:
pop eax
(a) Before
(b) After

Figure 2: Transformation used to embed an unconditional
jump

instructions, it is necessary to first convert them to their
hexadecimal equivalent. This is trivial for the ret instruc-
tion, as it takes no operands, but it is not possible for the
other types of control flow instructions. These instructions
often specify their target address as a label (remember that
we are ignoring indirect jumps). This label is then resolved
into the correct address at link time. Since the obfuscation
occurs before the linker is run, it is impossible to know what
the target address will be. Thus, in order to embed control
flow instructions in our obfuscator, we must first transform
them into a form we can embed.

In order to embed unconditional jumps using labels as
their target address, we replace the jump with a mov of the
target address into a register followed by an indirect jump
using that register. Including a push before and a pop af-
ter the mov ensures that the register is not clobbered. Once
the described transformation has taken place, the indirect
jump may then be embedded. This transformation is illus-
trated in Figure 2. The same procedure can be used for call
instructions.

The above trick will not work for conditional jumps as in-
direct conditional jumps do not exist in X86 assembly. One
possible way to embed a conditional jump to a labeled tar-
get is to invert the condition and change the target such
that the not-taken branch becomes the taken branch. Af-
ter which, an unconditional jump to the target address is
inserted. This is illustrated in Figure 3. The unconditional
jump can then be embedded using the previously described
method.

4.2 Embedding Data Flow Instructions

A listing of some of the more common data flow instruc-
tions is provided in Table 1. To embed a data flow instruc-



LABEL:
LABEL: oo
.. jg ORIGINAL
jle LABEL jmp LABEL
oo ORIGINAL:
(a) Before
(b) After

Figure 3: Transformation to enable embedding target ad-
dress of a conditional jump

tion, the hexadecimal representation of the instruction is
embedded in the memory offset and immediate operand of
a mov instruction. The only data flow instructions which
cannot be embedded are those which exceed the size limit
(64 bits in 32-bit assembly).

Table 1: Common data flow instructions

Mnemonic Opl Op2
Movement Instructions
mov r/m r/m/imm
xchg r/m r/m
push r/m/imm NA
pPop r/m NA
lea r r/m
Arithmetic Instructions
add r/m r/m/imm
sub r/m r/m/imm
inc r/m NA
dec r/m NA
mul r/m NA
Logic Instructions
and r/m r/m/imm
not r/m NA
or r/m r/m/imm
x0T r/m r/m/imm
Key
r: Operand can be a register
m: Operand can be a memory address
imm: Operand can be an immediate value
NA: Operand not used

4.3 Implementation Status

A partial grammar for parsing assembly and a number
of transformation rules have been written. The grammar
can be used to recognize and parse a large number of as-
sembly instructions, however this list is still grossly incom-
plete. Additionally, neither data nor section declarations
are recognized. The transformation rules currently writ-
ten are capable of embedding the following instructions:
jmp, push, pop, inc, dec, mov. The grammar was semi-
automatically generated from a list of 32-bit x86 assembly

instructions found at http://ref .x86asm.net/coder32.html.

S. EVALUATION

In order to test the prototype obfuscator, we obtained
a number of assembly programs from the web, obfuscated

them with our source obfuscator, and evaluated the obfus-
cations against a defined set of metrics.

5.1 Metrics

We defined four metrics for evaluation: Instruction Confu-
sion Factor (ICF), Edge Confusion Factor (ECF), Size Cost
Factor (SCF), and Edge Penalty Factor (EPF).

Instruction Confusion Factor is defined as ICF = (OI - UI)
/ OI, where OI is the count of instructions in the original
program and UT is the count of instructions from the original
program which are still in the obfuscated program. The
ICF, then, is the percentage of original instructions which
are no longer present in the obfuscated program, i.e., the
percentage of instructions which have been embedded. A
higher ICF indicates greater obfuscation.

Edge Confusion Factor is defined as ECF = (OE - UE)
/ OE, where OE is the count of control flow edges in the
original program and UE is the number of original control
flow edges which remain in the obfuscated program. Thus,
ECF is the percentage of original edges in the control flow
graph which have been hidden through embedding. A higher
ECF indicates greater obfuscation.

Size Penalty Factor is defined as SPF = TI / OI, where TI
is the count of instructions in the transformed (obfuscated)
program and OI is as defined above. This is a measure of
the code size increase. We do not reason as to whether an
increase or decrease in the SPF is desirable as the specific
application of the obfuscation will dictate the answer. This
metric, then, is simply provided for the benefit of the reader.

Edge Penalty Factor is defined as EPF = TE / OE, where
TE is the count of control flow edges in the transformed
(obfuscated) program and OE is the number of edges in the
original program. This metric is a measure of the ratio of
new edges to original edges. The more edges present in the
control flow graph of the transformed program that were not
in the control flow graph of the original program, the harder
it should be to reconstruct the original edges that are missing
since each such new edge adds its own disinformation.

5.2 Results

The collected measurements for the defined metrics are
listed in Table 2. On average, our obfuscator attained an
ICF of 0.2316, an ECF of 0.0607, a SPF of 1.6698, and an
EPF of 2.7565. The ICF, ECF, SPF, and EPF for our test
set are graphed in Figures 4, 5, 7, and 6 respectively. Note
that no EPF bar is present for 64bitbcdadd.asm because the
result of the calculation is undefined due to the absence of
edges in its original control flow graph.

5.3 Discussion

Even with our limited implementation, we obtained a 23%
instruction confusion factor. This is a significant improve-
ment over the 1% confusion factor reported by Linn et al. [5].
The improvement is due to the larger number of candidates
for embedding over the number of candidates for overlap-
ping. This increase in confusion factor on average incurred
a size increase penalty of 167%. Additionally, application
of our techniques for embedding control flow instructions
obtained a 6% edge confusion factor. This means that 6%
of the edges in the control flow graph of the unobfuscated
program are not present in the control flow graph of the
obfuscated program. The average increase in the number
of edges as indicated by the edge penalty factor was 275%.



Figure 4: Instruction Confusion Factor

ECF

Figure 5: Edge Confusion Factor

Thus, there are nearly three times as many edges in the ob-
fuscated program’s control flow graph as there were in the
original, implying that the complexity of the control flow

graph has increased by a similar amount.

6. CONCLUSION

We have proposed a variation of instruction overlapping
called instruction embedding that is designed to increase the
number of instructions which can be hidden from disassem-
bly. A prototype obfuscator which uses instruction embed-
ding has been implemented and empirically evaluated on a
set of X86 assembly programs. On our limited set, we were
able to embed 23% of the instructions. We find that embed-
ding unconditional jumps removes 5% of the edges from the

control flow graph.
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Table 2: Metrics

File Name Ol Ul TI OE | UE | TE ICF | ECF SPF EPF
64bitbcdadd.asm 31 24 52 0 0| 14 | 0.2258 | 0.0000 | 1.6774 | Undefined
fact.asm 21 14 44 9 8| 26| 0.3333 | 0.1111 | 2.0952 2.8889
ged3.asm 14 13 16 8 8 10 | 0.0714 | 0.0000 | 1.1429 1.2500
input.asm 71 52 125 19 16 | 62 | 0.2676 | 0.1579 | 1.7606 3.2631
lifesim.asm 37 33 45 9 9 17 | 0.1081 | 0.0000 | 1.2162 1.8889
lifesmll.asm 91 66 163 16 15 | 69 | 0.2747 | 0.0625 | 1.7912 4.3125
primes.asm 44 27 90 13 12 48 | 0.3864 | 0.0769 | 2.0455 3.6923
strlen.asm 27 22 44 13 12 | 26 | 0.1852 | 0.0769 | 1.6296 2.0000
Averages 42.00 | 31.38 | 72.38 | 10.88 10 34 | 0.2316 | 0.0607 | 1.6698 2.7565



